×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Ground-state properties of light kaonic nuclei signaling symmetry energy at high densities

  • A sensitive correlation between the ground-state properties of light kaonic nuclei and the symmetry energy at high densities is constructed under the framework of relativistic mean-field theory. Taking oxygen isotopes as an example, we see that a high-density core is produced in kaonic oxygen nuclei, due to the strongly attractive antikaon-nucleon interaction. It is found that the 1S1/2 state energy in the high-density core of kaonic nuclei can directly probe the variation of the symmetry energy at supranormal nuclear density, and a sensitive correlation between the neutron skin thickness and the symmetry energy at supranormal density is established directly. Meanwhile, the sensitivity of the neutron skin thickness to the low-density slope of the symmetry energy is greatly increased in the corresponding kaonic nuclei. These sensitive relationships are established upon the fact that the isovector potential in the central region of kaonic nuclei becomes very sensitive to the variation of the symmetry energy. These findings might provide another perspective to constrain high-density symmetry energy, and await experimental verification in the future.
      PCAS:
  • 加载中
  • [1] C. Xu and B. A. Li, Phys. Rev. C, 81:064612 (2010)
    [2] M. B. Tsang et al, Phys. Rev. C, 86:015803 (2012)
    [3] A. W. Steiner, and S. Gandolfl, Phys. Rev. Lett., 108:081102 (2012)
    [4] P. Wang and W. Zuo, Chinese Phys. C, 39:014101 (2015)
    [5] B. A. Li, W. J. Guo, and Z. Z. Shi, Phys. Rev. C, 91:044601 (2015)
    [6] O. Hen, B. A. Li, W. J. Guo, L. B. Weinstein, and E. Piasetzky, Phys. Rev. C, 91:025803 (2015)
    [7] B. J. Cai, B. A. Li, and L. W. Chen, Phys. Rev. C, 94:061302(R) (2016)
    [8] L. W. Chen, C. M. Ko, and B. A. Li, Phys. Rev. Lett., 94:032701 (2005)
    [9] F. zel, Nature, 441:1115 (2006)
    [10] B. A. Li, L. W. Chen, and C. M. Ko, Phys. Rep., 464:113 (2008)
    [11] M. B. Tsang, Y. X. Zhang, P. Danielewicz, M. Famiano, Z. X. Li, W. G. Lynch, and A. W. Steiner, Phys. Rev. Lett., 102:122701 (2009)
    [12] C. Xu, B. A. Li, and L. W. Chen, Phys. Rev. C, 82:054607 (2010)
    [13] A. Carbone, G. Colo, A. Bracco, L. G. Cao, P. F. Bortignon, F. Camera, and O. Wieland, Phys. Rev. C, 81:041301(R) (2010)
    [14] A. W. Steiner, J. M. Lattimer, and E.F. Brown, Astrophys. J., 722:33 (2010)
    [15] M. Zhang, Z. G. Xiao, and S. J. Zhu, Chinese Phys. C, 34:1100 (2010)
    [16] Z. Zhang and L.-W. Chen, Phys. Lett. B, 726:234 (2013)
    [17] X. H. Li, B. J. Cai, L. W. Chen, R. Chen, B. A. Li, and C. Xu, Phys. Lett. B, 721:101 (2013)
    [18] C. W. Ma, H. L. Song, J. Pu, T. L. Zhang, S. Zhang, S. S. Wang, X. L. Zhao, and L. Chen, Chinese Phys. C, 37:024102 (2013)
    [19] Y. F. Guo, P. H. Chen, F. Niu, H. F. Zhang, G. M. Jin, and Z. Q. Feng, Chinese Phys. C, 41:104104 (2017)
    [20] A. L. Watts et al, Rev. Mod. Phys., 88:021001 (2016)
    [21] J. M. Lattimer and M. Prakash, Phys. Rep., 621:127 (2016)
    [22] Z. Xiao, B. A. Li and L. W. Chen, G.C. Yong, M. Zhang, Phys. Rev. Lett., 102:062502 (2009)
    [23] Z. Q. Feng and G. J. Ming, Phys. Lett. B, 683:140 (2010)
