×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

In-situ monitoring of EuTiO3 and SrTiO3 film growth using time-resolved X-ray scattering during pulsed-laser deposition

Get Citation
WANG Huan-Hua. In-situ monitoring of EuTiO3 and SrTiO3 film growth using time-resolved X-ray scattering during pulsed-laser deposition[J]. Chinese Physics C, 2009, 33(11): 935-943. doi: 10.1088/1674-1137/33/11/002
WANG Huan-Hua. In-situ monitoring of EuTiO3 and SrTiO3 film growth using time-resolved X-ray scattering during pulsed-laser deposition[J]. Chinese Physics C, 2009, 33(11): 935-943.  doi: 10.1088/1674-1137/33/11/002 shu
Milestone
Received: 2008-12-17
Revised: 2009-03-31
Article Metric

Article Views(2842)
PDF Downloads(621)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

In-situ monitoring of EuTiO3 and SrTiO3 film growth using time-resolved X-ray scattering during pulsed-laser deposition

    Corresponding author: WANG Huan-Hua,
  • (Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China)

Abstract: 

Time-resolved X-ray scattering was employed to in-situ monitor the epitaxial growth process of the thin films and multilayers of EuTiO3 and SrTiO3 during pulsed laser deposition. The temporal intensity oscillations of the reflected X-rays at anti-Bragg position and the transient processes following the flux pulses were observed. The temporal intensity oscillations were used to control the film thickness, and the reflectivity along the crystal truncation rod was used to measure both the film thickness and the surface/interface roughness. The primary features of the X-ray intensity oscillations were reproduced via simulating the experimental data using diffusive rate equation model. Several mechanisms of determining the X-ray intensity features were discerned.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return