-
In 1911, Geiger and Nuttall found there is a phenomenological relationship between the
$ \alpha $ decay half-life$ T_{1/2} $ and the decay energy$ Q_{\alpha} $ . This relationship is the so-called Geiger-Nuttall (G-N) law. It is expressed as:$ {\rm{log_{10}}}{T}_{1/2} = {a}\,{Q_{\alpha}}^{-1/2} + {b}, $
(1) where a and b represent the two isotopic chain–dependent parameters of this formula. Later, the G-N law was widely applied to study the half-lives of
$ \alpha $ decay [38, 46-48], cluster radioactivity [49-51] and proton radioactivity [52-54]. However, relative to$ \alpha $ decay and cluster radioactivity, the proton radioactivity half-life is more sensitive to the centrifugal barrier. This means that the linear relationship between the half-life of the proton radioactivity and the released energy$ Q_p $ only exists for proton-radioactive isotopes with the same orbital angular momentum l taken away by the emitted proton [44, 52, 54]. Similarly, the$ 2p $ radioactivity half-life may also depend strongly on the$ 2p $ radioactivity released energy$ Q_{2p} $ and the orbital angular momentum l taken away by the two emitted protons. Recently, considering the contributions of$ Q_{2p} $ and the orbital angular momentum l to the$ 2p $ radioactivity half-life, Sreeja et al. put forward a four-parameter empirical formula to study the$ 2p $ radioactivity half-lives, which is expressed as [36]$ {\rm{log_{10}}}{T}_{1/2} = (({a}\times {l}) + {b})\,Z_{d}^{\,0.8}\,{Q_{2p}}^{-1/2} + (({c}\times {l}) + {d}), $
(2) where a = 0.1578, b = 1.9474,
$ c = -1.8795 $ , and$ d = -24.847 $ denote the adjustable parameters, which are obtained by fitting the calculated results of the ELDM [33]. Their calculated results can reproduce the known experimental data well.In our previous work [44], considering the contributions of the daughter nuclear charge
$ Z_d $ and the orbital angular momentum l taken away by the emitted proton to the proton radioactivity half-life, we proposed a two-parameter empirical formula for a new G-N law for proton radioactivity. This formula is written as:$ {\rm{log_{10}}}{T}_{1/2} = {a_{\beta}}\,(Z_{d}^{\,0.8}+{l\,}^{\beta})\,{{{Q}}_{p}}^{-1/2} + {b_{\beta}}, $
(3) where
$ a_{\beta} = 0.843 $ and$ b_{\beta} = -27.194 $ are the fitted parameters. The exponent on the orbital angular momentum l taken away by the emitted proton,$ \beta $ , is 1, which is obtained by fitting 44 experimental data points of proton radioactivity in the ground state and isomeric state. Combined with the work from Sreeja et al. [36, 54] and our previous work [44], it is interesting to examine whether or not a two-parameter form of the empirical formula is suitable to investigate$ 2p $ radioactivity. In this work, because there are no experimental data for$ 2p $ radioactive nuclei with orbital angular momentum$ l \ne 0 $ , we choose the experimental data for true$ 2p $ radioactive nuclei (19Mg, 45Fe, 48Ni, 54Zn and 67Kr) with l = 0, and the predicted$ 2p $ radioactivity half-lives of 7 nuclei with$ l \ne 0 $ (1 case with l = 1, 4 cases with l = 2 and 2 cases with l = 4) are extracted from Goncalves et al. [33].First, for the
