-
Spherical symmetry is assumed for the
$ N = 32 $ and$ N =34 $ isotones in this study. Some of the selected isotones are potentially deformed, however, the restriction of spherical symmetry is applied for simplicity and convenience in revealing the physics of the PSS violation and restoration. With the assumption of spherical symmetry, similar systematics of violation and restoration of the PSS are found for both$ N = 32 $ and$ N =34 $ isotones, and following the similar density evolutions, the mechanism is clarified.For a spherical nucleus, the Dirac spinor of the nucleon is expressed as follows,
$ \begin{align} \psi ( r) = & \dfrac{1}{r} \begin{pmatrix} i G (r) {\cal Y}_{j m }^{l }(\vartheta,\varphi) \\ -F (r) {\cal Y}_{j m }^{l '}(\vartheta,\varphi) \end{pmatrix}, \end{align} $
(1) where
$ G(r) $ and$ F(r) $ denote the radial wave functions for the upper and lower components, respectively, and$ {\cal Y}_{jm}^l $ is the spherical spinor with angular momentum$ j $ and the projection$ m $ . For the orbital angular momenta$ l $ and$ l' $ of the upper and lower components,$ l+l' = 2j $ holds true. As mentioned above, pseudo-spin partners share the orbital angular momentum$ l' $ of the lower component.In the RHF approach, restricted to the spherical symmetry, the variation of the RHF energy functional [59] leads to the radial Dirac equations, i.e., the relativistic Hartree-Fock equations as follows,
$ \begin{split} E G(r) =& - \Big[\dfrac{\rm d}{{\rm d}r} - \dfrac{\kappa}{r} - \Sigma_T(r)\Big] F(r) \\&+ \big[\Sigma_0(r) + \Sigma_S(r)\big] G(r) + Y(r), \end{split} \tag{2a} $
(2a) $ \begin{split} EF(r) =& + \Big[\dfrac{\rm d}{{\rm d}r} + \dfrac{\kappa}{r} + \Sigma_T(r)\Big] G(r) \\&+ \big[\Sigma_0(r) - \Sigma_S(r)-2M\big] F(r) + X(r),\end{split} \tag{2b} $
(2b) where
$ E $ is the single-particle energy,$ \kappa = j+1/2 $ for$ j = l-1/2 $ and$ -(j+1/2) $ for$ j = l+1/2 $ , and$ \Sigma_0 $ ,$ \Sigma_S $ and$ \Sigma_T $ are the vector, scalar, and tensor self-energies contributed by the Hartree and rearrangement terms [41, 44, 47, 48, 59]. Differently from the RMF theory, the inclusion of Fock terms leads to the non-local integral terms$ Y $ and$ X $ [41, 59], and the radial Dirac equation becomes an integro-differential expression. To avoid the complexity in solving the integro-differential equation, the non-local integral term$ Y $ is localized as$ \begin{align} Y_G(r) \equiv & \dfrac{Y(r) G(r)}{G^2(r) + F^2(r)}, & Y_F(r) \equiv & \dfrac{Y(r) F(r)}{G^2(r) + F^2(r)}, \end{align} $
(3) The term
$ X $ is likewise localized with equivalent local potentials$ X_G $ and$ X_F $ [41]. Thus, the radial Dirac equation (2) can be expressed as,$ \Big[\dfrac{{\rm d}}{{\rm d}r} - \dfrac{\kappa}{r} - \Sigma_T - Y_F\Big]F - \big[\Delta - E\big]G = 0, \tag{4a} $
(4a) $ \Big[\dfrac{{\rm d}}{{\rm d}r} + \dfrac{\kappa}{r} + \Sigma_T + X_G\Big]G + \big[V - E\big]F = 0, \tag{4b} $
(4b) where
$ \Delta \equiv \Delta^D + Y_G $ with$ \Delta^D \equiv \Sigma_S + \Sigma_0 $ , and$ V \equiv V^D + X_F $ with$ V^D\equiv \Sigma_0 - \Sigma_S - 2M $ .Since the PSS is tightly related to the lower component of the Dirac spinor, it is convenient in general to derive a Schrödinger-like equation for the
