-
There is a significant correlation between
$ m(J/ {{{\psi}}} {{K^+}} {{K^-}} ) $ and$ m({{K^+}} {{K^-}} ) $ in$ B^0_{(s)}{\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ decays, as illustrated in Fig. 2. Hence, the search for$ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ decays is carried out by performing sequential fits to the distributions of$ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ and$ m({{K^+}} {{K^-}} ) $ . A fit to the$ m(J/ {{{\psi}}} {{K^+}} {{K^-}} ) $ distribution is used to estimate the yields of the background components in the$ \pm15 \;{\rm{MeV}}/c^2$ regions around the$ {B^0_s}$ and$ {{B^0}}$ nominal masses. A subsequent simultaneous fit to the$ m({{K^+}} {{K^-}} ) $ distributions of candidates falling in the two$ {{{J/\psi}}} {{K^+}} {{K^-}} $ mass windows, with the background yields fixed to their values from the first step, is performed to estimate the yield of$ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ decays.Figure 2. (color online) Distributions of the invariant mass
$m( K^+ K^- )$ in different$m( J/ \psi K^+ K^- )$ intervals with boundaries at 5220, 5265, 5295, 5330, 5400 and 5550$ {\rm{MeV}}/c^2$ . They are obtained using simulated$ B^0_s \to J/ \psi\phi$ decays and normalised to unity.The probability density function (PDF) for the
$ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ distribution of both the$ {{B^0}} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ and$ {B^0_s} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ decays is modelled by the sum of a Hypatia [26] and a Gaussian function sharing the same mean. The fraction, the width ratio between the Hypatia and Gaussian functions and the Hypatia tail parameters are determined from simulation. The$ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ shape of the$ {\varLambda _b^0} {\rightarrow} {{{J/\psi}}} {p}{{K^-}} $ background is described by a template obtained from simulation, while the combinatorial background is described by an exponential function with the slope left to vary. The PDFs of$ {{B^0}} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ and$ {B^0_s} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ decays share the same shape parameters, and the difference between the$ {B^0_s}$ and$ {{B^0}}$ masses is constrained to the known mass difference of$ 87.23\pm0.16 $ $ {\rm{MeV}}/c^2$ [21].An unbinned maximum-likelihood fit is performed in the
$ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ range 5220–5480$ {\rm{MeV}}/c^2$ for Run 1 and Run 2 data samples separately. The yield of$ {\varLambda _b^0} {\rightarrow} {{{J/\psi}}} {p}{{K^-}} $ is estimated from a fit to the$ {{{J/\psi}}} {p}{{K^-}} $ mass distribution with one kaon interpreted as a proton. This yield is then constrained to the resulting estimate of$ 399\pm26 $ ($ 1914\pm47 $ ) in the$ {{{J/\psi}}} {{K^+}} {{K^-}} $ mass fit for the Run 1 (Run 2). The$ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ distributions, superimposed by the fit results, are shown in Fig. 3. Table 1 lists the obtained yields of the$ {{B^0}} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ and$ {B^0_s} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ decays, the$ {\varLambda _b^0}$ background and the combinatorial background in the full range as well as in the$ \pm15 $ $ {\rm{MeV}}/c^2$ regions around the known$ {B^0_s}$ and$ {{B^0}}$ masses.Figure 3. (color online) The distributions of