    [24] P. Russotto, W. Trauntmann, Q. F. Li et al, Phys. Lett. B, 697:471 (2011)
    [25] W. Z. Jiang, Phys. Rev. C, 81:044306 (2010)
    [26] N. Wang, M. Liu, and X. Z. Wu, Phys. Rev. C, 81:044322 (2010)
    [27] M. Liu, N. Wang, Z. X. Li, and F. S. Zhang, Phys. Rev. C, 82:064306 (2010)
    [28] J. L. Tian, H. T. Cui, T. Gao, and N. Wang, Chinese Phys. C, 40:094101 (2016)
    [29] N. Wang, M. Liu, L. Ou, and Y. X. Zhang, Phys. Lett. B, 751:553 (2015)
    [30] J. Xu, L.W. Chen, B. A. Li, H. R. Ma, Phys. Lett. B, 650:348 (2007)
    [31] G. H. Zhang and W. Z. Jiang, Phys. Lett. B, 720:148 (2013)
    [32] C. J. Horowitz and J. Piekarewicz, Phys. Rev. Lett., 86:5647 (2001)
    [33] W. Z. Jiang, Y. L. Zhao, Phys. Lett. B, 617:33 (2005)
    [34] L. W. Chen, C. M. Ko, B. A. Li, and J. Xu, Phys. Rev. C, 82:024321 (2010)
    [35] Z. Zhang and L. W. Chen, Phys. Rev. C, 92:031301(R) (2015)
    [36] H. Jiang, N. Wang, L. W. Chen, Y. M. Zhao, and A. Arima, Phys. Rev. C, 91:054302 (2015)
    [37] A. Klimkiewicz et al, Phys. Rev. C, 76:051603(R) (2007)
    [38] X. Roca-Maza, M. Centelles, X. Vinas, and M. Warda, Phys. Rev. Lett., 106:252501 (2011)
    [39] S. Abrahamyan et al, Phys. Rev. Lett., 108:112502 (2012)
    [40] C. J. Horowitz, K. S. Kumar, and R. Michaels, Eur. Phys. J. A, 50:48 (2014)
    [41] C. M. Tarbert et al, Phys. Rev. Lett., 112:242502 (2014)
    [42] J. Schafiner, C. B. Dover, A. Gal, C. Greiner, and H. Stker, Phys. Rev. Lett., 71:1328 (1993)
    [43] J. Schafiner, C. B. Dover, A. Gal, C. Greiner, D. J. Millener, and H. Stker, Ann. Phys., 235:35 (1994)
    [44] W. Z. Jiang, Phys. Lett. B, 642:28 (2006)
    [45] T. Kishimoto, Phys. Rev. Lett., 83:4701 (1999)
    [46] T. Yamazaki and Y. Akaishi, Phys. Lett. B, 353:70 (2002)
    [47] Y. Akaishi and T. Yamazaki, Phys. Rev. C, 65:044005 (2002)
    [48] I. Tanihata, H. Hamagaki, O. Hashimoto et al, Phys. Rev. Lett., 55:2676 (1985)
    [49] M. V. Zhukov, B. V. Danilin, D. V. Fedorov et al, Phys. Rep., 231:151 (1993)
    [50] H. W. Hammer, A. Nogga, and A. Schwenk, Rev. Mod. Phys., 85:197 (2013)
    [51] W. von Oertzen, M. Freer, and Y. Kanada-En'yo, Phys. Rep., 432:43 (2006)
    [52] E. Epelbaum, H. Krebs, D. Lee, and Ulf-G. Meissner, Phys Rev. Lett., 106:192501 (2011)
    [53] T. Otsuka, T. Suzuki, M. Honma et al, Phys. Rev. Lett., 104:012501 (2010)
    [54] T. Otsuka, T. Suzuki, J. D. Holt, A. Schwenk, and Y. Akaishi, Phys. Rev. Lett., 105:032501 (2010)
    [55] T. Otsuka, R. Fujimoto, Y. Utsuno, B. A. Brown, M. Honma, T. Mizusaki Phys. Rev. Lett., 87:082502 (2001)
    [56] T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe, and Y. Akaishi, Phys. Rev. Lett., 95:232502 (2005)
    [57] O. Sorlin, M. G. Porquet, Prog. Part. Nucl. Phys., 61:602 (2008)
    [58] R. Y. Yang, W. Z. Jiang, D. R. Zhang, and S. N. Wei, Eur. Phys. J. A, 50:188 (2014)
    [59] R. Y. Yang, W. Z. Jiang, and S. N. Wei, Sci. Rep., 7:16695 (2017)
    [60] J. Mares, E. Friedman, and A. Gal, Nucl. Phys. A, 770:84 (2006)
    [61] X. H. Zhong, G. X. Peng, L. Li, and P. Z. Ning, Phys. Rev. C, 74:034321 (2006)
    [62] D. Gazda, E. Friedman, A. Gal, and J. Mares, Phys. Rev. C, 76:055204 (2007)
    [63] M. Agnello et al (FINUDA Collaboration), Phys. Rev. Lett., 94:212303 (2005)
