Collective states and shape competition in 126Te

  • High-spin states in 126Te have been investigated by using in-beam γ ray spectroscopy with the 124Sn(7Li, 1p4n)126Te reaction at a beam energy of 48 MeV. The previously known level scheme has been enriched, and a new negative-parity sequence has been established. The yrast positive-parity band shows a shape change between triaxial shape and collective oblate shape as a function of spin. In particular, three competitive minima appear in the potential energy surface for the Iπ=8+ states, with one aligned state at γ=-120° and two triaxial states at γ~30° and -45°, respectively. The signature splitting behavior of the negative-parity band is discussed. The shape change with increasing angular momentum and the signature splitting can be interpreted well in terms of the Cranked Nilsson-Strutinsky-Bogoliubov and Cranked Nilsson-Strutinsky model calculations.
      PCAS:
  • 加载中
  • [1] Y. Liang, R. Ma, E. S. Paul et al, Phys. Rev. Lett., 64:29 (1990)
    [2] A. Granderath, P. Mantica, R. Bengtsson, et al, Nuclear Physics A, 597:427 (1996)
    [3] S. Nag, A. K. Singh, A. N. Wilson et al, Phys. Rev. C, 85:014310 (2012)
    [4] N. Xu, J.-Y. Zhang, Y. Liang, R. Ma et al, Phys. Rev. C, 42:1394 (1990)
    [5] Y. Liang, D. B. Fossan, J. R. Hughes et al, Phys. Rev. C, 45:1041 (1992)
    [6] K. Selvakumar, A. K. Singh, S. Das et al, Phys. Rev. C, 88:024313 (2013)
    [7] F. R. Xu, P. M. Walker, and R. Wyss, Phys. Rev. C, 59:731 (1999)
    [8] Y. S. Chen, S. Frauendorf, and G. A. Leander, Phys. Rev. C, 28:2437 (1983)
    [9] P. J. Nolan, R. Aryaeinejad, P. J. Bishop et al, Journal of Physics G:Nuclear Physics, 13:1555 (1987)
    [10] J. R. Vanhoy, J. A. Tanyi, K. A. Crandell et al, Phys. Rev. C, 69:064323 (2004)
    [11] T. von Egidy, C. Doll, J. Jolie et al, Nuclear Physics A, 714:355 (2003)
    [12] J. Ott, C. Doll, T. von Egidy et al, Nuclear Physics A, 625:598 (1997)
    [13] A. Kerek, Nuclear Physics A, 176:466 (1971)
    [14] C. Zhang, P. Bhattacharyya, P. Daly et al, Nuclear Physics A, 628:386 (1998)
    [15] A. Astier, M.-G. Porquet, T. Venkova et al, The European Physical Journal A, 50:2 (2014)
    [16] D. Radford, Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 361:297 (1995)
    [17] P. H. Regan, C. W. Beausang, N. V. Zamfir et al, Phys. Rev. Lett., 90:152502 (2003)
    [18] A. Afanasjev, D. Fossan, G. Lane and I. Ragnarsson, Physics Reports, 322:1 (1999)
    [19] B. G. Carlsson and I. Ragnarsson, Phys. Rev. C, 74:011302 (2006)
    [20] V. Strutinsky, Nuclear Physics A, 95:420 (1967)
    [21] B. G. Carlsson, I. Ragnarsson, R. Bengtsson et al, Phys. Rev. C, 78:034316 (2008)
    [22] H.-L. Ma, B. G. Carlsson, I. Ragnarsson and H. Ryde, Phys. Rev. C, 90:014316 (2014)
    [23] J.-Y. Zhang, N. Xu, D. B. Fossan et al, Phys. Rev. C, 39:714 (1989)
    [24] G. Andersson, S. Larsson, G. Leander et al, Nuclear Physics A, 268:205 (1976)
    [25] V. Strutinsky, Nuclear Physics A, 122:1 (1968)
    [26] K. Pomorski and J. Dudek, Phys. Rev. C, 67:044316 (2003)
    [27] B. G. Carlsson and I. Ragnarsson, Phys. Rev. C, 74:044310 (2006)
    [28] N. Fotiades, J. A. Cizewski, R. Krcken et al, Phys. Rev. C, 89:017303 (2014)
  • 加载中

Get Citation
Liu-Chun He, Yun Zheng, Li-Hua Zhu, Hai-Liang Ma, Xiao-Guang Wu, Chuang-Ye He, Guang-Sheng Li, Lie-Lin Wang, Xin Hao, Ying Liu, Xue-Qin Li, Bo Pan, Zhong-Yu Li and Huai-Bo Ding. Collective states and shape competition in 126Te[J]. Chinese Physics C, 2017, 41(4): 044003. doi: 10.1088/1674-1137/41/4/044003
Liu-Chun He, Yun Zheng, Li-Hua Zhu, Hai-Liang Ma, Xiao-Guang Wu, Chuang-Ye He, Guang-Sheng Li, Lie-Lin Wang, Xin Hao, Ying Liu, Xue-Qin Li, Bo Pan, Zhong-Yu Li and Huai-Bo Ding. Collective states and shape competition in 126Te[J]. Chinese Physics C, 2017, 41(4): 044003.  doi: 10.1088/1674-1137/41/4/044003 shu
Milestone
Received: 2016-10-17
Revised: 2016-12-07
Fund

    Supported by National Natural Science Foundation of China (11575018, 11375023, 11305269, 11375267, 11405274, 11205245, 10927507, 10975191, 11075214, 11175259, 11205068)

Article Metric

Article Views(1644)
PDF Downloads(46)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Collective states and shape competition in 126Te

    Corresponding author: Yun Zheng,
    Corresponding author: Li-Hua Zhu,
  • 1.  School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
  • 2.  China Institute of Atomic Energy, Beijing 102413, China
  • 3. School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
  • 4. Faculty of Science, Shenzhen University, Shenzhen 518060, China
  • 5. China Institute of Atomic Energy, Beijing 102413, China
  • 6. Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Mianyang 621010, China
  • 7.  School of Physics, Peking University, Beijing 100871, China
  • 8.  Department of Physics, Tsinghua University, Beijing 100084, China
Fund Project:  Supported by National Natural Science Foundation of China (11575018, 11375023, 11305269, 11375267, 11405274, 11205245, 10927507, 10975191, 11075214, 11175259, 11205068)

Abstract: High-spin states in 126Te have been investigated by using in-beam γ ray spectroscopy with the 124Sn(7Li, 1p4n)126Te reaction at a beam energy of 48 MeV. The previously known level scheme has been enriched, and a new negative-parity sequence has been established. The yrast positive-parity band shows a shape change between triaxial shape and collective oblate shape as a function of spin. In particular, three competitive minima appear in the potential energy surface for the Iπ=8+ states, with one aligned state at γ=-120° and two triaxial states at γ~30° and -45°, respectively. The signature splitting behavior of the negative-parity band is discussed. The shape change with increasing angular momentum and the signature splitting can be interpreted well in terms of the Cranked Nilsson-Strutinsky-Bogoliubov and Cranked Nilsson-Strutinsky model calculations.

    HTML

Reference (28)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return