$m( J/ \psi K^+ K^- )$ , superimposed by the fit results, for (left) Run 1 and (right) Run 2 data samples. The top row shows the full$ B^0_s $ signals in logarithmic scale while the bottom row is presented in a reduced vertical range to make the B0 peaks visible. The violet (red) solid lines represent the$B^{0}_{(s)}\to J/ \psi K^+ K^- $ decays, the orange dotted lines show the$ \varLambda _b^0$ background and the green dotted lines show the combinatorial background.Data Category Full $ B^0_s$ region$ B^0$ regionRun 1 $ B^0_s \to J/ \psi K^+ K^- $ 55498 ± 238 51859 ± 220 35 ± 6 $ B^0 \to J/ \psi K^+ K^- $ 127 ± 19 0 119 ± 18 $ \varLambda _b^0 \to J/ \psi{p} K^- $ 407 ± 26 55 ± 8 61 ± 8 Combinatorial background 758 ± 55 85 ± 11 94 ± 11 Run 2 $ B^0_s \to J/ \psi K^+ K^- $ 249670 ± 504 233663 ± 472 153 ± 12 $ B^0 \to J/ \psi K^+ K^- $ 637 ± 39 0 596 ± 38 $ \varLambda _b^0 \to J/ \psi{p} K^- $ 1943 ± 47 261 ± 16 290 ± 17 Combinatorial background 2677 ± 109 303 ± 20 331 ± 21 Table 1. Measured yields of all contributions from the fit to
$ J/ \psi K^+ K^- $ mass distribution, showing the results for the full mass range and for the$ B^0_s$ and$ B^0$ regions.Assuming the efficiency is independent of
$ m({{K^+}} {{K^-}} ) $ , the$ \phi $ meson lineshape from$ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ ($ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ ) decays in the$ {{B^0}}$ ($ {B^0_s}$ ) region is given by$ \begin{aligned}[b]{\rm{S}}_{\phi}(m) \equiv & P_{B}P_{R}F_{R}^{2}(P_{R},P_0,d)\left(\frac{P_{R}}{m^{\prime}}\right)^{2L_{R}} {\left|A_{\phi}(m^{\prime};m_0,\Gamma_0)\right|}^2\\ &\otimes{G(m-m^{\prime};0,\sigma)}, \end{aligned} $
(1) where
$ {A}_{\phi} $ is a relativistic Breit-Wigner amplitude function [27] defined as$ \begin{aligned}[b] {A_{\phi}}(m;m_0,\Gamma_0) =&\, \frac{1}{m_0^{2}-m^2-{\rm i}m_0\Gamma(m)}, \; \\ {\Gamma(m)} = &\, \Gamma_0\left(\frac{P_{R}}{P_0}\right)^{2L_{R}+1}\frac{m_0}{m}F_{R}^{2}(P_{R},P_0,d) \;. \end{aligned} $
(2) The parameter m (
$ m^{\prime} $ ) denotes the reconstructed (true)$ {{K^+}} {{K^-}} $ invariant mass,$ m_0 $ and$ \Gamma_0 $ are the mass and decay width of the$ \phi(1020) $ meson,$ P_{B} $ is the$ {{{J/\psi}}} $ momentum in the$ {B^0_s}$ ($ {{B^0}}$ ) rest frame,$ P_{R} $ ($ P_0 $ ) is the momentum of the kaons in the$ {{K^+}} {{K^-}} $ ($ \phi(1020) $ ) rest frame,$ L_{R} $ is the orbital angular momentum between the$ {{K^+}} $ and$ {{K^-}} $ ,$ F_{R} $ is the Blatt-Weisskopf function, and d is the size of the decaying particle, which is set to be 1.5$ ({\rm{GeV/c}})^{-1}\sim $ 0.3 fm [28]. The amplitude squared is folded with a Gaussian resolution function G. For$ L_{R} = 1 $ ,$ F_R $ has the form$ F_{R}(P_{R},P_0,d) = \sqrt{\frac{1+(P_{0}\,d)^2}{1+(P_{R\,}d)^2}}\;, $
(3) and depends on the momentum of the decay products
$ P_{R} $ [27].As is shown in Fig. 2, due to the correlation between the reconstructed masses of
$ {{K^+}} {{K^-}} $ and$ {{{J/\psi}}} {{K^+}} {{K^-}} $ , the shape of the$ m({{K^+}} {{K^-}} ) $ distribution strongly depends on the chosen$ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ range. The top two plots in Fig. 3 show the$ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ distributions for Run 1 and Run 2 separately, where a small$ {{B^0}}$ signal can be seen on the tail of a large$ {B^0_s}$ signal. Therefore, it is necessary to estimate the lineshape of the$ K^+K^- $ mass spectrum from$ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ decays in the$ B^0 $ region. The$ m({{K^+}} {{K^-}} ) $ distribution of the$ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ tail leaking into the$ {{B^0}}$ mass window can be effectively described by Eq. (1) with modified values of$ m_0 $ and$ \Gamma_0 $ , which are extracted from an unbinned maximum-likelihood fit to the$ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ simulation sample.The non-
