×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Effect of Wigner energy on the symmetry energy coefficient in nuclei

  • The nuclear symmetry energy coefficient (including the coefficient asym(4) of the I4 term) of finite nuclei is extracted by using the differences of available experimental binding energies of isobaric nuclei. It is found that the extracted symmetry energy coefficient asym*(A,I) decreases with increasing isospin asymmetry I, which is mainly caused by Wigner correction, since esym* is the summation of the traditional symmetry energy esym and the Wigner energy eW. We obtain the optimal values J=30.25±0.10 MeV, ass=56.18±1.25 MeV, asym(4)=8.33±1.21 MeV and the Wigner parameter x=2.38±0.12 through a polynomial fit to 2240 measured binding energies for nuclei with 20≤A≤261 with an rms deviation of 23.42 keV. We also find that the volume symmetry coefficient J≈30 MeV is insensitive to the value x, whereas the surface symmetry coefficient ass and the coefficient asym(4) are very sensitive to the value of x in the range 1≤x≤4. The contribution of the asym(4) term increases rapidly with increasing isospin asymmetry I. For very neutron-rich nuclei, the contribution of the asym(4) term will play an important role.
      PCAS:
  • 加载中
  • [1] P. Danielewicz, R. Lacey, and W. G. Lynch, Science, 298:1592(2002)
    [2] A. W. Steiner, M. Prakash, J. Lattimer, and P. J. Ellis, Phys. Rep., 411:325(2005)
    [3] V. Baran, M. Colonna, V. Greco, and M. D. Toro, Phys. Rep., 410:335(2005)
    [4] J. M. Lattimer, and M. Prakash, Phys. Rep., 442:109(2007)
    [5] B. A. Li, L. W. Chen, and C. M. Ko, Phys. Rep., 464:113(2008)
    [6] J. Dong, W. Zuo, and W. Scheid, Phys. Rev. Lett., 107:012501(2011)
    [7] R. S. Wang, Y. Zhang, Z. G. Xiao et al, Phys. Rev. C, 89:064613(2014)
    [8] L. Ou, Z. G. Xiao, H. Yi, N. Wang, M. Liu, and J. L. Tian, Phys. Rev. Lett., 115:212501(2015)
    [9] C. W. Ma, J. Pu, H. L. Wei et al, Eur. Phys. J. A, 48:78(2012)
    [10] C. W. Ma, X. L. Zhao, J. Pu et al, Phys. Rev. C, 87:034618(2013); J. Phys. G:Nucl. Part. Phys., 40:125106(2013)
    [11] C. W. Ma, C. Y. Qiao, S. S. Wang, F. M. Lu, L. Chen, M. T. Guo, Nucl. Sci. Tech., 24:050510(2013)
    [12] W. Lin, X. Q. Liu, M. R. Rodrigues et al, Phys. Rev. C, 89:021601(2014); X. Q. Liu, M. R. Huang, R. Wada et al, Nucl. Sci. Tech., 25:S20508(2015)
    [13] J. M. Lattimer, and M. Prakash, Phys. Rep., 333:121(2000)
    [14] C. J. Horowitz, and J. Piekarewicz, Phys. Rev. Lett., 86:5647(2001)
    [15] B. G. Todd-Rutel, and J. Piekarewicz, Phys. Rev. Lett., 95:122501(2005)
    [16] B. K. Sharma, and S. Pal, Phys. Lett. B, 682:23(2009)
    [17] S. Kumar, Y. G. Ma, G. Q. Zhang, and C. L. Zhou, Phys. Rev. C, 84:044620(2011)
    [18] W. D. Tian, Y. G. Ma, X. Z. Cai, D. Q. Fang, H. W. Wang, and H. L. Wu, Sci. China Phys. Mech. Astron., 54:s141(2011)
    [19] F. J. Fattoyev, J. Carvajal, W. G. Newton, and B. A. Li, Phys. Rev. C, 87:015806(2013)
    [20] N. Nikolov, N. Schunck, W. Nazarewicz, M. Bender, and J. Pei, Phys. Rev. C, 83:034305(2011)
    [21] J. Jnecke, T. W. O'Donnell, and V. I. Goldanskii, Nucl. Phys. A, 728:23(2003)
    [22] A. Ono, P. Danielewicz, W. A. Friedman, W. G. Lynch, and M. B. Tsang, Phys. Rev. C, 70:041604(R) (2004)
    [23] N. Wang, and M. Liu, Phys. Rev. C, 81:067302(2010)
    [24] K. Oyamatsu, and K. Lida, Phys. Rev. C, 81:054302(2010)
    [25] C. W. Ma, J. B. Yang, M. Yu, J. Pu, S. S. Wang, H. L. Wei, Chin. Phys. Lett., 29:092101(2012)
    [26] N. Wang, M. Liu, H. Jiang, J. L. Tian, and Y. M. Zhao, Phys. Rev. C, 91:044308(2015)
    [27] H. Jiang, N. Wang, L. W. Chen, Y. M. Zhao, and A. Arima, Phys. Rev. C, 91:054302(2015)
    [28] M. Liu, N. Wang, Z. X. Li, and F. S. Zhang, Phys. Rev. C, 82:064306(2010)
    [29] J. L. Tian, H. T. Cui, K. K. Zheng, and N. Wang, Phys. Rev. C, 90:024313(2014)
    [30] P. V. Isacker, AIP Conf. Proc., 819:57(2006)
    [31] C. F. von Weizsker, Z. Phys., 96 431(1935)
    [32] H. A. Bethe, and R. F. Bacher, Rev. Mod. Phys., 8:82(1936)
    [33] N. Wang, Z. Y. Liang, M. Liu, and X. Z. Wu, Phys. Rev. C, 82:044304(2010)
    [34] M. Liu, N. Wang, Y. G. Deng, and X. Z. Wu, Phys. Rev. C, 84:014333(2011)
    [35] M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev et al, Chin. Phys. C, 36:1603(2012)
    [36] H. Jiang, M. Bao, L. W. Chen, Y. M. Zhao, and A. Arima, Phys. Rev. C, 90:064303(2014)
    [37] W. D. Myers, and W. J. Swiatecki, Nucl. Phys. A, 601:141(1996)
    [38] P. Mller, and R. Nix, Nucl. Phys. A, 536:20(1992)
    [39] W. Satula, D.J. Dean, J. Gary, S. Mizutori, and W. Nazarewicz, Phys. Lett. B, 407:103(1997)
    [40] K. Neergrd, Phys. Rev. C, 80:044313(2009)
    [41] I. Bentley, and S. Frauendorf, Phys. Rev. C, 88:014322(2013)
    [42] I. Bentley, K. Neergrd, S. Frauendorf, Phys. Rev. C, 89:034302(2014)
    [43] A. E. Dieperink, and P. Van Isacker, Eur. Phys. J. A, 32:11(2007)
    [44] E. P. Wigner, Phys. Rev., 51:106(1937)
    [45] Y. Y. Cheng, M. Bao, Y. M. Zhao, and A. Arima, Phys. Rev. C, 91:024313(2015)
    [46] S. Frauendorf, and J. A. Sheikh, Nucl. Phys. A, 645:509(1999)
    [47] K. Neergrd, Phys. Lett. B, 537:287(2002)
    [48] K. Neergrd, Phys. Lett. B, 572:159(2003)
  • 加载中

