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Abstract: An  analytical  and  numerical  systematic  study  of  the  neutrino  mass  matrix  with  one  texture  zero  is
presented in a basis where the charged leptons are diagonal. Under the assumption that neutrinos are Dirac particles,
the  analysis  is  conducted  in  detail  for  the  normal  and  inverted  hierarchy  mass  spectra.  Our  study  is  performed
without any approximations, first analytically and then numerically, using current neutrino oscillation data. The ana-
lysis constrains the parameter space in such a way that, among the six possible one-texture-zero patterns, only four
are favored in the normal hierarchy and one in the inverted hierarchy by current oscillation data at the   level. Phe-
nomenological implications for the lepton CP-violating phase and neutrino masses are also explored.
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I.  INTRODUCTION

SU(3)c⊗SU(2)L⊗U(1)Y

SU(3)c SU(2)L

Although the gauge boson sector of the standard mod-
el  (SM)  with  the    local  gauge
symmetry  has  been  successfully  understood  so  far  (with

  confined  and    spontaneously  broken  via
the  Higgs  mechanism  [1]),  its  Yukawa  sector  is  still
poorly  understood.  Questions  related  to  this  sector,  such
as  the  number  of  families  in  nature,  the  hierarchy of  the
charged  fermion  mass  spectrum,  the  smallness  of  the
neutrino masses,  quark  mixing  angles,  neutrino   oscilla-
tion  parameters,  and  the  origin  of  CP  violation,  remain
open questions. Moreover, in the context of the SM, there
is a lack of explanation for the dark matter  and dark en-
ergy observed at present in the universe.

∑
mν < 0.12 eV (95%CL)⟨

mβ
⟩
< 0.8 eV (90%CL)

In the context of the SM, a neutrino flavor created by
the weak interaction and associated with a charged lepton
will maintain  its  flavor,  which  indicates  that  lepton   fla-
vor  is  conserved  and  neutrinos  are  massless.  Moreover,
from oscillation experiments, we know that neutrinos are
massive  particles  and  that  they  oscillate  from one  flavor
to  another,  with  the  results  sensitive  only  to  the  squared
mass difference. We still do not know the mass of any of
the light neutrinos. However, from cosmology, we know
the  upper  limit  for  the  sum  of  the  three  light  neutrino
masses:    [2−4],  whereas  from
tritium beta decay, there is room for an effective mass of
the electron neutrino   [5−7].

UPMNS

Current neutrino experiments are measuring the neut-
rino  mixing  parameters  with  unprecedented  accuracy.
The next generation of neutrino experiments will be sens-
itive to subdominant neutrino oscillation effects that can,
in  principle,  provide  information  on  the  yet  unknown
neutrino parameters:  the Dirac CP-violating phase in the
Pontecorvo-Maki-Nakagawa-Sakata  (PMNS)  mixing
matrix  ,  neutrino  mass  ordering,  and  the  octant  of
the mixing angles.

To date,  the  solar  and  atmospheric  neutrino   oscilla-
tions have established the following values to 3 sigma of
the deviation to normal ordering [8]: 

∆m2
Atm = (2.46−2.61)×10−3 eV2 = ∆m2

32,

∆m2
Sol = (6.92−8.05)×10−5 eV2 = ∆m2

21,

sin2 θAtm = (4.30−6.96)×10−1 = sin2 θ23,

sin2 θSol = (2.75−3.45)×10−1 = sin2 θ21,

sin2 θReac = (2.02−2.38)×10−2 = sin2 θ13.

The numbers are obtained under the assumption that,
for  the  charged  lepton  sector,  the  weak  basis  and  flavor
basis are the same.

Mν
In this  paper,  we  present  a  systematic  study of  neut-

rino  mass  matrix    with  one  texture  zero,  in  a  basis
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where the three charged leptons are diagonal, as an exten-
sion of  the  already presented study of  the  case  with  two
texture zeros [9, 10].

Mν
In our analysis,  for  each of  the six different  one  tex-

ture zeros in  , we perform first an analytical and then a
statistical fit  of  the  oscillation  angles,  to  limit  the   para-
meter space, and thus obtain neat predictions for the neut-
rino masses. 