$ \phi $ $ {{K^+}} {{K^-}} $ contributions to$ {{B^0}} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ ($ {B^0_s} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ ) decays include that from$ a_0 $ (980) [1] ($ f_0 $ (980) [29]) and nonresonant$ {{K^+}} {{K^-}} $ in an S-wave configuration. The PDF for this contribution is given by$ {\rm{S}}_{\rm non}(m) \equiv P_{B}P_{R}{F_B}^2\left(\frac{P_B}{m_B}\right)^{2} {\left|A_{R}(m)\times{{\rm e}^{{\rm i}\delta}}+A_{NR}\right|}^2\;, $
(4) where m is the
$ {{K^+}} {{K^-}} $ invariant mass,$ m_B $ is the known$ B^{0}_{(s)} $ mass [21],$ F_B $ is the Blatt-Weisskopf barrier factor of the$ B^{0}_{(s)} $ meson,$ A_{R} $ and$ A_{NR} $ represent the resonant ($ a_0 $ (980) or$ f_0 $ (980)) and nonresonant amplitudes, and$ \delta $ is a relative phase between them. The nonresonant amplitude$ A_{NR} $ is modelled as a constant function. The lineshape of the$ a_0 $ (980) ($ f_0 $ (980)) resonance can be described by a Flatté function [30] considering the coupled channels$ \eta{{{\pi}^0}} $ ($ \pi\pi $ ) and$ K {K} $ . The Flatté functions are given by$ A_{a_0}(m) = \dfrac{1}{m_{R}^{2}-m^2-{\rm i}(g_{\eta\pi}^2\rho_{\eta\pi}+g_{KK}^2\rho_{KK})} $
(5) for the
$ a_0 $ (980) resonance and$ A_{f_0}(m) = \dfrac{1}{m_{R}^{2}-m^2-{\rm i}m_{R}(g_{\pi\pi}\rho_{\pi\pi}+g_{KK}\rho_{KK})} $
(6) for the
$ f_0 $ (980) resonance. The parameter$ m_{R} $ denotes the pole mass of the resonance for both cases. The constants$ g_{\eta\pi} $ ($ g_{\pi\pi} $ ) and$ g_{KK} $ are the coupling strengths of$ a_0 $ (980) ($ f_0 $ (980)) to the$ \eta{{{\pi}^0}} $ ($ \pi\pi $ ) and$ K {K} $ final states, respectively. The$ \rho $ factors are given by the Lorentz-invariant phase space:$ \rho_{\pi\pi} = \frac{2}{3}\sqrt{1-\frac{4m_{{{{\pi}^\pm}} }^2}{m^2}}+\frac{1}{3}\sqrt{1-\frac{4m_{{{{\pi}^0}} }^2}{m^2}}\;, $
(7) $ \rho_{KK} = \frac{1}{2}\sqrt{1-\frac{4m_{{{{K}^\pm}} }^2}{m^2}}+\frac{1}{2}\sqrt{1-\frac{4m_{{{{K}^0}} }^2}{m^2}}\;, $
(8) $ \rho_{\eta\pi} = \sqrt{\left(1-\frac{(m_{\eta}-m_{{{{\pi}^0}} })^2}{m^2}\right)\left(1-\frac{(m_{\eta}+m_{{{{\pi}^0}} })^2}{m^2}\right)}\;. $
(9) The parameters for the
$ a_0 $ (980) lineshape are$ m_{R} = 0.999\pm0.002 \;\; {\rm{GeV}}/c^2$ ,$ g_{\eta\pi} = 0.324\pm0.015\;\;{{{\rm{GeV}}}/c^2} $ , and$ g_{KK}^2/g_{\eta\pi}^2 = 1.03\pm0.14 $ , determined by the Crystal Barrel experiment [31]; the parameters for the$ f_0 $ (980) lineshape are$ m_{R} = 0.9399\pm0.0063\; {\rm{GeV}}/c^2$ ,$ g_{\pi\pi} = 0.199\pm 0.030\; {\rm{GeV}}/c^2$ , and$ g_{KK}/g_{\pi\pi} = 3.0\pm0.3 $ , according to the previous analysis of$ {B^0_s} {\rightarrow} {{{J/\psi}}} {{{\pi}^+}} {{{\pi^-}}} $ decays [32].For the
$ {\varLambda _b^0} {\rightarrow} {{{J/\psi}}} {p}{{K^-}} $ background, no dependency of the$ m({{K^+}} {{K^-}} ) $ shape on$ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ is observed in simulation. Therefore, a common PDF is used to describe the$ m({{K^+}} {{K^-}} ) $ distributions in both the$ {B^0_s}$ and$ {{B^0}}$ regions. The PDF is modelled by a third-order Chebyshev polynomial function, obtained from the unbinned maximum-likelihood fit to the simulation shown in Fig. 4.Figure 4. Distribution of
