×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Shape coexistence close to N=50 in the neutron-rich isotope 80Ge investigated by IBM-2

  • The properties of the low-lying states, especially the relevant shape coexistence in 80Ge, close to one of most neutron-rich doubly magic nuclei at N=50 and Z=28, have been investigated within the framework of the proton-neutron interacting model (IBM-2). Based on the fact that the relative energy of the d neutron boson is different from that of the proton boson, the calculated energy levels of low-lying states and E2 transition strengths can reproduce the experimental data very well. Particularly, the first excited state 0+2, which is intimately related to the shape coexistence phenomenon, is reproduced quite nicely. The ρ2(E2, 02+→01+) transition strength is also predicted. The experimental data and theoretical results indicate that both collective spherical and γ-soft vibration structures coexist in 80Ge.
      PCAS:
  • 加载中
  • [1] A. Poves, J. Phys. G:Nucl. Part. Phys., 43:020401(2016)
    [2] K. Heyde and J. L. Wood, Rev. Mod. Phys., 83:1467(2011)
    [3] A. Gade and S. N. Liddick, J. Phys. G:Nucl. Part. Phys., 43:024001(2016)
    [4] F. Nowacki, A. Poves, E. Caurier, and B. Bounthong, Phys. Rev. Lett., 117:272501(2016)
    [5] A. N. Andreyev, Nature, 405:430(2000)
    [6] A. G\ddotorgen and W. Korten, J. Phys. G:Nucl. Part. Phys., 43:024002(2016)
    [7] Y. X. Liu, S. Y. Yu, and Y. Sun, Sci. China-Phys. Mech. Astron., 58:112003(2015)
    [8] G. X. Dong, X. B. Wang, and S. Y. Yu, Sci. China-Phys. Mech. Astron., 58:112004(2015)
    [9] Z. J. Bai, X. M. Fu, C. F. Jiao, and F. R. Xu, Chin. Phys. C, 39:094101(2015)
    [10] J. Sun, T. Komatsubara, J. Q. Wang, H. Guo, X. Y. Hu, Y. J. Ma, Y. Z. Liu, and K. Furuno, Chin. Phys. C, 40:124001(2016)
    [11] F. Iachello, N. V. Zamfir, and R. F. Casten, Phys. Rev. Lett., 81:1191(1998)
    [12] Y. X. Liu, L. Z. Mu, and H. Q. Wei, Phys. Lett. B, 633:49(2006)
    [13] M. Hasegawa, K. Kaneko, T. Mizusaki, and Y. Sun, Phys. Lett. B, 656:51(2007)
    [14] Y. Sun et al, Phys. Rev. C, 80:054306(2009)
    [15] Y. X. Liu, Y. Sun, X. H. Zhou, Y. H. Zhang, S. Y. Yu, Y. C. Yang, H. Jin, Nucl. Phys. A, 858:11(2011)
    [16] Z. Z. Ren, Phys. Rev. C, 65:051304(2002)
    [17] G. Hagen, G. R. Jansen, and T. Papenbrock, Phys. Rev. Lett., 117:172501(2016)
    [18] A. Gottardo et al, Phys. Rev. Lett., 116:182501(2016)
    [19] E. Padilla-Rodal et al, Phys. Rev. Lett., 94:122501(2005)
    [20] S. F. Shen, S. J. Zheng, F. R. Xu, and R. Wyss, Phys. Rev. C, 84:044315(2011)
    [21] D. L. Zhang and B. G. Ding, Chin. Phys. Lett., 30:122101(2013)
    [22] D. L. Zhang, and C. F. Mu, Sci. China-Phys. Mech. Astron., 61:012012(2018)
    [23] M. Lettmann et al, Phys. Rev. C, 96:011301(2017)
    [24] H. Iwasaki et al, Phys. Rev. C, 78:021304(2008)
    [25] S. Mukhopadhyay et al, Phys. Rev. C, 95:014327(2017)
    [26] L. Guo, J. A. Maruhn, and P. G. Reinhard, Phys. Rev. C, 76:034317(2007)
    [27] P. Sarriguren, Phys. Rev. C, 91:044304(2015)
    [28] T. Nikić, P. Marević, and D. Vretenar, Phys. Rev. C, 89:044325(2014)
    [29] G. H. Bhat, W. A. Dar, J. A. Sheikh, and Y. Sun, Phys. Rev. C, 89:014328(2014)
    [30] D. Verney et al, Phys. Rev. C, 87:054307(2013)
    [31] S. T. Hsieh, H. C. Chiang, and D. S. Chuu, Phys. Rev. C, 46:195(1992)
    [32] F. Iachello, and A. Arima The Interacting Boson Model (Cambridge, England:Cambridge University Press, 1987)
    [33] P. D. Duval, D. Goutte, and M. Vergnes, Phys. Lett. B, 124:297(1983)
    [34] J. P. Elliott, J. A. Evans, V. S. Lac, and G. L. Long, Nucl. Phys. A, 609:1(1996)
    [35] K. Nomura et al, Phys. Rev. C, 95:064310(2017)
    [36] D. L. Zhang and B. G. Ding, Sci. China-Phys. Mech. Astron., 57:447(2014)
    [37] D. L. Zhang and C. F. Mu, Chin. Phys. Lett., 33:102102(2016)
    [38] D. L. Zhang and C. F. Mu, Sci. China-Phys. Mech. Astron., 59:682012(2016)
    [39] P. Cejner, J, Jolie, and R. F. Casten, Rev. Mod. Phys., 82:2155(2010)
    [40] G. Grdal et al, Phys. Rev. C, 88:014301(2013)
    [41] H. Rotter et al, Nucl. Phys. A, 514:401(1990)
    [42] H. Dejbakhsh, D. Latypov, G. Ajupova, and S. Shlomo, Phys. Rev. C, 46:2326(1992)
    [43] K. Nomura, T. Otsuka, N. Shimizu, and L. Guo, Phys. Rev. C, 83:041302(2011)
    [44] K. Nomura, T. Otsuka, and P. V.Isacker, J. Phys. G:Nucl. Part. Phys., 43:024008(2016)
    [45] D. L. Zhang and C. F. Mu, Sci. China-Phys. Mech. Astron., 60:042011(2017)
    [46] T. Otsuka and N. Yoshida, Program NPBOS, JAER-M Report, No.85(unpublished):(1985)
    [47] R. F. Casten and D. D. Warner, Rev. Mod. Phys., 60:389(1988)
    [48] D. L. Zhang, S. Q. Yuan, and B. G. Ding, Chin. Phys. Lett., 32:062101(2015)
    [49] W. D. Hamilton, A. Irback, and J. P. Elliott, Phys. Rev. Lett., 53:2469(1984)
    [50] J. Stachel, P. Van Isacker, and K. Heyde, Phys. Rev. C, 25:650(1982)
    [51] P. F. Mantica and W. B. Walters, Phys. Rev. C, 53:R2586(1996)
    [52] E. Bouchez et al, Phys. Rev. Lett., 90:082502(2003)
    [53] B. A.Brown, A. B. Garnsworthy, T. Kib\acuteedi, and A. E. Stuchbery, Phys. Rev. C, 95:011301(2017)
    [54] B. R. Barrett and T. Otsuka, Phys. Rev. C, 46:1735(1992)
    [55] A. Leviatan and D. Shapira, Phys. Rev. C, 93:051302(2016)
    [56] J. L. Wood, E. E. Zganjar, C. E. Coster, and K. Heyde, Nucl. Phys. A, 651:323(1999)
    [57] K. Kaneko, Y. Sun, and R. Wadsworth, Phys. Scr. 92:114008(2017)
    [58] Y. Tsunoda et al, Phys. Rev. C, 89:031301(R) (2014)
  • 加载中