II.  MODEL

The  model  used  herein  is  a  simple  extension  of  the
SM, with the following three new aspects added:

(ναR; α = e,µ,τ)
1.  We extend the  electroweak sector  of  the  SM with

three right handed neutrinos,  .
2.  The charged lepton mass matrix is  diagonal in the

weak basis.
3. Majorana masses are forbidden. 

A.    Neutrino mass matrix
According to the previous hypothesis, for the charged

lepton sector, we have 

Ml =

Ü
me 0 0

0 mµ 0

0 0 mτ

ê
, (1)

3×3

(M = HU)
SU(2)L

which indicates that the most general   neutrino mass
matrix is  complex;  however,  a  complex  matrix  can   al-
ways  be  decomposed  as  the  product  of  a  Hermitian  and
unitary matrix, according to the polar decomposition the-
orem  , where  the  unitary  factor  can  be   ab-
sorbed  into  the    singlet  gauge  structure  [11−13].
Then,  we  can  assume  it  as  a  Hermitian  matrix  without
loss of generality, which indicates

 

Mν =

Ü
mνeνe mνeνµ mνeντ
mνµνe mνµνµ mνµντ
mντνe mντνµ mντντ

ê
= VPMNS

Ü
m1 0 0

0 m2 0

0 0 m3

ê
V†PMNS =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3


m1 0 0

0 m2 0

0 0 m3


U∗e1 U∗µ1 U∗τ1

U∗e2 U∗µ2 U∗τ2
U∗e3 U∗µ3 U∗τ3



=

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3


m1U∗e1 m1U∗µ1 m1U∗τ1

m2U∗e2 m2U∗µ2 m2U∗τ2
m3U∗e3 m3U∗µ3 m3U∗τ3

 (2)

VPMNSwhere mixing matrix   for Dirac neutrinos is parametrized in the usual way as follows:
  1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e−iδCP

0 1 0

−s13eiδCP 0 c13


 c12 s12 0

−s12 c12 0

0 0 1

 =
 c12c13 s12c13 s13e−iδCP

−s12c23− c12s23s13eiδCP c12c23− s12s23s13eiδCP s23c13

s12s23− c12c23s13eiδCP −c12s23− s12c23s13eiδCP c23c13

;

(3)

Diag(m1,m2,m3)
ci j = cosθi j si j = sinθi j

θi j, i < j = 1,2,3

where    represents the  neutrino  mass   ei-
genvalues,  and    and    are  the  cosine
and  sine  of  oscillation  angles  ,  respect-
ively, in the standard parametrization.

Mν mνeνe = m∗νeνe , mνµνµ = m∗νµνµ , mντντ =
m∗ντντ mνµνe = m∗νeνµ mντνe = m∗νeντ mνµντ = m∗ντνµ

Now, owing  to  the  hermiticity  constraint,  the   ele-
ments  of    satisfy: 

,  ,  , and  .

UPMNS 3σ
In  our  analysis,  we  use  the  numerical  values  for  the

entries of   measured at the   ranges presented in
the literature [8] and quoted above. 

B.    Counting parameters

Mν

θ12, θ13

When the mass matrices for the lepton sector are giv-
en  by equations  (1)  and (2),  in  the  weak basis,  the  most
general  Hermitian  mass  matrix   has six  real  paramet-
ers  and  three  phases  that  we  can  use  to  explain  seven
physical parameters: three real oscillating angles  ,

θ23 m1, m2 m3and  ,  three  real  neutrino  masses  ,  and  ,  and
one CP violating phase δ. Hence, in principle, we have a
redundant number of parameters (two more phases).

Mν

Now, contrary  to  the  quark  sector,  we  cannot   intro-
duce  texture  zeros  via  weak  basis  transformations
[14−18] in mass matrix  , as it will change the charged
lepton diagonal  mass  matrix.  However,  as  shown   else-
where  [9,  10,  19],  the  "weak  basis  transformations''  can
be used to eliminate the two redundant  phases,  and con-
sequently, our study considers only seven parameters, six
real and one phase, which are sufficient to accommodate,
in principle, the seven physical parameters.