$m( K^+ K^- )$ in a$ \varLambda _b^0 \to J/ \psi{p} K^- $ simulation sample superimposed with a fit to a polynomial function.In order to study the
$ m({{K^+}} {{K^-}} ) $ shape of the combinatorial background in the$ {{B^0}}$ region, a BDT requirement that strongly favours background is applied to form a background-dominated sample. Simulated$ {\varLambda _b^0} {\rightarrow} {{{J/\psi}}} {p}{{K^-}} $ and$ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ events are then injected into this sample with negative weights to subtract these contributions. The resulting$ m({{K^+}} {{K^-}} ) $ distribution is shown in Fig. 5, which comprises a$ \phi $ resonance contribution and random$ {{K^+}} {{K^-}} $ combinations, where the shape of the former is described by Eq. (1) and the latter by a second-order Chebyshev polynomial function. To validate the underlying assumptions of this procedure, the$ m({{K^+}} {{K^-}} ) $ shape has been checked to be compatible in different$ {{{J/\psi}}} {{K^+}} {{K^-}} $ mass regions and with different BDT requirements.Figure 5. (color online)
$m( K^+ K^- )$ distributions of the enhanced combinatorial background in the (left) Run 1 and (right) Run 2 data samples. The$ B^0_s \to J/ \psi\phi$ and$ \varLambda _b^0 \to J/ \psi{p} K^- $ backgrounds are subtracted by injecting simulated events with negative weights.A simultaneous unbinned maximum-likelihood fit to the four
$ m({{K^+}} {{K^-}} ) $ distributions in both$ {B^0_s}$ and$ {{B^0}}$ regions of Run 1 and Run 2 data samples is performed. The$ \phi $ resonance in$ B^0_{(s)}{\rightarrow} {{{J/\psi}}} \phi $ decays is modelled by Eq. (1). The non-$ \phi $ $ {{K^+}} {{K^-}} $ contribution to$ B^0_{(s)}{\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ decays is described by Eq. (4). The tail of$ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ decays in the$ {{B^0}}$ region is described by the extracted shape from simulation. The$ {\varLambda _b^0} $ background and the combinatorial background are described by the shapes shown in Figs. 4 and 5, respectively. All$ m({{K^+}} {{K^-}} ) $ shapes are common to the$ {{B^0}}$ and$ {B^0_s}$ regions, except that of the$ {B^0_s}$ tail, which is only needed for the$ {{B^0}}$ region. The mass and decay width of$ \phi(1020) $ meson are constrained to their PDG values [21] while the width of the$ m({{K^+}} {{K^-}} ) $ resolution function is allowed to vary in the fit. The pole mass of$ f_0 $ (980) ($ a_0 $ (980)) and the coupling factors, including$ g_{\pi\pi} $ ,$ g_{KK}/g_{\pi\pi} $ ,$ g_{\eta\pi}^2 $ and$ g_{KK}^2/g_{\eta\pi}^2 $ , are fixed to their central values in the reference fit. The amplitude$ A_{NR} $ is allowed to vary freely, while the relative phase$ \delta $ between the$ f_0 $ (980) ($ a_0 $ (980)) and nonresonance amplitudes is constrained to$ -255\pm35 $ ($ -60\pm26 $ ) degrees, which was determined in the amplitude analysis of$ {B^0_s} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ ($ {{B^0}} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ ) decays [1, 29]. The yields of the$ {\varLambda _b^0}$ background, the$ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ tail leaking into the$ {{B^0}}$ region and the combinatorial background are fixed to the corresponding values in Table 1, while the yields of non-$ \phi $ $ {{K^+}} {{K^-}} $ for$ {B^0_s}$ and$ {{B^0}}$ decays as well as the yield of$ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ decays take different values for Run 1 and Run 2 data samples and are left to vary in the fit.The branching fraction
$ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ , the parameter of interest to be determined by the fit, is common for Run 1 and Run 2. The yield of$ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ decays is internally expressed according to$ N_{{{B^0}} {\rightarrow} {{{J/\psi}}} \phi} = N_{{B^0_s} {\rightarrow} {{{J/\psi}}} \phi}\times\frac{{\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi)}{{\cal{B}}({B^0_s} {\rightarrow} {{{J/\psi}}} \phi)} \times\frac{\varepsilon_{{{B^0}} }}{\varepsilon_{{B^0_s} }}\times\frac{1}{f_s/f_d} \;, $
(10) where the branching fraction
$ {\cal{B}}({B^0_s} {\rightarrow} {{{J/\psi}}} \phi) $ has been measured by the LHCb collaboration [29],$ {\varepsilon_{{{B^0}} }}/{\varepsilon_{{B^0_s} }} $ is the efficiency ratio given in Sec. III,$ f_s/f_d $ is the ratio of the production fractions of$ B_s^0 $ and$ B^0 $ mesons in$ pp$ collisions, which has been measured at 7$ {\rm{TeV}}$ to be$ 0.256\pm0.020 $ in the LHCb detector acceptance [33]. The effect of increasing collision energy on$ f_s/f_d $ is found to be negligible for 8$ {\rm{TeV}}$ and a scaling factor of$ 1.068\pm0.046 $ is needed for 13$ {\rm{TeV}}$ [34]. The parameters$ {\cal{B}}({B^0_s} {\rightarrow} {{{J/\psi}}} \phi) $ ,$ {\varepsilon_{{{B^0}} }}/{\varepsilon_{{B^0_s} }} $ and$ f_s/f_d $ are fixed to their central values in the baseline fit and their uncertainties are propagated to$ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ in the evaluation of systematic uncertainties.The
$ m({{K^+}} {{K^-}} ) $ distributions in the$ {B^0_s}$ and$ {{B^0}}$ regions are shown in Fig. 6 for both Run 1 and Run 2 data samples. The branching fraction$ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ is found to be$ (6.8 \pm 3.0({\rm{stat.}}))\times10^{-8} $ . The significance of the decay$ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ , over the background-only hypothesis, is estimated to be 2.3 standard deviations using Wilks' theorem [35].Figure 6. (color online) Distributions in the (top)
$ B^0_s$ and (bottom)$ B^{0}$ $m( K^+ K^- )$ regions, superimposed by the fit results. The left and right columns show the results for the Run 1 and Run 2 data samples, respectively. The violet (red) solid lines are$B^{0}_{(s)}\to J/ \psi\phi$ decays, violet (red) dashed lines are non-$\phi$ $B^{0}_{(s)}\to J/ \psi K^+ K^- $ signal, green dotted lines are the combinatorial background component, and the orange dotted lines are the$ \varLambda _b^0$ background component.To validate the sequential fit procedure, a large number of pseudosamples were generated according to the fit models for the
$ m(J/\psi{{K^+}} {{K^-}} ) $ and$ m({{K^+}} {{K^-}} ) $ distributions. The model parameters were taken from the result of the baseline fit to the data. The fit procedure described above was applied to each pseudosample. The distributions of the obtained estimate of$ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ and the corresponding pulls are found to be consistent with the reference result, which indicates that the procedure has negligible bias and its uncertainty estimate is reliable. A similar check has been performed using pseudosamples generated with an alternative model for the$ {{B^0}} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ decays, which is based on the amplitude model developed for the$ {B^0_s} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ analysis [20] and includes contributions from P-wave$ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ decays, S-wave$ {{B^0}} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ decays and their interference. In this case, the robustness of the fit method has also been confirmed. -
