×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Analytic solutions in the acoustic black hole analogue of the conical Kerr metric

  • We study the sound perturbation of a rotating acoustic black hole in the presence of a disclination. The radial part of the massless Klein-Gordon equation is written into a Heun form, and its analytical solution is obtained. These solutions have an explicit dependence on the parameter of the disclination. We obtain the exact Hawking-Unruh radiation spectrum.
      PCAS:
  • 加载中
  • [1] R. Banerjee, B. R. Majhi, and E. C. Vagenas, Phys. Lett. B, 686:279 (2010)
    [2] P. Fiziev and D. Staicova, Phys. Rev. D, 84:127502 (2011)
    [3] T. Jacobson and A. Satz, Phys. Rev. D, 87:084047 (2013)
    [4] V. B. Bezerra, H. S. Vieira, and A. A. Costa, Class. Quantum Grav., 31:045003 (2014)
    [5] S. W. Hawking, Commun. Math. Phys., 43:199 (1975)
    [6] R. Banerjee, C. Kiefer, and B. R. Majhi, Phys. Rev. D, 82:044013 (2010)
    [7] K. Umetsu, Phys. Lett. B, 692:61 (2010)
    [8] A. Yale, Phys. Lett. B, 697:398 (2011)
    [9] H. S. Vieira, V. B. Bezerra, and A. A. Costa, Europhys. Lett., 109:60006 (2015)
    [10] A. Fabbri and C. Mayoral, Phys. Rev. D, 83:124016 (2011)
    [11] C. Mayoral, A. Fabbri, and M. Rinaldi, Phys. Rev. D, 83:124047 (2011)
    [12] I. Carusotto, S. Fagnocchi, A. Recati, R. Balbinot, and A. Fabbri, New J. Phys., 10:103001 (2011)
    [13] J. Steinhauer, Phys. Rev. D, 92:024043 (2015)
    [14] C. Barcel, S. Liberati, and M. Visser, Class. Quantum Grav., 18:1137 (2001)
    [15] M. Visser, C. Barcel, and S. Liberati, Gen. Rel. Grav., 34:1719 (2002)
    [16] S. R. Das, A. Ghosh, J. H. Oh, and A. D. Shapere, J. High Energy Phys., 04:030 (2011)
    [17] S. J. Robertson, J. Phys. B:At. Mol. Opt. Phys., 45:163001 (2012)
    [18] S. Wster, Phys. Rev. A, 78:021601(R) (2008)
    [19] A. Belenchia, S. Liberati, and A. Mohd, Phys. Rev. D, 90:104015 (2014)
    [20] E. S. Oliveira, S. R. Dolan, and L. C. B. Crispino, Phys. Rev. D, 81:124013 (2010)
    [21] S. R. Dolan, E. S. Oliveira, and L. C. B. Crispino, Phys. Rev. D, 79:064014 (2009)
    [22] E. Berti, V. Cardoso, and J. P. S. Lemos, Phys. Rev. D, 70:124006 (2004)
    [23] T. Jacobson, Phys. Rev. D, 44:1731 (1991)
    [24] T. Jacobson, Phys. Rev. D, 48:728 (1993)
    [25] A. Vilenkin and E. P. S. Shellard Cosmic strings and other topological defects (Cambridge University Press, Cambridge, 1994)
    [26] D. V. Gal'tsov and E. Masr, Class. Quantum Grav., 6:1313 (1989)
    [27] F. A. Gomes and G. A. Marques, in Astronomy and Relativistic Astrophysics, edited by C. A. Z. Vasconcellos et al. (World Scientific, Singapore, 2010), p. 153-159
    [28] H. S. Vieira, V. B. Bezerra, and G. V. Silva, Ann. Phys. (NY), 362:576 (2015)
    [29] A. Ronveaux Heun's differential equations (Oxford University Press, New York, 1995)
    [30] S. Y. Slavyanov and W. Lay, Special functions, (Oxford University Press, New York, 2000)
    [31] W. G. Unruh, Phys. Rev. Lett., 46:1351 (1981)
    [32] W. G. Unruh, Phys. Rev. D, 51:2827 (1995)
    [33] T. Jacobson, in Analogue gravity phenomenology, lecture notes in physics, edited by D. Faccio et al. (Springer International Publishing, Switzerland, 2013), Vol. 870, p. 1-29
    [34] C. L. Benone, L. C. B. Crispino, C. Herdeiro, and E. Radu, Phys. Rev. D, 91:104038 (2015)
    [35] H. S. Vieira, Int. J. Mod. Phys. D, 26:1750035 (2017)
    [36] M. Visser, Class. Quantum Grav., 15:1767 (1998)
    [37] M. Klman Points, lines and walls, (Wiley, New York, 1983)
    [38] C. Barcel, S. Liberati, and M. Visser, Living Rev. Relativity, 8:12 (2005)
    [39] H. S. Vieira, V. B. Bezerra, and C. R. Muniz, Ann. Phys. (NY), 350:14 (2014)
    [40] H. S. Vieira and V. B. Bezerra, Gen. Relativ. Gravit., 48:88 (2016)
  • 加载中

Get Citation
H. S. Vieira. Analytic solutions in the acoustic black hole analogue of the conical Kerr metric[J]. Chinese Physics C, 2017, 41(4): 043105. doi: 10.1088/1674-1137/41/4/043105
H. S. Vieira. Analytic solutions in the acoustic black hole analogue of the conical Kerr metric[J]. Chinese Physics C, 2017, 41(4): 043105.  doi: 10.1088/1674-1137/41/4/043105 shu
Milestone
Received: 2016-11-24
Fund

    Supported by Conselho Nacional de Desenvolvimento Cientfico e Tecnolgico (140612/2014-9)

Article Metric

Article Views(1569)
PDF Downloads(19)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Analytic solutions in the acoustic black hole analogue of the conical Kerr metric

    Corresponding author: H. S. Vieira,
  • 1. Departamento de Fí
  • 2. Centro de Ciê
Fund Project:  Supported by Conselho Nacional de Desenvolvimento Cientfico e Tecnolgico (140612/2014-9)

Abstract: We study the sound perturbation of a rotating acoustic black hole in the presence of a disclination. The radial part of the massless Klein-Gordon equation is written into a Heun form, and its analytical solution is obtained. These solutions have an explicit dependence on the parameter of the disclination. We obtain the exact Hawking-Unruh radiation spectrum.

    HTML

Reference (40)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return