Dirac and Pauli form factors of nucleons using nonlocal chiral effective Lagrangian

  • Dirac and Pauli form factors are investigated in the relativistic chiral effective Lagrangian. The octet and decuplet intermediate states are included in the one-loop calculation. The 4-dimensional regulator is introduced to deal with the divergence. Different from the non-relativistic case, this 4-dimensional regulator is generated from the nonlocal Lagrangian with the gauge link, which guarantees local gauge invariance. As a result, additional diagrams appear which ensure electric charge 1 and 0 for proton and neutron respectively. The obtained Dirac and Pauli form factors of the nucleons are all reasonable up to relatively large Q2.
      PCAS:
  • 加载中
  • [1] D.-H. Lu, A. W. Thomas, and A. G. Williams Phys. Rev. C, series 57:2628-2637(1998)
    [2] K. Berger, R. F. Wagenbrunn, and W. Plessas Phys. Rev. D, series 70:094027(2004)
    [3] B. Julia-Diaz, D. O. Riska, and F. Coester Phys. Rev. C, series 69:035212(2004)
    [4] A. J. Buchmann and R. F. Lebed Phys. Rev. D, series 67:016002(2003)
    [5] S. Cheedket, V. E. Lyubovitskij, T. Gutsche, A. Faessler, K. Pumsa-ard, and Y. Yan Eur. Phys. J. A, series 20:317-327(2004)
    [6] R. A. Williams and C. Puckett-Truman Phys. Rev. C, series 53:1580-1588(1996)
    [7] P.-N. Shen, Y.-B. Dong, Z.-Y. Zhang, Y.-W. Yu, and T. S. H. Lee Phys. Rev. C, series 55:2024-2029(1997)
    [8] R. Jakob, P. Kroll, M. Schurmann, and W. Schweiger Z. Phys. A, series 347:109-116(1993)
    [9] G. Hellstern and C. Weiss Phys. Lett. B, series 351:64-69(1995)
    [10] J. M. Zanotti, D. B. Leinweber, A. G. Williams, and J. B. Zhang Nucl. Phys. Proc. Suppl., series 129:287-289(2004)
    [11] S. Boinepalli, D. B. Leinweber, A. G. Williams, J. M. Zanotti, and J. B. Zhang Phys. Rev. D, series 74:093005(2006)
    [12] C. Alexandrou, G. Koutsou, J. W. Negele, and A. Tsapalis Phys. Rev. D, series 74:034508(2006)
    [13] series QCDSF Collaboration, M. Gockeler, T. R. Hemmert, R. Horsley, D. Pleiter, P. E. L. Rakow, A. Schafer, and G. Schierholz Phys. Rev. D, series 71:034508(2005)
    [14] M. Gockeler et al (QCDSF/UKQCD Collaboration), PoS, LAT2007:161(2007)
    [15] series LHPC Collaboration, R. G. Edwards, G. T. Fleming, P. Hagler, J. W. Negele, K. Orginos, A. V. Pochinsky, D. B. Renner, D. G. Richards, and W. Schroers, PoS, series LAT2005:056(2006)
    [16] series Lattice Hadron Collaboration, C. Alexandrou et al, J. Phys. Conf. Ser., series 16:174-178(2005)
    [17] S. J. Puglia, M. J. Ramsey-Musolf, and S.-L. Zhu Phys. Rev. D, series 63:034014(2001)
    [18] T. Fuchs, J. Gegelia, and S. Scherer J. Phys. G, series 30:1407-1426(2004)
    [19] B. Kubis and U. G. Meissner Eur. Phys. J. C, series 18:747-756(2001)
    [20] B. Kubis and U.-G. Meissner Nucl. Phys. A, series 679:698-734(2001)
    [21] R. D. Young, D. B. Leinweber, and A. W. Thomas Prog. Part. Nucl. Phys., series 50:399-417(2003)
    [22] D. B. Leinweber, A. W. Thomas, and R. D. Young Phys. Rev. Lett., series 92:242002(2004)
    [23] P. Wang, D. B. Leinweber, A. W. Thomas, and R. D. Young Phys. Rev. D, series 75:073012(2007)
    [24] P. Wang and A. W. Thomas Phys. Rev. D, series 81:114015(2010)
    [25] C. R. Allton, W. Armour, D. B. Leinweber, A. W. Thomas, and R. D. Young Phys. Lett. B, series 628:125-130(2005)
    [26] W. Armour, C. R. Allton, D. B. Leinweber, A. W. Thomas, and R. D. Young Nucl. Phys. A, series 840:97-119(2010)
    [27] J. M. M. Hall, D. B. Leinweber, and R. D. Young Phys. Rev. D, series 88(1):014504(2013)
    [28] D. B. Leinweber, S. Boinepalli, I. C. Cloet, A. W. Thomas, A. G. Williams, R. D. Young, J. M. Zanotti, and J. B. Zhang Phys. Rev. Lett., series 94:212001(2005)
    [29] P. Wang, D. B. Leinweber, A. W. Thomas, and R. D. Young Phys. Rev. C, series 79:065202(2009)
    [30] P. Wang, D. B. Leinweber, A. W. Thomas, and R. D. Young Phys. Rev. D, series 86:094038(2012)
    [31] P. Wang, D. B. Leinweber, and A. W. Thomas Phys. Rev. D, series 89(3):033008(2014)
    [32] J. M. M. Hall, D. B. Leinweber, and R. D. Young Phys. Rev. D, series 89(5):054511(2014)
    [33] P. Wang, D. B. Leinweber, and A. W. Thomas Phys. Rev. D, series 92(3):034508(2015)
    [34] H. Li, P. Wang, D. B. Leinweber, and A. W. Thomas Phys. Rev. C, series 93(4):045203(2016)
    [35] P. Wang, D. B. Leinweber, A. W. Thomas, and R. D. Young Phys. Rev. D, series 79:094001(2009)
    [36] E. E. Jenkins Nucl. Phys. B, series 368:190-203(1992)
    [37] E. E. Jenkins, M. E. Luke, A. V. Manohar, and M. J. Savage Phys. Lett. B, series 302 482-490(1993)
    [38] S. Scherer Adv. Nucl. Phys., series 27:277(2003)
    [39] L. S. Geng, J. Martin Camalich, and M. J. Vicente Vacas Phys. Rev. D, series 80:034027(2009)
    [40] A. Hiller Blin, T. Gutsche, T. Ledwig, and V. E. Lyubovitskij Phys. Rev. D, series 92(9):096004(2015)
    [41] D. B. Leinweber, A. W. Thomas, K. Tsushima, and S. V. Wright Phys. Rev. D, series 61:074502(2000)
    [42] J. Terning Phys. Rev. D, series 44(3):887-897(1991)
    [43] P. Wang Can. J. Phys., series 92:25-30(2014)
    [44] M. Seimetz (A1 Collaboration), Nucl. Phys. A, series 755:253-256(2005)
  • 加载中