Two categories of systematic uncertainties are considered: multiplicative uncertainties, which are associated with the normalisation factors; and additive uncertainties, which affect the determination of the yields of the
$ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ and$ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ modes.The multiplicative uncertainties include those propagated from the estimates of
$ {\cal{B}}({B^0_s} {\rightarrow} {{{J/\psi}}} \phi) $ ,$ f_s/f_d $ and$ {\varepsilon_{{B^0_s} }}/{\varepsilon_{{{B^0}} }} $ . Using the$ f_s/f_d $ measurement at 7$ {\rm{TeV}}$ [29, 33],$ {\cal{B}}({B^0_s} {\rightarrow} {{{J/\psi}}} \phi) $ was measured to be$(10.50\pm0.13\,({\rm{stat.}}) \pm 0.64\,({\rm{syst.}})\pm0.82\,({ {f_s}}/{ {f_d}}))\times10^{-4}$ . The third uncertainty is completely anti-correlated with the uncertainty on$ f_s/f_d $ , since the estimate of$ {\cal{B}}({B^0_s} {\rightarrow} {{{J/\psi}}} \phi) $ is inversely proportional to the value used for$ f_s/f_d $ . Taking this correlation into account yields$ {\cal{B}}({B^0_s} {\rightarrow} {{{J/\psi}}} \phi)\times f_s/f_d = (2.69 \pm 0.17) \times 10^{-4} $ for 7$ {\rm{TeV}}$ . The luminosity-weighted average of the scaling factor for$ f_s/f_d $ for 13$ {\rm{TeV}}$ has a relative uncertainty of 3.4%. For the efficiency ratio$ {\varepsilon_{{B^0_s} }}/{\varepsilon_{{{B^0}} }} $ , its luminosity-weighted average has a relative uncertainty of 1.8%. Summing these three contributions in quadrature gives a total relative uncertainty of 7.3% on$ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ .The additive uncertainties are due to imperfect modeling of the
$ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ and$ m({{K^+}} {{K^-}} ) $ shapes of the signal and background components. To evaluate the systematic effect associated with the$ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ model of the combinatorial background, the fit procedure is repeated by replacing the exponential function for the combinatorial background with a second-order polynomial function. A large number of simulated pseudosamples were generated according to the obtained alternative model. Each pseudosample was fitted twice, using the baseline and alternative combinatorial shape, respectively. The average difference of$ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ is$ 0.03\times10^{-8} $ , which is taken as a systematic uncertainty.In the
$ m({{K^+}} {{K^-}} ) $ fit, the yields of$ {\varLambda _b^0} {\rightarrow} {{{J/\psi}}} {p}{{K^-}} $ decay, combinatorial backgrounds under the$ {{B^0}}$ and$ {B^0_s}$ peaks, and that of the$ {B^0_s}$ tail leaking into the$ {{B^0}}$ region are fixed to the values in Table 1. Varying these yields separately leads to a change of$ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ by$ 0.05\times 10^{-8} $ for$ {\varLambda _b^0} {\rightarrow} {{{J/\psi}}} {p}{{K^-}} $ ,$ 0.61\times 10^{-8} $ for the combinatorial background and$ 0.24\times 10^{-8} $ for the$ {B^0_s}$ tail in the$ {{B^0}}$ region, and these are assigned as systematic uncertainties on$ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ .The constant d in Eq. (3) is varied between 1.0 and 3.0