$ F $ component [8, 10], which can be expressed as,$ \begin{align} &\dfrac{1}{V^D - E} \dfrac{{\rm d}^2}{{\rm d}r^2} F + \dfrac{1}{V^D-E} \big[V_{\rm PCB} + \hat{\cal{V}}^D + \hat{\cal{V}}^E \big] F = E F, \end{align} $
(5) where the pseudo centrifugal barrier
$ V_{\rm PCB} $ , and the Hartree ($ \hat{\cal V}^D $ ) and Fock ($ \hat{\cal V} ^E $ ) terms read as,$ \begin{align} &V _{\rm PCB} = - \dfrac{\kappa(\kappa - 1)}{r ^2}, \end{align} $
(6) $ \begin{align} &\hat{\cal{V}}^D = V_1^D \dfrac{{\rm d}}{{\rm d}r} + V_2^D + V^D_{\rm{PSO}} + V_\Delta, \end{align} $
(7) $ \begin{align} &\hat{\cal{V}}^E = V_1^E \dfrac{{\rm d}}{{\rm d}r} + V_2^E + V^E_{\rm{PSO}}. \end{align} $
(8) In the Hartree (
$ \hat{\cal V}^D $ ) and Fock ($ \hat{\cal V}^E $ ) terms, the relevant terms read as,$ \begin{align} &V_1^D = -\dfrac{1}{\Delta-E} \dfrac{{\rm d}\Delta^D}{{\rm d}r}, \end{align} $
(9) $ \begin{align} &V_2^D = \dfrac{ \Sigma_T }{\Delta-E} \dfrac{{\rm d}\Delta^D}{{\rm d}r} - \dfrac{{\rm d}\Sigma_T}{{\rm d}r} - \Sigma_T^2, \end{align} $
(10) $ \begin{align} &V_{\rm{PSO}}^D = \dfrac{\kappa}{r} \Big[\dfrac{1}{\Delta-E} \dfrac{{\rm d}\Delta^D}{{\rm d}r}- 2 \Sigma_T \Big], \end{align} $
(11) $ \begin{align} &V_{\Delta} = \Delta ^D (V ^D - E), \end{align} $
(12) $ \begin{align} &V_1^E = -\dfrac{1}{\Delta-E} \dfrac{{\rm d}Y_G}{{\rm d}r} + X_G - Y_F, \end{align} $
(13) $ \begin{split} V_2^E =& \dfrac{1}{\Delta-E} \dfrac{{\rm d}Y_G}{{\rm d}r} \Sigma_T + \dfrac{1}{\Delta-E} \dfrac{{\rm d}\big(\Delta^D+Y_G\big)}{{\rm d}r} Y_F \\ & - \dfrac{{\rm d}Y_F}{{\rm d}r} - \Sigma_T \big[X_G+Y_F\big] - X_G Y_F \\& + (V^D - E) Y_G + X_F (\Delta - E), \end{split} $
(14) $ \begin{align} V_{\rm{PSO}}^E = \dfrac{\kappa}{r} \Big[\dfrac{1}{\Delta-E} \dfrac{{\rm d}Y_G}{{\rm d}r} - X_G - Y_F\Big], \end{align} $
(15) where
$ V_{\rm{PSO}} $ corresponds to the pseudo-spin orbital (PSO) potential. Similarly to Ref. [10], the following integral is introduced to evaluate the contributions from various channels to the single-particle energy$ E $ ,$ \begin{align} \dfrac{1}{\int_0^\infty F^2 {\rm d}r} \int_0^\infty \dfrac{F \hat{O} F}{V^D - E} {\rm d}r, \end{align} $
(16) where
$ \hat O $ represents the operator in different channels. Specifically, the kinetic term (see Fig. 3) corresponds to$ \hat O = {\rm d}^2/{\rm d}r^2 + V_{\rm PCB} $ .Figure 3. (color online) Contributions to the pseudo-spin orbital splittings
$\Delta E_{\pi1p'}$ along the isotonic chains of$N = 32$ (left panel) and$N = 34$ (right panel), including the total and the ones from the Kinetic, Hartree, and Fock terms. The results are extracted from the calculations of RHF with PKA1 plus finite-range pairing force Gogny D1S.
Restoration of pseudo-spin symmetry in N = 32 and N = 34 isotonesdescribed by relativistic Hartree-Fock theory
- Received Date: 2019-02-26
- Accepted Date: 2019-05-06
- Available Online: 2019-07-01
Abstract: The restoration of pseudo-spin symmetry (PSS) along the