Get Citation
Fangcheng He and Ping Wang. Dirac and Pauli form factors of nucleons using nonlocal chiral effective Lagrangian[J]. Chinese Physics C, 2017, 41(11): 114106. doi: 10.1088/1674-1137/41/11/114106
Fangcheng He and Ping Wang. Dirac and Pauli form factors of nucleons using nonlocal chiral effective Lagrangian[J]. Chinese Physics C, 2017, 41(11): 114106.  doi: 10.1088/1674-1137/41/11/114106 shu
Milestone
Received: 2017-05-15
Revised: 2017-08-21
Fund

    Supported by National Natural Science Foundation of China (11475186) and Sino-German CRC 110 (NSFC 11621131001)

Article Metric

Article Views(1580)
PDF Downloads(24)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Dirac and Pauli form factors of nucleons using nonlocal chiral effective Lagrangian

    Corresponding author: Fangcheng He,
    Corresponding author: Ping Wang,
  • 1. Institute of High Energy Physics, Beijing 100049, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • 3. Theoretical Physics Center for Science Facilities(TPCSF), Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Supported by National Natural Science Foundation of China (11475186) and Sino-German CRC 110 (NSFC 11621131001)

Abstract: Dirac and Pauli form factors are investigated in the relativistic chiral effective Lagrangian. The octet and decuplet intermediate states are included in the one-loop calculation. The 4-dimensional regulator is introduced to deal with the divergence. Different from the non-relativistic case, this 4-dimensional regulator is generated from the nonlocal Lagrangian with the gauge link, which guarantees local gauge invariance. As a result, additional diagrams appear which ensure electric charge 1 and 0 for proton and neutron respectively. The obtained Dirac and Pauli form factors of the nucleons are all reasonable up to relatively large Q2.

    HTML

Reference (44)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return