Implementation and verification of different ECC mitigation designs for BRAMs in flash-based FPGAs
- Received Date: 2015-07-22
- Available Online: 2016-03-28
Abstract: Embedded RAM blocks(BRAMs) in field programmable gate arrays(FPGAs) are susceptible to single event effects(SEEs) induced by environmental factors such as cosmic rays, heavy ions, alpha particles and so on. As technology scales, the issue will be more serious. In order to tackle this issue, two different error correcting codes(ECCs), the shortened Hamming codes and shortened BCH codes, are investigated in this paper. The concrete design methods of the codes are presented. Also, the codes are both implemented in flash-based FPGAs. Finally, the synthesis report and simulation results are presented in the paper. Moreover, heavy-ion experiments are performed, and the experimental results indicate that the error cross-section of the device using the shortened Hamming codes can be reduced by two orders of magnitude compared with the device without mitigation, and no errors are discovered in the experiments for the device using the shortened BCH codes.