The symmetry energy γ parameter of relativistic mean-field models

  • The relativistic mean-field models tested in previous works against nuclear matter experimental values, critical parameters and macroscopic stellar properties are revisited and used in the evaluation of the symmetry energy γ parameter obtained in three different ways. We have checked that, independent of the choice made to calculate the γ values, a trend of linear correlation is observed between γ and the symmetry energy (S0) and a more clear linear relationship is established between γ and the slope of the symmetry energy (L0). These results directly contribute to the arising of other linear correlations between γ and the neutron star radii of R1.0 and R1.4, in agreement with recent findings. Finally, we have found that short-range correlations induce two specific parametrizations, namely, IU-FSU and DD-MEδ, simultaneously compatible with the neutron star mass constraint of 1.93≤Mmax/M≤2.05 and with the overlap band for the L0×S0 region, to present γ in the range of γ=0.25±0.05.
      PCAS:
  • 加载中
  • [1] M. Dutra, O. Lourenco, S. S. Avancini, B. V. Carlson, A. Delfino, D. P. Menezes, C. Providencia, S. Typel, and J. R. Stone, Phys. Rev. C, 90:055203 (2014)
    [2] M. Dutra, O. Lourenco, and D. P. Menezes, Phys. Rev. C, 93:025806 (2016); Phys. Rev. C, 94:049901(E) (2016)
    [3] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts, and J. W. T. Hessels, Nature, 467:1081 (2010)
    [4] J. Antoniadis, P. C. C. Freire, N. Wex et al, Science, 340:448 (2013)
    [5] O. Lourenco, M. Dutra, and D. P. Menezes, Phys. Rev. C, 95:065212 (2017)
    [6] G. Bertsch and P. J. Siemens, Phys. Lett. B, 126:9 (1983); J. Margueron and P. Chomaz, Phys. Rev. C, 67:041602 (2003); C. Ducoin, Ph. Chomaz, and F. Gulminelli, Nucl. Phys. A, 771:68 (2006)
    [7] H. Mller and B. D. Serot, Phys. Rev. C, 52:2072 (1995)
    [8] Ph. Chomaz, C. Colonna, and J. Randrup, Phys. Rep., 389:263 (2004)
    [9] J. B. Silva, O. Lourenco, A. Delfino, J. S. Sa Martins, and M. Dutra, Phys. Lett. B, 664 246, (2008)
    [10] V. Vovchenko, D. V. Anchishkin, and M. I. Gorenstein, Phys. Rev. C, 91:064314 (2015)
    [11] V. Vovchenko, D. V. Anchishkin, M. I. Gorenstein, and R. V. Poberezhnyuk, Phys. Rev. C, 92:054901 (2015)
    [12] V. Vovchenko, Phys. Rev. C, 96:015206 (2017)
    [13] M. Baldo, G. F. Burgio, Prog. Part. Nucl. Phys., 91:203 (2016)
    [14] C. J. Horowitz and J. Piekarewicz, Phys. Rev. Lett., 86:5647 (2001)
    [15] S. S. Avancini, J. R. Marinelli, D. P. Menezes, M. M. W. Moraes, and C. Providencia, Phys. Rev. C, 75:055805 (2007)
    [16] L. L. Lopes and D. P. Menezes, Braz. Jour. Phys., 44:774 (2014)
    [17] R. Cavagnoli, D. P. Menezes, and C. Providencia, Phys. Rev. C, 84:065810 (2011)
    [18] P. K. Panda, A. M. S. Santos, D. P. Menezes, and C. Providencia, Phys. Rev. C, 85:055802 (2012)
    [19] C. Providencia et al, Eur. Phys. J. A, 50:44 (2014)
    [20] H. Pais, A. Sulaksono, B. K. Agrawal, and C. Providencia, Phys. Rev. C, 93:045802 (2016)
    [21] S. S. Avancini, L. Brito, J. R. Marinelli, D. P. Menezes, M. M. W. de Moraes, C. Providencia, and A. M. Santos, Phys. Rev. C, 79:035804 (2009)
    [22] M. B. Tsang, Yingxun Zhang, P. Danielewicz, M. Famiano, Zhuxia Li, W. G. Lynch, and A. W. Steiner, Phys. Rev. Lett., 102:122701 (2009)
