×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Meson polarized distribution function and mass dependence ofthe nucleon parton densities

  • The polarized distribution functions of mesons, including pion, kaon and eta, using the proton structure function, are calculated. We are looking for a relationship between the polarized distribution of mesons and the polarized structure of nucleons. We show that the meson polarized parton distributions leads to zero total spin for the concerned mesons, considering the orbital angular momentum of quarks and gluons inside the meson. Two separate Monte Carlo algorithms are applied to compute the polarized parton distributions of the kaon. Via the mass dependence of quark distributions, the distribution function of the eta meson is obtained. A new method by which the polarized sea quark distributions of protons are evolved separately -which cannot be performed easily using the standard solution of DGLAP equations -is introduced. The mass dependence of these distributions is obtained, using the renormalization group equation which makes their evolutions more precise. Comparison between the evolved distributions and the available experimental data validates the suggested solutions for separated evolutions.
      PCAS:
  • 加载中
  • [1] Manohar A, Georgi H. Nucl. Phys. B, 1984, 234: 189[2] Suzuki K, Weise W. Nucl. Phys. A, 1998, 634: 141[3] Brommel D et al. Phys. Rev. Lett., 2008, 101: 122001[4] MA B Q. Z. Phys. A, 1993, 345: 321[5] Nam S, Kim H C. Phys. Lett. B, 2011, 700: 305[6] JI X, TANG J, Hoodbhoy P. Phys. Rev. Lett., 1996, 76: 740[7] DONG Y B. Phys. Lett. B, 2007, 653: 18[8] Wandzura S, Wilczek F. Phys. Lett. B, 1977, 72: 5[9] Ball P. JHEP, 1999, 9901:010[10] Abe K et al. (E 143 collab.). Phys. Rev. D, 1998, 58: 112003[11] Badier J et al. (NA3 experiment). Phys. Lett. B, 1980, 93:354[12] Hwa R C, Zahir M S. Phys. Rev. D, 1981, 23: 2539[13] Hwa R C. Phys. Rev. D, 1980, 22: 759[14] Hwa R C. Phys. Rev. D, 1980, 22: 1593[15] Hwa R C, YANG C B. Phys. Rev. C, 2002, 66: 025204[16] Glueck M, Reya E, Stratmann M, Vogelsang W. Phys. Rev. D, 2001, 63: 094005[17] Mirjalili A, Keshavarzian K, Yazdanpanah M M. Int. J. Mod. Phys. A, 2012, 27: 1250003[18] Airapetian A et al. (HERMES collab.). Phys. Rev. Lett., 2004,92: 012005[19] Airapetian A et al. (HERMES collab.), Phys. Rev. D, 2005,71: 012003[20] Adeva B et al. (SMC collab.). Phys. Lett. B, 1996, 369: 93[21] Szczurek A, Buchmann A J, Faessler A. J. Phys. G: Nucl. Part. Phys., 1996, 22: 1741[22] Weinberg S. Phys. Rev. Lett., 1990, 65: 1181[23] Keshavarzian K, Mirjalili A, Yazdanpanah M M. Int. J. Mod. Phys. A, 2008, 23: 5037[24] Nambu Y, Jona-Lasinio G. Phys. Rev., 1961, 122: 345[25] Ellis J, Jaffe R L. Phys. Rev. D, 1974, 9: 1444; 10: 1669[26] Alekseev M G et al. (COMPASS collab.). Phys. Lett. B, 2010,690: 466[27] Conway J S et al. Phys. Rev. D, 1989, 39: 92[28] Glüuk M, Reya E, Vogt A. Z. Phys. C, 1995, 67: 433[29] Glüuck M, Reya E, Stratmann M, Vogelsang W. Nucl. Phys. B, 2002, 636: 225[30] Goto Y et al. Phys. Rev. D, 2000, 62: 034017[31] Mirjalili A, Keshavarzian K. Int. J. Mod. Phys. A, 2007, 22:4519[32] Glüuck M, Reya E, Stratmann M. Eur. Phys. J. C, 1998, 2: 159[33] Glüuck M, Reya E, Schienbein I. Eur. Phys. J. C, 1999, 10: 313[34] Weinberg S. Phys. Rev. D, 1973, 8: 3497[35] Ellis R K, Stirling W J, Webber B R. QCD and Collider Physics. Second Edition. Cambridge: Cambridge University Press, 1996. 84[36] Bates D M, Watts D G. Nonlinear Regression Analysis and its Applications, New York: John Wiley Sons, 1988. 227[37] Meyer R R, Roth P M. J. Inst. Math. Appl., 1972, 9: 218[38] Ratkowsky D A. Nonlinear Regression Modeling; A Uni ed Practical. New York: Marcel Decker Company, 1983. 23
  • 加载中

Get Citation
A. Mirjalili and K. Keshavarzian. Meson polarized distribution function and mass dependence ofthe nucleon parton densities[J]. Chinese Physics C, 2014, 38(8): 083101. doi: 10.1088/1674-1137/38/8/083101
A. Mirjalili and K. Keshavarzian. Meson polarized distribution function and mass dependence ofthe nucleon parton densities[J]. Chinese Physics C, 2014, 38(8): 083101.  doi: 10.1088/1674-1137/38/8/083101 shu
Milestone
Received: 2013-08-20
Revised: 2014-03-22
Article Metric

Article Views(1781)
PDF Downloads(146)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Meson polarized distribution function and mass dependence ofthe nucleon parton densities

    Corresponding author: A. Mirjalili,
  • 1. Physics Department, Yazd University, 89195-741, Yazd, Iran

Abstract: The polarized distribution functions of mesons, including pion, kaon and eta, using the proton structure function, are calculated. We are looking for a relationship between the polarized distribution of mesons and the polarized structure of nucleons. We show that the meson polarized parton distributions leads to zero total spin for the concerned mesons, considering the orbital angular momentum of quarks and gluons inside the meson. Two separate Monte Carlo algorithms are applied to compute the polarized parton distributions of the kaon. Via the mass dependence of quark distributions, the distribution function of the eta meson is obtained. A new method by which the polarized sea quark distributions of protons are evolved separately -which cannot be performed easily using the standard solution of DGLAP equations -is introduced. The mass dependence of these distributions is obtained, using the renormalization group equation which makes their evolutions more precise. Comparison between the evolved distributions and the available experimental data validates the suggested solutions for separated evolutions.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return