×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Exact solutions for spherical gravitational collapse around a black hole: the effect of tangential pressure

  • Spherical gravitational collapse towards a black hole with non-zero tangential pressure is studied. Exact solutions corresponding to different equations of state are given. We find that when taking the tangential pressure into account, the exact solutions have three qualitatively different outcomes. For positive tangential pressure, the shell around a black hole may eventually collapse onto the black hole, or expand to infinity, or have a static but unstable solution, depending on the combination of black hole mass, mass of the shell and the pressure parameter. For vanishing or negative pressure, the shell will collapse onto the black hole. For all eventually collapsing solutions, the shell will cross the event horizon, instead of accumulating outside theeventhorizon, even if clocked by a distant stationary observer.
      PCAS:
  • 加载中
  • [1] J. R. Oppenheimer, H. Snyder, Phys. Rev., 56:455 (1939)
    [2] Y. Liu, S. N. Zhang, Phys. Lett. B, 679:88-94 (2009)
    [3] C. R. Tolman, Proc. Nat. Acad. Sci. U.S., 20:169-176 (1934)
    [4] D. Christodoulou, The Formation of Black Holes in General Relativity, European Mathematical Society, 2009
    [5] D. Christodoulou, Commun. Math. Phys., 93:171-195 (1984)
    [6] D. Christodoulou, Commun. Math. Phys., 105:337-361 (1986)
    [7] D. Christodoulou, Commun. Math. Phys., 109:613-647 (1987)
    [8] D. Christodoulou, Arch. Rational Mech. Anal., 130:343-400 (1995)
    [9] C. W. Misner, D. H. Sharp, Phys. Rev., 136:571 (1964)
    [10] I. H. Dwivedi, P. S. Joshi, Commu. Math. Phys., 166:117-128 (1994)
    [11] S. Barve, T. P. Singh, L. Witten, Gen. Relat. Grav., 32:697 (2000); T. P. Singh, L. Witten, Class. Quantum Grav., 14:3489 (1997)
    [12] T. P. Singh, J. Astrophys. Astr., 20:221-232 (1999)
    [13] W. Israel, Nuovo Cimento Soc. Ital. Fis. B, 44:1 (1966)
    [14] S. Khakshournia, R. Mansouri, Ge. Gravit., 34:1847 (2002)
    [15] G. L. Alberghi, R. Casadio, G. P. Vacca, and G. Venturi, Phys. Rev. D, 64:104012 (2001)
    [16] K. Nakao, Y. Kurita, Y. Morisawa, T. Harada, Prog. Theor. Phys., 117:75-102 (2007)
    [17] R. Ruffini, S.-S. Xue, Phys. Lett. A, 377:2450-2456 (2013)
    [18] J. V. Rocha, Int. J. Mod. Phys. D, 24:1542002 (2015)
    [19] M. Seriu, Phys. Rev. D, 69:124030 (2004)
    [20] A. Ori, T. Piran, Phys. Rev. D, 42:1068 (1990)
    [21] G. Magli, Class. Quantum Grav., 14:1937-1953 (1997)
    [22] D. Malafarina, P. S. Joshi, Int. J. Mod. Phys. D, 20:463 (2011)
    [23] T. Harada, H. Iguchi, K. Nakao, Phys. Rev. D, 58:041502 (1998)
    [24] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields, Fourth Revised EnglishEdition, ButterworthHeinemann (1975)
    [25] S. W. Hawking, G. F. R. Ellis, The Large Scale Structure of Space-Time, (Cambridge University Press, 1973)
    [26] V.P. Frolov, I.D. Novikov, Black Hole Physics, Kluwer Academic Publishers, Dordrecht, 1998.
    [27] S. N. Zhang, Int. J. Mod. Phys. D, 20:1891 (2011)
    [28] S. N. Zhang, Astrophysical Black Holes in the Physical Universe, A book chapter in Astronomy Revolution:400 Years of Exploring the Cosmos (York, D. G., Gingerich, O., Zhang S. N. eds), Taylor Francis Group LLC/CRC Press, 2011 (arXiv:1003.0291)
  • 加载中

Get Citation
Sheng-Xian Zhao and Shuang-Nan Zhang. Exact solutions for spherical gravitational collapse around a black hole: the effect of tangential pressure[J]. Chinese Physics C, 2018, 42(8): 085101. doi: 10.1088/1674-1137/42/8/085101
Sheng-Xian Zhao and Shuang-Nan Zhang. Exact solutions for spherical gravitational collapse around a black hole: the effect of tangential pressure[J]. Chinese Physics C, 2018, 42(8): 085101.  doi: 10.1088/1674-1137/42/8/085101 shu
Milestone
Received: 2018-03-28
Fund

    Supported by National Natural Science Foundation of China (11373036, 11133002), the National Program on Key Research and Development Project (2016YFA0400802) and the Key Research Program of Frontier Sciences, CAS, (QYZDY-SSW-SLH008)

Article Metric

Article Views(1702)
PDF Downloads(20)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Exact solutions for spherical gravitational collapse around a black hole: the effect of tangential pressure

  • 1. Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • 3. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Beijing 100049, China
  • 4. University of Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Supported by National Natural Science Foundation of China (11373036, 11133002), the National Program on Key Research and Development Project (2016YFA0400802) and the Key Research Program of Frontier Sciences, CAS, (QYZDY-SSW-SLH008)

Abstract: Spherical gravitational collapse towards a black hole with non-zero tangential pressure is studied. Exact solutions corresponding to different equations of state are given. We find that when taking the tangential pressure into account, the exact solutions have three qualitatively different outcomes. For positive tangential pressure, the shell around a black hole may eventually collapse onto the black hole, or expand to infinity, or have a static but unstable solution, depending on the combination of black hole mass, mass of the shell and the pressure parameter. For vanishing or negative pressure, the shell will collapse onto the black hole. For all eventually collapsing solutions, the shell will cross the event horizon, instead of accumulating outside theeventhorizon, even if clocked by a distant stationary observer.

    HTML

Reference (28)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return