    [23] Andrew W. Steiner, James M. Lattimer, and Edward F. Brown, Astrophys J., 722:33 (2010)
    [24] Or Hen, Bao-An Li, Wen-Jun Guo, L. B. Weinstein, and Eliezer Piasetzky, Phys. Rev. C, 91:025803 (2015)
    [25] P. Russotto et al, Phys. Rev. C, 94:034608 (2016)
    [26] J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Part. Nucl. Phys., 57:470 (2006)
    [27] B. K. Agrawal, Phys. Rev. C, 81:034323 (2010)
    [28] S. K. Dhiman, R. Kumar, and B. K. Agrawal, Phys. Rev. C, 76:045801 (2007)
    [29] B.-J. Cai and L.-W. Chen, Phys. Rev. C, 85:024302 (2012)
    [30] B. G. Todd-Rutel and J. Piekarewicz, Phys. Rev. Lett., 95:122501 (2005)
    [31] J. Piekarewicz and S. P. Weppner, Nucl. Phys. A, 778:10 (2006)
    [32] R. Kumar, B. K. Agrawal, and S. K. Dhiman, Phys. Rev. C, 74:034323 (2006)
    [33] A. Sulaksono and T. Mart, Phys. Rev. C, 74:045806 (2006)
    [34] F. J. Fattoyev, C. J. Horowitz, J. Piekarewicz, and G. Shen, Phys. Rev. C, 82:055803 (2010)
    [35] C. J. Horowitz and J. Piekarewicz, Phys. Rev. C, 66:055803 (2002)
    [36] T. Klahn et al, Phys. Rev. C, 74:035802 (2006)
    [37] S. Typel and H. H. Wolter, Nucl. Phys. A, 656:331 (1999)
    [38] T. Gaitanos, M. Di Toro, S. Typel, V. Baran, C. Fuchs, V. Greco, and H. H. Wolter, Nucl. Phys. A, 732:24 (2004)
    [39] X. Roca-Maza, X. Vinas, M. Centelles, P. Ring, and P. Schuck, Phys. Rev. C, 84:054309 (2011)
    [40] J. J. Rusnak and R. J. Furnstahl, Nucl. Phys. A, 627:495 (1997)
    [41] B. A. Nikolaus, T. Hoch, and D. G. Madland, Phys. Rev. C, 46:1757 (1992)
    [42] D. G Madland, T. J Brvenich, J. A Maruhn, and P.-G Reinhard, Nucl. Phys. A 741:52 (2004)
    [43] O. Lourenco, M. Dutra, A. Delfino, and R. L. P. G. Amaral, Int. Jour. Mod. Phys. E, 16:3037 (2007)
    [44] T. Niksic, D. Vretenar, and P. Ring, Prog. in Part. and Nucl. Phys., 66:519 (2011)
    [45] R. Subedi et al, Science, 320:1476 (2008)
    [46] O. Hen et al, Science, 346:614 (2014)
    [47] O. Hen, G. A. Miller, E. Piasetzky, and L. B. Weinstein, to apear in Rev. Mod. Phys., (2017)
    [48] J. M. Lattimer and Y. Lim, Astrophys. J., 51:771 (2013)
    [49] Neutron Star Crust:editors Carlos Bertulani and Jorge Pieckarewicz, Nova Science Publishers, 2012, New York
    [50] B. M. Santos, M. Dutra, O. Lourenco, and A. Delfino, Phys. Rev. C, 90:035203 (2014); 92:015210 (2015)
    [51] S. Brandt, Data Analysis:Statistical and Computational Methods for Scientists and Engineers:4th ed. (Springer, New York, 2014)
    [52] N. Alam, B. K. Agrawal, M. Fortin, H. Pais, C. Providencia, Ad. R. Raduta, and A. Sulaksono, Phys. Rev. C, 94:052801(R) (2016)
    [53] G. Baym, C. Pethick, and P. Sutherland, Astrophys. J., 170:299 (1971)
    [54] J. R. Oppenheimer, G. M. Volkoff, Phys. Rev., 33:374 (1939)
    [55] N. K. Glendenning, Compact Stars:2nd ed. (Springer, New York, 2000); P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, Neutron Stars, Equation of State and Structure (Springer, New York, 2006)
    [56] Bao-An Li, W. Udo Schrder (Eds.), Isospin Physics in Heavy-Ion Collisions at Intermediate Energies:Nova Science Publishers, Huntington, NY, 2001
    [57] Bao-An Li, Champak B. Das, Subal Das Gupta, and Charles Gale, Nuc. Phys. A, 735:563 (2004)
  • 加载中