Mν

Now, as the number of analytical parameters is equal
to  the  number  of  physical  ones,  one  (or  more)  texture
zero(s)  in  mass  matrix    will  imply  relationships
between  the  physical  parameters;  in  particular,  for  one
texture  zero,  we  may  expect  a  relationship  between  the
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UPMNSneutrino  masses  and  the  oscillating  angles  in  the 
matrix (as is the case, for example, in the quark sector [17, 18]).

The origin  of  texture  zeros  has  been extensively dis-
cussed in the literature (see, for instance, [20−24]). Such
vanishing entries can indeed arise from the imposition of
discrete  flavor  symmetries  or  specific  group  structures
acting on the lepton fields. 

III.  ONE TEXTURE ZERO

The  introduction  of  texture  zeros  in  a  general  mass
matrix  has  been  an  outstanding  hypothesis  that  may
provide relationships in the lepton sector between the os-
cillation angles and mass eigenvalues.

As discussed  earlier,  the  six  real  mathematical   para-
meters  of  the  most  general  Hermitian  mass  matrix  for
Dirac neutrinos provide sufficient room to accommodate
the five real experimental values with no prediction at all.
One texture  zero,  although  not  conducive  to  any  predic-
tion either,  limits  the  parameter  space  sufficiently  to  ac-
commodate the experimentally measured numbers.

Mν

In  the  following,  for  the  case  of  ''normal  ordering"
(NO) and "inverted ordering" (IO), we will study six dif-
ferent cases of one texture zero in Hermitian Dirac mass
matrix  ,  particularly  for  the  lightest  Dirac  neutrino
mass,  which  consequently  implies  the  knowledge  of  the
neutrino mass spectrum.

Mν

Our aim in this study is to perform first an analytical
and  then  a  statistical  analysis  of  the  parameter  space,
when one texture zero is introduced in  .

MνFor the implications of texture zeros in  , two cases
must be analyzed: texture zeros in the diagonal, and tex-
ture zeros outside the diagonal. 

A.    Diagonal texture zeros
mνeνe = 0Let us first assume that   and consider its im-

plications:
From equation (2), we have 

mνeνe = m1|Ue1|2+m2|Ue2|2+m3|Ue3|2 = 0, (4)

m3

|Ue1|2+ |Ue2|2+ |Ue3|2 = 1
and  dividing  this  by    and  using  the  unitary  constraint
of matrix U, that is,  , we can write
equation (4) as 

m1

m3
|Ue1|2+

m2

m3
|Ue2|2+1− |Ue1|2− |Ue2|2 = 0;

which we can rearrange as 

|Ue2|2 =
m3

m3−m2
− m3−m1

m3−m2
|Ue1|2. (5)

By  rewriting  equation  (5)  in  terms  of  the  physical
parameters, we obtain 

s2
12c2

13 =
m3

(m3−m2)
− (m3−m1)

(m3−m2)
c2

12c2
13, (6)

As anticipated above, we obtain the relationship between
the neutrino masses and oscillation parameters.

mνµνµ = 0Similarly, for  , we have 

|Uµ2|2 =
m3

m3−m2
− m3−m1

m3−m2
|Uµ1|2, (7)

mντντ = 0and for  , we have 

|Uτ2|2 =
m3

m3−m2
− m3−m1

m3−m2
|Uτ1|2. (8)

The former three cases can be summarized as follows: 

|Uα2|2 =
m3

m3−m2
− m3−m1

m3−m2
|Uα1|2, (9)

α = e mνeνe = 0 α = µ mνµνµ = 0 α = τ

mντντ = 0
for    if  ;    if  ,  and    if

. 