$ \beta $ value describing the effect of l on the$ 2p $ radioactivity half-life, we choose the$ \beta $ value corresponding to the smallest standard deviation$ \sigma $ between the database and the calculated$ 2p $ radioactivity half-lives as the optimal value, with$ \beta $ varying from 0.1 to 0.5. The relationship between the$ \sigma $ and$ \beta $ values is shown in Fig. 1. It is clear that$ \sigma $ is smallest when$ \beta $ is equal to 0.25. Comparing with the$ \beta $ value of Eq. (3) reflecting the effect of l on the proton radioactivity half-life, this$ \beta $ value is smaller. The reason may be that the reduced mass$ \mu $ of a proton-radioactive nucleus is smaller than that of a$ 2p $ -radioactive nucleus, leading to the contribution of the centrifugal barrier to the half-life of the$ 2p $ -radioactive nucleus being smaller. Correspondingly, the values of parameters a and b are given as:$ a = 2.032,\,\;\; b = 26.832, $
(4) Then, we can obtain a final formula, which can be written as:
$ {\rm{log_{10}}}{T}_{1/2} = 2.032\,(Z_{d}^{\,0.8}+{l}^{\,0.25})\,{Q_{2p}}^{-1/2} - 26.832. $
(5) -
The primary aim of this work is to verify the feasibility of using Eq. (5) to investigate
$ 2p $ radioactivity. The calculated logarithmic half-lives of$ 2p $ -radioactive nuclei are listed in the seventh column of Table 1. Meanwhile, for comparison, the calculated results using GLDM, ELDM and a four-parameter empirical formula are shown in the fourth to sixth column of this table, respectively. In Table 1, the first three columns denote the$ 2p $ -radioactive nucleus, the experimental$ 2p $ radioactivity released energy$ Q_{2p} $ and the logarithmic experimental$ 2p $ radioactivity half-life$ {\rm{log}}_{10}T_{1/2}^{\rm{exp}} $ , respectively. For quantitative comparisons between the calculated$ 2p $ radioactivity half-lives using our empirical formula and the experimental results, the last column gives the logarithm of errors between the experimental$ 2p $ radioactivity half-lives and those calculated using our empirical formula$ {\rm{log_{10}}}HF = {\rm{log}}_{10}{{T}_{1/2}^{\,\rm{exp}}} -{\rm{log}}_{10}{{T}_{1/2}^{\,\rm{cal}}} $ . From this table, it can be seen that for the true$ 2p $ -radioactive nuclei 19Mg, 45Fe, 48Ni, 54Zn and 67Kr ($ Q_p < 0 $ ,$ Q_{2p} > 0 $ ), most values of$ {\rm{log_{10}}}HF $ are between -1 and 1. Particularly, for the cases of 48Ni, with$ Q_{2p} $ = 1.290, and 45Fe, with$ Q_{2p} $ = 1.154, the values of$ {\rm{log_{10}}}HF $ are 0.07 and 0.24, indicating our calculated results can reproduce the experimental data well. As for the sequential or pseudo-$ 2p $ -radioactive nuclei 6Be, 12O and 16Ne ($ Q_p > 0 $ ,$ Q_{2p} > 0 $ ), the values of$ {\rm{log_{10}}}HF $ for 6Be and 16Ne are relatively large. Likewise, the differences between the experimental data and the calculated$ 2p $ radioactivity half-lives using GLDM, ELDM and the four-parameter empirical formula are more than three orders of