    [64] V. K. Magas, E. Oset, A. Ramos, and H. Toki, Phys. Rev. C, 74:025206 (2006)
    [65] G. Bendiscioli, T. Bressani, A. Fontana et al, Nucl. Phys. A, 789:222 (2007)
    [66] T. Yamazaki et al (DISTO Collaboration), Phys. Rev. Lett., 104:132502 (2010)
    [67] S. Ajimura et al, Nucl. Phys. A, 914:315 (2013)
    [68] A. O. Tokiyasu et al (LEPS Collaboration), Phys. Lett. B, 728:616 (2014)
    [69] Y. Ichikawa et al, Prog. Theor. Exp. Phys., 2015:021D01 (2015)
    [70] A. Filippi and S. Piano, Hyperflne Interact., 233:151 (2015)
    [71] G. Agakishiev et al (HADES Collaboration), Phys. Lett. B, 742:242 (2015)
    [72] J. N. Ginocchio, Phys. Rev. Lett., 78:436 (1997)
    [73] H. Z. Liang, J. Meng, and S. G. Zhou, Phys. Rep., 570:1 (2015)
    [74] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys., 16:1 (1986)
    [75] P. Ring, Prog. Part. Nucl. Phys., 37:193 (1996)
    [76] G. A. Lalazissis, J. Konig, and P. Ring, Phys. Rev. C, 55:540 (1997)
    [77] M. Bender, P. H. Heenen, and P. G. Reinhard, Rev. Mod. Phys., 75:121 (2003)
    [78] G. A. Lalazissis and M. M. Sharma, Nucl. Phys. A, 586:201 (1995)
    [79] J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Part. Nucl. Phys., 57:470 (2006)
    [80] J. K. Zhang and X. J. Qiu, Phys. Lett. B, 152:153 (1985)
    [81] J. Mares and B. K. Jennings, Phys. Rev. C, 49:2472 (1994)
    [82] Z. Y. Ma, J. Speth, S. Krewld, B. Q. Chen and A. Reuber, Nucl. Phys. A, 608:305 (1996)
    [83] T. T. Sun, E. Hiyama, H. Sagawa, H. J. Schulze, and J. Meng, Phys. Rev. C, 94:064319 (2016)
    [84] T. T. Sun, W. L. Lu, and S. S. Zhang, Phys. Rev. C, 96:044312 (2017)
    [85] L. W. Chen, Phys. Rev. C, 83:044308 (2011)
    [86] C. J. Batty, Nucl. Phys. A, 372:418 (1981)
    [87] E. Friedman, A. Gal, and C. J. Batty, Nucl. Phys. A, 579:518 (1994)
    [88] C. J. Batty, E. Friedman, and A. Gal, Phys. Rep., 287:385 (1997)
    [89] E. Friedman, A. Gal, J. Mares, and A. Cieply, Phys. Rev. C, 60:024314 (1999)
    [90] A. Gal, Nucl. Phys. A, 691:268C (2001)
    [91] E. Friedman, and A. Gal, Phys. Rep., 452:89 (2007)
    [92] J. Schafiner-Bielich, I. N. Mishustin, and J. Bondorf, Nucl. Phys. A, 625:325 (1997)
    [93] A. Ramos, and E. Oset, Nucl. Phys. A, 671:481 (2000)
    [94] A. Cieply, E. Friedman, A. Gal, and J. Mares, Nucl. Phys. A, 696:173 (2001)
    [95] A. Cieply, E. Friedman, A. Gal, D. Gazda, J. Mares, Phys. Lett. B, 702:402 (2011)
    [96] T. Waas, N. Kaiser, and W. Weise, Phys. Lett. B, 365:12 (1996)
    [97] T. Waas, M. Rho, and W. Weise, Nucl. Phys. A, 617:(1997) 449
    [98] G. Q. Li, C. H. Lee, and G. E. Brown, Phys. Rev. Lett., 79:5214 (1997)
    [99] W. Cassing and E. L. Bratkovskaya, Phys. Rep., 308:65 (1999)
    [100] Z. Q. Feng, W. J. Xie, and G. M. Jin, Phys. Rev. C, 90:064604 (2014)
    [101] F. Laue et al, Phys. Rev. Lett., 82:1640 (1999)
    [102] A. Frster et al (KaoS Collaboration), Phys. Rev. Lett., 91:152301 (2003)
    [103] W. Scheinast et al, Phys. Rev. Lett., 96:072301 (2006)
    [104] Y. Sugahara and H. Toki, Nucl. Phys. A, 579:557 (1994)
    [105] M. M. Sharma, M. A. Nagarajan, and P. Ring, Phys. Lett. B, 312:377 (1993)
    [106] B. G. Todd-Rutel and J. Piekarewicz, Phys. Rev. Lett., 95:122501 (2005)
    [107] N. Kaiser, T. Waas, and W. Weise, Nucl. Phys. A, 612:297 (1997)
  • 加载中

