×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Note on non-vacuum conformal family contributions to Rényi entropy in two-dimensional CFT

  • We calculate the contributions of a general non-vacuum conformal family to Rényi entropy in two-dimensional conformal field theory (CFT). The primary operator of the conformal family can be either non-chiral or chiral, and we denote its scaling dimension by Δ. For the case of two short intervals on a complex plane, we expand the Rényi mutual information by the cross ratio x to order x2Δ+2. For the case of one interval on a torus with low temperature, we expand the Rényi entropy by q=exp(-2πβ/L), with β being the inverse temperature and L being the spatial period, to order qΔ+2. To make the result meaningful, we require that the scaling dimension Δ cannot be too small. For two intervals on a complex plane we need Δ >1, and for one interval on a torus we need Δ >2. We work in the small Newton constant limit on the gravity side and so a large central charge limit on the CFT side, and find matches of gravity and CFT results.
      PCAS:
  • 加载中
  • [1] S. Ryu and T. Takayanagi, Phys. Rev. Lett., series 96: 181602 (2006)
    [2] P. Calabrese and J. L. Card-y, J. Stat. Mech., 0406: P06002 (2004)
    [3] S. Ryu and T. Takayanagi, JHEP, series 0608: 045 (2006)
    [4] C. G. Callan Jr. and F. Wilczek, Phys. Lett. B, series 333: 55-61 (1994)
    [5] C. Holzhey, F. Larsen, and F. Wilczek, Nucl. Phys. B, series 424: 443-467 (1994)
    [6] J. M. Maldacena, Int. J. Theor. Phys., series 38: 1113-1133 (1999). [Adv. Theor. Math. Phys., 2: 231 (1998)].
    [7] S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B, series 428 105-114 (1998)
    [8] E. Witten, Adv. Theor. Math. Phys., series 2: 253-291 (1998)
    [9] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, Phys. Rept. series 323: 183-386 (2000)
    [10] M. Fujita, W. Li, S. Ryu, and T. Takayanagi, JHEP, series 06: 066 (2009)
    [11] M. Headrick, Phys. Rev. D, series 82: 126010 (2010)
    [12] T. Barrella, X. Dong, S. A. Hartnoll, and V. L. Martin, JHEP, series 1309: 109 (2013)
    [13] T. Faulkner, A. Lewkowycz, and J. Maldacena, JHEP, series 1311: 074 (2013)
    [14] J. D. Brown and M. Henneaux, Commun. Math. Phys., series 104: 207-226 (1986)
    [15] A. Maloney and E. Witten, JHEP, series 1002: 029 (2010)
    [16] X. Yin, Commun. Num. Theor. Phys., series 2 285-324 (2008)
    [17] S. Giombi, A. Maloney, and X. Yin, JHEP, series 0808: 007 (2008)
    [18] T. Faulkner, arXiv:1303.7221 [hep-th]
    [19] B. Chen and J.-Q. Wu, JHEP, series 08: 032 (2014)
    [20] P. Calabrese, J. Cardy, and E. Tonni, J. Stat. Mech., series 1101: P01021 (2011)
    [21] T. Hartman, arXiv:1303.6955 [hep-th]
    [22] B. Chen and J.-J. Zhang, JHEP, series 1311 164 (2013)
    [23] J. Cardy and C. P. Herzog, Phys. Rev. Lett., series 112: 171603 (2014)
    [24] B. Chen, J. Long, and J.-J. Zhang, JHEP, series 1404: 041 (2014) arXiv:1312.5510 [hep-th]
    [25] E. Perlmutter, JHEP, series 05: 052 (2014)
    [26] B. Chen, F.-Y. Song, and J.-J. Zhang, JHEP, series 1403: 137 (2014)
    [27] M. Beccaria and G. Macorini, JHEP, series 1404: 045 (2014)
    [28] J. Long, JHEP, series 12: 055 (2014)
    [29] B. Chen and J.-Q. Wu, Phys. Rev. D, series 91: 086012 (2015)
    [30] B. Chen and J.-Q. Wu, Phys. Rev. D, series 92: 126002 (2015)
    [31] B. Chen and J.-Q. Wu, Phys. Rev. D, series 92: 106001 (2015)
    [32] B. Chen, J.-Q. Wu, and Z.-C. Zheng, Phys. Rev. D, series 92: 066002 (2015)
    [33] B. Chen and J.-Q. Wu, JHEP, series 12: 109 (2015)
    [34] J.-j. Zhang, JHEP, series 1512: 027 (2015)
    [35] Z. Li and J.-J. Zhang, JHEP, series 1605: 130 (2016)
    [36] B. Chen and J.-Q. Wu, JHEP, series 07: 049 (2016)
    [37] B. Chen, J.-B. Wu, and J.-J. Zhang, JHEP, series 08: 130 (2016)
    [38] Z. Li and J.-J. Zhang, arXiv:1611.00546 [hep-th]
    [39] P. Di Francesco, P. Mathieu, and D. Senechal, (New York, USA, 1997)
    [40] R. Blumenhagen and E. Plauschinn, Lect. Notes Phys., series 779: 1-256 (2009)
  • 加载中

Get Citation
Jia-ju Zhang. Note on non-vacuum conformal family contributions to Rényi entropy in two-dimensional CFT[J]. Chinese Physics C, 2017, 41(6): 063103. doi: 10.1088/1674-1137/41/6/063103
Jia-ju Zhang. Note on non-vacuum conformal family contributions to Rényi entropy in two-dimensional CFT[J]. Chinese Physics C, 2017, 41(6): 063103.  doi: 10.1088/1674-1137/41/6/063103 shu
Milestone
Received: 2017-02-17
Fund

    Supported by ERC Starting Grant 637844-HBQFTNCER

Article Metric

Article Views(1506)
PDF Downloads(15)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Note on non-vacuum conformal family contributions to Rényi entropy in two-dimensional CFT

    Corresponding author: Jia-ju Zhang,
  • 1. Dipartimento di Fisica, Universita degli Studi di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
Fund Project:  Supported by ERC Starting Grant 637844-HBQFTNCER

Abstract: We calculate the contributions of a general non-vacuum conformal family to Rényi entropy in two-dimensional conformal field theory (CFT). The primary operator of the conformal family can be either non-chiral or chiral, and we denote its scaling dimension by Δ. For the case of two short intervals on a complex plane, we expand the Rényi mutual information by the cross ratio x to order x2Δ+2. For the case of one interval on a torus with low temperature, we expand the Rényi entropy by q=exp(-2πβ/L), with β being the inverse temperature and L being the spatial period, to order qΔ+2. To make the result meaningful, we require that the scaling dimension Δ cannot be too small. For two intervals on a complex plane we need Δ >1, and for one interval on a torus we need Δ >2. We work in the small Newton constant limit on the gravity side and so a large central charge limit on the CFT side, and find matches of gravity and CFT results.

    HTML

Reference (40)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return