Get Citation
Mariana Dutra, Odilon Louren, Or Hen, Eliezer Piasetzky and Débora P. Menezes. The symmetry energy γ parameter of relativistic mean-field models[J]. Chinese Physics C, 2018, 42(6): 064105. doi: 10.1088/1674-1137/42/6/064105
Mariana Dutra, Odilon Louren, Or Hen, Eliezer Piasetzky and Débora P. Menezes. The symmetry energy γ parameter of relativistic mean-field models[J]. Chinese Physics C, 2018, 42(6): 064105.  doi: 10.1088/1674-1137/42/6/064105 shu
Milestone
Received: 2017-11-10
Revised: 2018-04-02
Fund

    This work is a part of the project INCT-FNA Proc. No. 464898/2014-5 and was partially supported by Conselho Nacional de Desenvolvimento Cientfico e Tecnolgico (CNPq), Brazil under grants 300602/2009-0 and 306786/2014-1. E. P. acknowledges support from the Israel Science Foundation. O. H. acknowledges the U.S. Department of Energy Office of Science, Office of Nuclear Physics program under award number DE-FG02-94ER40818

Article Metric

Article Views(1620)
PDF Downloads(23)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

The symmetry energy γ parameter of relativistic mean-field models

  • 1.  Departamento de Ciê
  • 2.  Universidade Federal do Rio de Janeiro, 27930-560, Macaé
  • 3.  Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
  • 4.  School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
  • 5.  Depto de Fí
Fund Project:  This work is a part of the project INCT-FNA Proc. No. 464898/2014-5 and was partially supported by Conselho Nacional de Desenvolvimento Cientfico e Tecnolgico (CNPq), Brazil under grants 300602/2009-0 and 306786/2014-1. E. P. acknowledges support from the Israel Science Foundation. O. H. acknowledges the U.S. Department of Energy Office of Science, Office of Nuclear Physics program under award number DE-FG02-94ER40818

Abstract: The relativistic mean-field models tested in previous works against nuclear matter experimental values, critical parameters and macroscopic stellar properties are revisited and used in the evaluation of the symmetry energy γ parameter obtained in three different ways. We have checked that, independent of the choice made to calculate the γ values, a trend of linear correlation is observed between γ and the symmetry energy (S0) and a more clear linear relationship is established between γ and the slope of the symmetry energy (L0). These results directly contribute to the arising of other linear correlations between γ and the neutron star radii of R1.0 and R1.4, in agreement with recent findings. Finally, we have found that short-range correlations induce two specific parametrizations, namely, IU-FSU and DD-MEδ, simultaneously compatible with the neutron star mass constraint of 1.93≤Mmax/M≤2.05 and with the overlap band for the L0×S0 region, to present γ in the range of γ=0.25±0.05.

    HTML

Reference (57)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return