Get Citation
Jun-Long Tian, Hai-Tao Cui, Teng Gao and Ning Wang. Effect of Wigner energy on the symmetry energy coefficient in nuclei[J]. Chinese Physics C, 2016, 40(9): 094101. doi: 10.1088/1674-1137/40/9/094101
Jun-Long Tian, Hai-Tao Cui, Teng Gao and Ning Wang. Effect of Wigner energy on the symmetry energy coefficient in nuclei[J]. Chinese Physics C, 2016, 40(9): 094101.  doi: 10.1088/1674-1137/40/9/094101 shu
Milestone
Received: 2016-04-13
Fund

    Supported by National Natural Science Foundation of China (11475004, 11275052, 11305003, 11375094 and 11465005), Natural Science Foundation of He'nan Educational Committee (2011A140001 and 2011GGJS-147), Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences (Y4KF041CJ1)

Article Metric

Article Views(1957)
PDF Downloads(185)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Effect of Wigner energy on the symmetry energy coefficient in nuclei

    Corresponding author: Jun-Long Tian,
    Corresponding author: Ning Wang,
Fund Project:  Supported by National Natural Science Foundation of China (11475004, 11275052, 11305003, 11375094 and 11465005), Natural Science Foundation of He'nan Educational Committee (2011A140001 and 2011GGJS-147), Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences (Y4KF041CJ1)

Abstract: The nuclear symmetry energy coefficient (including the coefficient asym(4) of the I4 term) of finite nuclei is extracted by using the differences of available experimental binding energies of isobaric nuclei. It is found that the extracted symmetry energy coefficient asym*(A,I) decreases with increasing isospin asymmetry I, which is mainly caused by Wigner correction, since esym* is the summation of the traditional symmetry energy esym and the Wigner energy eW. We obtain the optimal values J=30.25±0.10 MeV, ass=56.18±1.25 MeV, asym(4)=8.33±1.21 MeV and the Wigner parameter x=2.38±0.12 through a polynomial fit to 2240 measured binding energies for nuclei with 20≤A≤261 with an rms deviation of 23.42 keV. We also find that the volume symmetry coefficient J≈30 MeV is insensitive to the value x, whereas the surface symmetry coefficient ass and the coefficient asym(4) are very sensitive to the value of x in the range 1≤x≤4. The contribution of the asym(4) term increases rapidly with increasing isospin asymmetry I. For very neutron-rich nuclei, the contribution of the asym(4) term will play an important role.

    HTML

Reference (48)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return