B.    Texture zeros outside the diagonal

mνeνµ = 0 mνµνe =
m∗νeνµ = 0

Let us now consider a texture zero outside the diagon-
al.  Let  us  start  with    (notice  that 

).
Here, equation (2) implies 

mνeνµ = m1Ue1U∗µ1+m2Ue2U∗µ2+m3Ue3U∗µ3 = 0, (10)

m3

Ue1U∗µ1+Ue2U∗µ2+Ue3U∗µ3 = 0
and dividing this by   and using the orthogonality con-
dition  , we can write  Å

m1

m3
−1
ã

Ue1U∗µ1+
Å

m2

m3
−1
ã

Ue2U∗µ2 = 0, (11)

U∗e2Uµ2which is multiplied by   and rearranged to obtain  Å
m1

m3
−1
ã

Ue1U∗µ1U∗e2Uµ2+
Å

m2

m3
−1
ã
|Ue2|2|Uµ2|2 = 0,

(12)

which we can finally write as 

Ue1U∗µ1U∗e2Uµ2+
Å

m3−m2

m3−m1

ã
|Ue2|2|Uµ2|2 = 0, (13)

which, together with its complex conjugate, can be separ-
ated into two parts: a real part equal to zero and an ima-
ginary part  also  equal  to  zero  (notice  that,  for  a   Her-
mitian matrix, its eigenvalues must be real but not neces-
sarily positive).

mνµνeAs   must also be equal to zero, the two relations
must  be equivalent  to make the real  and imaginary parts
in  equation  (13)  equal  to  zero.  As  the  second  term  in
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equation (13) is real, considering the imaginary part equal
to zero produces 

Im(Ue1U∗µ1U∗e2Uµ2) = J = 0; (14)

which indicates that this texture zero is associated with a
Jarlskog  invariant  equal  to  zero  and  no  CP  violation  is
present for this texture zero.

mνeντ = 0Similarly, for  , we have 

mνeντ = m1Ue1U∗τ1+m2Ue2U∗τ2+m3Ue3U∗τ3 = 0. (15)

m3

Ue1U∗τ1+Ue2U∗τ2+Ue3U∗τ3 = 0
Dividing  by    and  using  the  orthogonality  relationship

,  we  can  write  equation  (15)
as  Å

m1

m3
−1
ã

Ue1U∗τ1+
Å

m2

m3
−1
ã

Ue2U∗τ2 = 0, (16)

U∗e2Uτ2which is multiplied by   and rearranged to obtain  Å
m1

m3
−1
ã

Ue1U∗τ1U∗e2Uτ2+
Å

m2

m3
−1
ã
|Ue2|2|Uτ2|2 = 0,

(17)

which in turns implies 

Ue1U∗τ1U∗e2Uτ2+
Å

m3−m2

m3−m1

ã
|Ue2|2|Uτ2|2 = 0, (18)

which again yields 

Im (Ue1U∗τ1U∗e2Uτ2) = J = 0. (19)

The former indicates that this texture zero outside the di-
agonal,  and  also  the  former  case,  are  associated  with  a
Jarlskog invariant equal to zero and again, there is no CP
violation in this case.

mνµντ = 0Similarly, for  , we have 

mνµντ = m1Uµ1U∗τ1+m2Uµ2U∗τ2+m3Uµ3U∗τ3 = 0, (20)

m3and dividing this by   and using the appropriate ortho-
gonality relationship, we have  Å

m1

m3
−1
ã

Uµ1U∗τ1+
Å

m2

m3
−1
ã

Uµ2U∗τ2 = 0, (21)

U∗µ2Uτ2which is multiplied by   to obtain
 

Uµ1U∗τ1U∗µ2Uτ2+
Å

m3−m2

m3−m1

ã
|Uµ2|2|Uτ2|2 = 0, (22)

which again yields
 

Im(Uµ1U∗τ1U∗µ2Uτ2) = J = 0; (23)

 

IV.  NUMERICAL RESULTS

After the spontaneous symmetry breaking of the loc-
al  gauge  symmetry,  the  Lagrangian  mass  term  for  the
lepton sector is given by
 

−L = ν̄LMννR+ l̄LMllR+h.c., (24)

Mν Mlwhere   and   are,  in general,  complex matrices.  We
will  analyze  each  of  the  texture  forms  with  one  texture
zero  in  the  neutral  sector  and  choose  the  charged  lepton
sector in the diagonal form.
 