magnitude. This may be due to the limitations of the early experimental equipment, resulting in the measured decay widths of these$ 2p $ radioactivity nuclei not being accurate enough. It would be helpful to measure the experimental$ 2p $ half-lives of these nuclei again in the future. In the case of 12O, the values of$ {\rm{log_{10}}}HF $ are small, implying that our formula may also be suitable for studying pseudo-$ 2p $ -radioactive nuclei which have relatively accurate experimental data.Nucleus $ Q_{2p}^{\rm{\,exp}} $ /MeV$ {\rm{log_{10}}}{T}_{1/2}^{\exp} $ /s$ {\rm{log_{10}}}{T}_{1/2}^{{\rm{GLDM}}} $ /s [37]$ {\rm{log_{10}}}{T}_{1/2}^{{\rm{ELDM}}} $ /s [33]$ {\rm{log_{10}}}{T}_{1/2} $ /s [36]$ {\rm{log_{10}}}{T}_{1/2}^{{\rm{This}}\;{\rm{work}}}$ /s$ {\rm{log_{10}}} $ HF6Be 1.371 [55] $ -20.30 $ [55]$ -19.37 $ $ -19.97 $ $ -21.95 $ $ -23.81 $ 3.51 12O 1.638 [56] $ >-20.20 $ [56]$ -19.17 $ $ -18.27 $ $ -18.47 $ $ -20.17 $ $ >-0.03 $ 1.820 [8] $ -20.94 $ [8]$ -20.94 $ – $ -18.79 $ $ -20.52 $ $ -0.42 $ 1.790 [57] $ -20.10 $ [57]$ -20.10 $ – $ -18.74 $ $ -20.46 $ $ 0.36 $ 1.800 [58] $ -20.12 $ [58]$ -20.12 $ – $ -18.76 $ $ -20.48 $ $ 0.36 $ 16Ne 1.33 [8] $ -20.64 $ [8]$ -16.45 $ – $ -15.94 $ $ -17.53 $ $ -3.11 $ 1.400 [59] $ -20.38 $ [59]$ -16.63 $ $ -16.60 $ $ -16.16 $ $ -17.77 $ $ -2.61 $ 19Mg 0.750 [13] $ -11.40 $ [13]$ -11.79 $ $ -11.72 $ $ -10.66 $ $ -12.03 $ $ 0.63 $ 45Fe 1.100 [10] $ -2.40 $ [10]$ -2.23 $ – $ -1.25 $ $ -2.21 $ $ -0.19 $ 1.140 [9] $ -2.07 $ [9]$ -2.71 $ – $ -1.66 $ $ -2.64 $ $ 0.57 $ 1.210 [60] $ -2.42 $ [60]$ -3.50 $ – $ -2.34 $ $ -3.35 $ $ 0.93 $ 1.154 [12] $ -2.55 $ [12]$ -2.87 $ $ -2.43 $ $ -1.81 $ $ -2.79 $ $ 0.24 $ 48Ni 1.350 [12] $ -2.08 $ [12]$ -3.24 $ – $ -2.13 $ $ -3.13 $ $ 1.05 $ 1.290 [61] $ -2.52 $ [61]$ -2.62 $ – $ -1.61 $ $ -2.59 $ $ 0.07 $ 54Zn 1.480 [11] $ -2.43 $ [11]$ -2.95 $ $ -2.52 $ $ -1.83 $ $ -2.81 $ $ 0.38 $ 1.280 [62] $ -2.76 $ [62]$ -0.87 $ – $ -0.10 $ $ -1.01 $ $ -1.75 $ 67Kr 1.690 [14] $ -1.70 $ [14]$ -1.25 $ $ -0.06 $ 0.31 $ -0.58 $ $ -1.12 $ Table 1. Comparison of the experimental data for
$ 2p $ -radioactive nuclei with different theoretical models (GLDM, ELDM, the four-parameter empirical formula of Ref. [36] and our empirical formula. Experimental data are taken from the corresponding references.To further test the feasibility of our empirical formula, we also use Eq. (5) to predict the
$ 2p $ radioactivity half-lives of 22 nuclei with$ 2p $ radioactivity released energy$ Q_{2p} > 0 $ . The$ Q_{2p} $ values are taken from the latest evaluated atomic mass table AME2016 and shown in the second column of Table 2. In this table, the first and third columns give the$ 2p $ radioactivity candidates and the angular momentum l taken away by the two emitted protons, respectively. For a benchmark, the predicted results using GLDM, ELDM and the four-parameter empirical formula, extracted from Refs. [37], [33] and [36] respectively, are also listed in this table. We can clearly see that for$ l\ne 0 $ , the predicted results using our empirical formula are closer to those