Get Citation
Da-Li Zhang and Cheng-Fu Mu. Shape coexistence close to N=50 in the neutron-rich isotope 80Ge investigated by IBM-2[J]. Chinese Physics C, 2018, 42(3): 034101. doi: 10.1088/1674-1137/42/3/034101
Da-Li Zhang and Cheng-Fu Mu. Shape coexistence close to N=50 in the neutron-rich isotope 80Ge investigated by IBM-2[J]. Chinese Physics C, 2018, 42(3): 034101.  doi: 10.1088/1674-1137/42/3/034101 shu
Milestone
Received: 2017-10-23
Fund

    Supported by National Natural Science Foundation of China (11475062, 11647306, 11147148)

Article Metric

Article Views(1585)
PDF Downloads(19)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Shape coexistence close to N=50 in the neutron-rich isotope 80Ge investigated by IBM-2

    Corresponding author: Da-Li Zhang,
    Corresponding author: Cheng-Fu Mu,
  • 1. Department of Physics, Huzhou University, Huzhou 313000, China
Fund Project:  Supported by National Natural Science Foundation of China (11475062, 11647306, 11147148)

Abstract: The properties of the low-lying states, especially the relevant shape coexistence in 80Ge, close to one of most neutron-rich doubly magic nuclei at N=50 and Z=28, have been investigated within the framework of the proton-neutron interacting model (IBM-2). Based on the fact that the relative energy of the d neutron boson is different from that of the proton boson, the calculated energy levels of low-lying states and E2 transition strengths can reproduce the experimental data very well. Particularly, the first excited state 0+2, which is intimately related to the shape coexistence phenomenon, is reproduced quite nicely. The ρ2(E2, 02+→01+) transition strength is also predicted. The experimental data and theoretical results indicate that both collective spherical and γ-soft vibration structures coexist in 80Ge.

    HTML

Reference (58)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return