A.    Textures forms

Mν
There  are  six  different  one  texture  zero  patterns  in
, for which we use the following notation:

 

T1 =

Ü
0 a b

a∗ c d

b∗ d∗ e

ê
,T2 =

Ü
a b c

b∗ 0 d

c∗ d∗ e

ê
,

T3 =

Ü
a b c

b∗ d e

c∗ e∗ 0

ê
,T4 =

Ü
a 0 b

0 c d

b∗ d∗ e

ê
,

T5 =

Ü
a b 0

b∗ c d

0 d∗ e

ê
,T6 =

Ü
a b c

b∗ d 0

c∗ 0 e

ê
.

In the following, we will perform a numerical analys-
is for each of the textures.
 

T1B.    Texture 
T1 (1,1)

Mν

Texture  ,  featuring  a  vanishing    element,
provides  a  good  fit  to  the  observed  neutrino  oscillation
data.  In  this  case,  parameters  a,  b,  and  d  are  complex,
whereas c and e are real. Mass matrix   must satisfy the
diagonalization condition:
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U†MνU = diag(m1,m2,m3),

UPMNS

Mν

where U is the same   matrix known experimentally.
To quantify  the  deviation  between  the  observables   pre-
dicted  by  mass  matrix    and the  experimentally  meas-
ured values, we construct a chi-squared error function: 

χ2 =
∑

i

Ç
xpred

i − xobs
i

σi

å2

,

xi

xpred
i

Mν xobs
i

σi

where    represents  the  relevant  physical  observables
(such as oscillation angles and mass-squared differences),

  represents  the  theoretical  predictions  obtained  from
the diagonalization of  ,   represents the experiment-
ally  measured  values,  and    represents the   correspond-
ing experimental  uncertainties,  as  noted  in  the   introduc-
tion.

Mν
χ2

The  goal  is  to  find  the  set  of  parameters  in    that
minimizes  , ensuring that the matrix reproduces the ob-
served neutrino  oscillation  data  within  the  allowed   con-
fidence level. The same procedure is applied to the other
texture types. 

1.    Mass matrix parameters

Our  numerical  analysis  shows  that  the  mass  matrix
elements are 

Mν=

Ü
0 0.00516+0.0057i −0.00411+0.00461i

0.00516−0.0057i 0.0281 0.02225−0.00005i

−0.00411−0.00461i 0.02225+0.00005i 0.02507

ê
eV

with the resulting eigenvalues given by 

m1 = −0.00542 eV, m2 = 0.00860 eV,

m3 = 0.04999 eV,
3∑

i=1

|mi| = 0.06402 eV.

This spectrum is consistent with a normal mass order-
ing  and  complies  with  cosmological  bounds  on  the  sum
of neutrino masses [2], and 

∆m2
21 = 4.46×10−5 eV2, ∆m2

31 = 2.50×10−3 eV2,

χ2 = 1.43×10−3

which are in excellent agreement with experimental con-
straints  from  solar  and  atmospheric  neutrino  data  [25].
These values are evaluated with the best fit  point for the
minimum  .

The  above  values  allow  us  to  obtain  the  following
mixing matrix: 

UPMNS=

Ü
−0.818602+0.0905867i −0.537971−0.101074i −0.0162952−0.147616i

0.374339−0.153715i −0.541351−0.128917i −0.725065−0.0290143i

−0.3974 0.625053 −0.67185

ê
.

This matrix  is  unitary  and  consistent  with  the   stand-
ard parameterization of the lepton mixing matrix. The os-
cillation angles extracted from this matrix are 

θ13 = arcsin(|U13|) , θ12 = arctan
Å |U12|
|U11|

ã
,

θ23 = arctan
Å |U23|
|U33|

ã
.

To  extract  Dirac  CP-violating  phase  δ,  one  can  use
the Jarlskog invariant J, defined as 

J = Im
(
U11U22U∗12U∗21

)
=

1
8

sin2θ12 sin2θ23 sin2θ13 cosθ13 sinδ.
 

θ12 = 33.61◦, θ13 = 8.54◦, θ23 = 47.21◦, δ = 270.02◦.

3σ
These values are in good agreement with the experiment-
ally  measured  values  at  the    level  reported  by  the
NuFIT collaboration.