Get Citation
Rongyao Yang, Sina Wei and Weizhou Jiang. Ground-state properties of light kaonic nuclei signaling symmetry energy at high densities[J]. Chinese Physics C, 2018, 42(2): 024102. doi: 10.1088/1674-1137/42/2/024102
Rongyao Yang, Sina Wei and Weizhou Jiang. Ground-state properties of light kaonic nuclei signaling symmetry energy at high densities[J]. Chinese Physics C, 2018, 42(2): 024102.  doi: 10.1088/1674-1137/42/2/024102 shu
Milestone
Received: 2017-10-28
Fund

    Supported by National Natural Science Foundation of China (11775049, 11275048) and the China Jiangsu Provincial Natural Science Foundation (BK20131286)

Article Metric

Article Views(1595)
PDF Downloads(20)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Ground-state properties of light kaonic nuclei signaling symmetry energy at high densities

    Corresponding author: Weizhou Jiang,
  • 1. School of Physics, Southeast University, Nanjing 211189, China
Fund Project:  Supported by National Natural Science Foundation of China (11775049, 11275048) and the China Jiangsu Provincial Natural Science Foundation (BK20131286)

Abstract: A sensitive correlation between the ground-state properties of light kaonic nuclei and the symmetry energy at high densities is constructed under the framework of relativistic mean-field theory. Taking oxygen isotopes as an example, we see that a high-density core is produced in kaonic oxygen nuclei, due to the strongly attractive antikaon-nucleon interaction. It is found that the 1S1/2 state energy in the high-density core of kaonic nuclei can directly probe the variation of the symmetry energy at supranormal nuclear density, and a sensitive correlation between the neutron skin thickness and the symmetry energy at supranormal density is established directly. Meanwhile, the sensitivity of the neutron skin thickness to the low-density slope of the symmetry energy is greatly increased in the corresponding kaonic nuclei. These sensitive relationships are established upon the fact that the isovector potential in the central region of kaonic nuclei becomes very sensitive to the variation of the symmetry energy. These findings might provide another perspective to constrain high-density symmetry energy, and await experimental verification in the future.

    HTML

Reference (107)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return