predicted using ELDM than those predicted using the four-parameter empirical formula. Most of the predicted results are of the same order of magnitude. As an example, in the cases of 28Cl (60As), the predicted$ 2p $ radioactivity half-lives using ELDM, the four-parameter empirical formula and our empirical formula are$ -12.95 $ ($ -8.68 $ ),$ -14.52 $ ($ -10.84 $ ) and$ -12.46 $ ($ -8.33 $ ), respectively. This implies that our empirical formula is also suitable for studying nuclei with orbital angular momentum$ l\neq0 $ . In the case of$ l = 0 $ , the predicted$ 2p $ radioactivity half-lives using our empirical formula are in good agreement with those from GLDM and ELDM. To further demonstrate the significant correlation between the$ 2p $ radioactivity half-lives$ T_{1/2} $ and the$ 2p $ radioactivity released energies$ Q_{2p} $ , based on Eq. (5), we plot the quantity$ [{\rm{log_{10}}}{T}_{1/2} + 26.832]/(Z_{d}^{0.8}+l^{\,0.25}) $ as a function of$ Q_{2p}^{-1/2} $ in Fig. 2. In this figure, there is an obvious linear dependence of$ {\rm{log}}_{10}T_{1/2} $ on$ Q_{2p} $ $ ^{-1/2} $ , while the contributions of charge number$ Z_{d} $ and orbital angular momentum l on the$ 2p $ radioactivity half-lives are removed.Nucleus $ Q_{2p} $ /MeVl $ {\rm{log_{10}}}{T}_{1/2}^{{\rm{GLDM}}} $ /s [37]$ {\rm{log_{10}}}{T}_{1/2}^{{\rm{ELDM}}} $ /s [33]$ {\rm{log_{10}}}{T}_{1/2} $ /s [36]$ {\rm{log_{10}}}{T}_{1/2}^{{\rm{This}}\;{\rm{work}}} $ /s22Si 1.283 0 $ -13.30 $ $ -13.32 $ $ -12.30 $ $ -13.74 $ 26S 1.755 0 $ -14.59 $ $ -13.86 $ $ -12.71 $ $ -14.16 $ 34Ca 1.474 0 $ -10.71 $ $ -9.91 $ $ -8.65 $ $ -9.93 $ 36Sc 1.993 0 $ -11.74 $ $ -10.30 $ $ -11.66 $ 38Ti 2.743 0 $ -14.27 $ $ -13.56 $ $ -11.93 $ $ -13.35 $ 39Ti 0.758 0 $ -1.34 $ $ -0.81 $ $ -0.28 $ $ -1.19 $ 40V 1.842 0 $ -9.85 $ $ -8.46 $ $ -9.73 $ 42Cr 1.002 0 $ -2.88 $ $ -2.43 $ $ -1.78 $ $ -2.76 $ 47Co 1.042 0 $ -0.11 $ $ 0.21 $ $ -0.69 $ 49Ni 0.492 0 $ 14.46 $ $ 14.64 $ $ 12.78 $ $ 12.43 $ 56Ga 2.443 0 $ -8.00 $ $ -6.42 $ $ -7.61 $ 58Ge 3.732 0 $ -13.10 $ $ -11.74 $ $ -9.53 $ $ -10.85 $ 59Ge 2.102 0 $ -6.97 $ $ -5.71 $ $ -4.44 $ $ -5.54 $ 60Ge 0.631 0 $ 13.55 $ $ 14.62 $ $ 12.40 $ $ 12.04 $ 61As 2.282 0 $ -6.12 $ $ -4.74 $ $ -5.85 $ 10N 1.3 1 $ -17.64 $ $ -20.04 $ $ -18.59 $ 28Cl 1.965 2 $ -12.95 $ $ -14.52 $ $ -12.46 $ 32K 2.077 2 $ -12.25 $ $ -13.46 $ $ -11.55 $ 57Ga 2.047 2 $ -5.30 $ $ -5.22 $ $ -4.14 $ 62As 0.692 2 $ 14.52 $ $ 13.83 $ 14.18 52Cu 0.772 4 $ 9.36 $ $ 8.62 $ 8.74 60As 3.492 4 $ -8.68 $ $ -10.84 $ $ -8.33 $ Table 2. Comparison of calculated
$ 2p $ radioactivity half-lives using GLDM, ELDM, the four-parameter empirical formula from Ref. [36] and our empirical formula. The$ 2p $ radioactivity released energy$ Q_{2p} $ and orbital angular momentum l taken away by the two emitted protons are taken from Ref. [33].
New Geiger-Nuttall law for two-proton radioactivity
- Received Date: 2020-06-29
- Available Online: 2021-02-15
Abstract: In the present work, a two-parameter empirical formula is proposed, based on the Geiger-Nuttall law, to study two-proton (