T1

(1,1)
Le−Lµ−Lτ

Texture   is highly successful in accommodating the
current  experimental  data  on  neutrino  mixing  and  mass-
squared differences,  with a physically acceptable predic-
tion  for  the  CP-violating  phase.  The  choice  of  a  zero
value  at  the   position can be  motivated by underly-
ing  flavor  symmetries,  such  as  , and   encour-
age  us  to  further  study  texture  zeros  in  neutrino  physics
[25−28]. 

T2C.    Texture 
T2 (2,2)

∆m2
31

3σ

Texture  ,  featuring  a  vanishing    element,
provides  a  partial  fit  to  the  observed neutrino oscillation
data. The atmospheric mass-squared difference   and
two of the mixing angles are within the   experimental
ranges. 

Mν≈

Ü
−0.02006 −0.00319+0.00454i −0.00883+0.00648i

−0.00319−0.00454i 0 0.03037+0.01680i

−0.00883−0.00648i 0.03037−0.01680i 0.02616

ê
The texture produced the following observables: 

m1 = −0.020929 eV, m2 = −0.025179 eV,

m3 = 0.052208 eV,
3∑

i=1

|mi| = 0.0983 eV.
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∆m2
21 = 1.96×10−4 eV2, ∆m2

31 = 2.29×10−3 eV2

 

UPMNS =

Ü
0.840 0.517 0.166

0.036+0.503i 0.025−0.659i −0.259−0.495i

−0.045−0.196i 0.290+0.463i −0.677−0.451i

ê
 

θ12 = 31.61◦, θ13 = 9.53◦, θ23 = 34.46◦, δ = 223.4◦

χ2 = 0.39

∆m2
31 3σ

∆m2
21

θ23

T2

These values are evaluated with the best fit  point for
the  minimum  . A  vanishing  (2,2)  element   par-
tially accommodates the current neutrino oscillation data.
While   and two mixing angles lie within the   ex-
perimental  ranges,  solar  mass-squared  difference 
and  atmospheric  angle    are  significantly  outside  the
preferred bounds.  Thus,  although textures with zeros are
theoretically  suitable  for  reducing  parameter  space  [20,
29],  the    structure  is  disfavored  by  present  data  [8,
30–31]. 

T3D.    Texture 
T3 (3,3)For  texture  ,  featuring  an  input  zero  in  ,  the

form of the mass matrix that we obtain is 

Mν ≈

Ü
−0.03041 −0.00996+0.00705i −0.00871−0.00019i

−0.00996−0.00705i 0.02277 0.03326+0.02773i

−0.00871+0.00019i 0.03326−0.02773i 0

ê
The observables are given by 

m1 = −0.032442 eV, m2 = −0.033881 eV,

m3 = 0.058679 eV,
3∑

i=1

|mi| = 0.1250 eV.

 

∆m2
21 = 9.54×10−5 eV2, ∆m2

31 = 2.39×10−3 eV2,

 

UPMNS =

Ü
0.802 −0.574 −0.166

−0.269+0.064i −0.557−0.044i 0.629+0.464i

0.436−0.301i 0.436−0.410i 0.600−0.035i

ê
 

θ12 = 35.63◦, θ13 = 9.54◦, θ23 = 52.42◦, δ = 328.7◦.

χ2 = 2.10

3σ

These values are evaluated with the best fit  point for
the  minimum  . This  texture  is  close  to   experi-
mental  expectations,  with  mixing  angles  and  mass-
squared differences lying within the   ranges. 

T4E.    Texture 
We find a mass matrix with the following form (note

that, for this particular case, all entries are real): 

Mν =

á
−0.00610 0 0.02191

0 0.03603 0.02242

0.02191 0.02242 0.02762

ë
eV

The observables are given by 

m1 = −0.02236 eV, m2 = 0.02411 eV,

m3 = 0.05581 eV,
3∑

i=1

|mi| = 0.1023 eV.

 

∆m2
21 = 8.12×10−5 eV2, ∆m2

31 = 2.61×10−3 eV2.

 

UPMNS =

á
−0.8155 0.5594 0.1484

−0.3027 −0.6308 0.7145

0.4933 0.5377 0.6837

ë
 

θ12 = 34.45◦, θ13 = 8.53◦, θ23 = 46.26◦,

δ = 0◦ or π (Jarlskog invariant J = 0)

3σ

χ2 = 4.61×10−8

This texture  provides  an  excellent  fit  to  the   experi-
mental data. All the mixing angles and mass-squared dif-
ferences  fall  within  the    ranges,  and  the  CP-violating
phase corresponds to a vanishing Jarlskog invariant, con-
sistent  with  the  imposed  matrix  structure.  These  values
are  evaluated  with  the  best  fit  point  for  the  minimum

.
 

T5F.    Texture 
The  mass  matrix  is  observed  to  have  the  following

form: 

Mν =

á
−0.00028 0.00774+0.00782i 0

0.00774−0.00782i 0.02442 0.02114+0.00508i

0 0.02114−0.00508i 0.03048

ë
eV

The observables are given by 

m1 = −0.00681 eV, m2 = 0.01097 eV,

m3 = 0.05046 eV,
3∑

i=1

|mi| = 0.0682 eV.
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∆m2
21 = 1.53×10−4 eV2, ∆m2

31 = 2.55×10−3 eV2

 

UPMNS=

Ü
0.8243 0.5472 −0.1453

−0.3440+0.3476i 0.3933−0.3974i −0.4709+0.4759i

0.1476−0.2439i −0.3225+0.5329i −0.3772+0.6232i

ê
 

θ12 = 33.58◦, θ13 = 8.35◦, θ23 = 42.58◦, δ = 0◦ or π.

3σ
χ2 = 37.65

χ2

This  texture  successfully  reproduces  the  observed
neutrino oscillation parameters with all the values within
the   experimental  ranges and an effectively vanishing
CP-violating  phase.  However,  the  minimum  .
Although the model contains the necessary parameters to
describe  the  primary  observables,  it  is  missing  one  or
more parameters required to capture smaller but statistic-
ally  significant  variations  in  the  data.  In  this  form,  the
number of free parameters (degrees of freedom) must be
increased to verify if  the value of   decreases to an ac-
ceptable level. 

T6G.    Texture 
We  find  a  Hermitian  neutrino  mass  matrix  of  the

form: 

Mν =

Ü
0.05467 0.00173+0.00467i 0.00111+0.00461i

0.00173−0.00467i 0.02970 0

0.00111−0.00461i 0 −0.00394

ê
eV

The observables obtained are 

m1 = 0.06352 eV, m2 = −0.06633 eV,

m3 = −0.07548 eV,
3∑

i=1

|mi| = 0.2053 eV.

 

∆m2
21 = 3.68×10−4 eV2, ∆m2

31 = 1.43×10−3 eV2

 

UPMNS =

Ü
0.9251 0.2856 0.2500

−0.3713+0.0296i 0.8077−0.0644i 0.4511−0.0360i

0.0689+0.0250i 0.4812+0.1744i −0.8048−0.2917i

ê
 

θ12 = 17.16◦, θ13 = 14.48◦, θ23 = 27.86◦, δ = 0◦ orπ.

3σ
This texture  fails  to  reproduce  the  experimental   val-

ues of the mixing angles within the   range and yields
an unacceptably high sum of masses. Therefore, it is dis-
favored by current data. 

V.  INVERTED ORDERING

∆m2
21

|∆m2
21|

Although  the  oscillation  experiments  have  precisely
measured  the  two  mass-squared  differences,    and

,  the  ordering  of  the  mass  eigenstates  remains  an
open  question.  The  inverted  hierarchy  (IH)  corresponds
to the mass ordering 

m3 < m1 < m2,

m1 m2

m3

m3

in which two heavier mass eigenstates   and   form a
close  pair  separated  from the  lighter  state  . This   con-
trasts  with  the  normal  hierarchy  (NH),  where    is  the
heaviest. 

A.    Numerical analysis

1σ

The  numerical  analysis  for  the  IH  follows  the  same
procedure described in Section IV. In particular,  we em-
ploy  the  same  texture  structures  introduced  in  Section
IV.A. Among  the  considered  textures,  only  the  T2   tex-
ture successfully reproduces the experimental data within
the    level. The methodology used to obtain these res-
ults is outlined below.

The T2 texture is defined as 

T2 =

á
a b c

b∗ 0 d

c∗ d∗ e

ë
.

m2 > m1 > m3

m1, m2, m3

The  diagonalization  procedure  was  performed  under  the
constraint  , appropriate for the inverted mass
hierarchy.  This  approach  allows  us  to  express  the
UPMNS matrix in terms of parameters  , and b.

χ2Applying  the    minimization  method  described  in
Section IV.B  yields  the  numerical  results  presented   be-
low. 

m1 = 0.0561248 eV, m2 = 0.0567404 eV,

m3 = 0.0256819 eV,
3∑

i=1

|mi| = 0.138 eV.

χ2 2.21×10−8

d f = 3
The calculated   statistic was   with three de-
grees of freedom ( ) 

∆m2
21 = 6.95×10−5 eV2, ∆m2

31 = 2.50×10−3 eV2.

 

UPMNS =

Ü
0.821372 0.550543 0.149164

−0.47604 0.517586 0.710979

0.314219 −0.654986 0.687211

ê
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θ12 = 34.54◦, θ13 = 8.54◦,

θ23 = 46.13◦, δ = 0◦ or π (Jarlskog invariant J = 0)

 

VI.  CONCLUSIONS

δ = 0 δ = π
(δ , 0,π)

We systematically analyzed the six possible one zero
texture patterns for Hermitian neutrino mass matrices un-
der the assumption of both neutrino normal and inverted
mass hierarchies, working in the charged lepton diagonal
basis. In this scenario, the lepton mixing matrix arises en-
tirely  from  the  neutrino  sector.  Mathematically,  as  the
number of free parameters exceeds the number of physic-
al observables, analytical solutions always exist. Specific-
ally,  the  mass-squared  differences,  three  mixing  angles,
and  CP-violating phase  can  all  be  determined   analytic-
ally for each texture.  A crucial observation is that,  when
the texture zero appears off the diagonal, the Jarlskog in-
variant  vanishes,  implying  that  the  Dirac  CP-violating
phase must be either   or  . Therefore, nontrivial
CP  violation    is  only  possible  when  the  texture
zero is located in one of the diagonal entries of the mass
matrix.

Our numerical analyses in the normal ordering reveal
that:
 

T1

δ ≈ 270◦

● Texture  yields an excellent fit to all current ex-
perimental  data.  All  three  mixing  angles,  mass-squared
differences, and CP phase are reproduced within 1σ of the
deviation  of  the  global  best  fit  values.  In  particular,  the
best fit CP phase is observed to be close to  , and
the total  sum  of  neutrino  masses  is  consistent  with   cos-
mological bounds,  such  as  those  from  supernova   neut-
rino constraints and the Planck satellite.
 

T2● Texture  fails to accommodate the experimental

data, with  significant  deviations  in  the atmospheric  mix-
ing angle and solar mass-squared difference.
 

T3● Texture   provides  aviable  fit  to  all  observables
within 3σ.
 

T4 T5 T6

(δ = 0
● In the remaining textures  ,  , and  , the phase

of  CP  violation  is  necessarily  trivial    or π), as   ex-
pected  owing  to  the  texture  zero  being  located  off-diag-
onal. However,

T4- Texture  , which is real, and
T5- Texture  , which is complex,

both successfully reproduce all the observables within 3σ.
 

T6●  Texture   fails  to  match  current  experimental
constraints and is thus disfavored.

Our numerical  analyses  in  the  inverted  ordering   re-
veal that:
 

T2

1σ
270◦

● Texture  fit to current experimental information
is excellent. All key parameters—the three mixing angles,
mass  differences,  and  CP  phase—agree  with  the  global
best-fit  values  at  the    level  of  deviation.  The  optimal
CP phase is observed to be near  , and the total neut-
rino  mass  is  in  conformance  with  cosmological  bounds,
including those from supernovae and the Planck satellite.
 

● The other five single texture zero configurations are
found to be in disagreement with the current experiment-
al data. Therefore, they must be ruled out (or excluded) as
viable solutions within this framework.
 

In summary, we have shown that, although analytical
solutions  always  exist  for  Hermitian  neutrino  mass
matrices  with  a  single  texture  zero,  not  all  such  patterns
yield physically acceptable predictions.
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