$ ({\rm{GeV/c}})^{-1} $ . The maximum change of$ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ is evaluated to be$ 0.01\times10^{-8} $ , which is taken as a systematic uncertainty.The
$ m({{K^+}} {{K^-}} ) $ shape of the$ {B^0_s}$ tail under the$ {{B^0}}$ peak is extracted using a$ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ simulation sample. The statistical uncertainty due to the limited size of this sample is estimated using the bootstrapping technique [36]. A large number of new data sets of the same size as the original simulation sample were formed by randomly cloning events from the original sample, allowing one event to be cloned more than once. The spread in the results of$ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ obtained by using these pseudosamples in the analysis procedure is then adopted as a systematic uncertainty, which is evaluated to be$ 0.29\times 10^{-8} $ .In the reference model, the
$ m({{K^+}} {{K^-}} ) $ shape of the$ {\varLambda _b^0} {\rightarrow} {{{J/\psi}}} {p}{{K^-}} $ background is determined from simulation, under the assumption that this shape is insensitive to the$ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ region. A sideband sample enriched with$ {\varLambda _b^0} {\rightarrow} {{{J/\psi}}} {p}{{K^-}} $ contributions is selected by requiring one kaon to have a large probability to be a proton. An alternative$ m({{K^+}} {{K^-}} ) $ shape is extracted from this sample after subtracting the random combinations, and used in the$ m({{K^+}} {{K^-}} ) $ fit. The resulting change of$ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ is$ 0.28\times 10^{-8} $ , which is assigned as a systematic uncertainty.The
$ m({{K^+}} {{K^-}} ) $ shape of the combinatorial background is represented by that of the$ {{{J/\psi}}} {{K^+}} {{K^-}} $ combinations with a BDT selection that strongly favours the background over the signal, under the assumption that this shape is insensitive to the BDT requirement. Repeating the$ m({{K^+}} {{K^-}} ) $ fit by using the combinatorial background shape obtained with two non-overlapping sub-intervals of BDT response, the result for$ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ is found to be stable, with a maximum variation of$ 0.16\times 10^{-8} $ , which is regarded as a systematic uncertainty.In Eqs. (7)–(9), the coupling factors
$ g_{\eta\pi} $ ,$ g_{KK}^2/g_{\eta\pi}^2 $ ,$ g_{\pi\pi} $ and$ g_{KK}/g_{\pi\pi} $ , are fixed to their mean values from Ref. [31, 32]. The fit is repeated by varying each factor by its experimental uncertainty and the maximum variation of the branching fraction is considered for each parameter. The sum of the variations in quadrature is$ 0.06\times 10^{-8} $ , which is assigned as a systematic uncertainty.The systematic uncertainties are summarised in Table 2. The total systematic uncertainty is the sum in quadrature of all these contributions.
Multiplicative uncertainties Value (%) ${\cal{B}}( B^0_s \to J/ \psi\phi)$ 6.2 Scaling factor for $f_{s}/f_{d}$ 3.4 ${\varepsilon_{ B^0 }}/{\varepsilon_{ B^0_s }}$ 1.8 Total 7.3 Additive uncertainties Value (10−8) $m( J/ \psi K^+ K^- )$ model of combinatorial background0.03 Fixed yields of $ \varLambda _b^0 $ in$m( K^+ K^- )$ fit0.05 Fixed yields of combinatorial background in $m( K^+ K^- )$ fit0.61 Fixed yields of $ B^0_s $ contribution in$m( K^+ K^- )$ fit0.24 Constant d 0.01 $m( K^+ K^- )$ shape of$ B^0_s $ contribution0.29 $m( K^+ K^- )$ shape of$ \varLambda _b^0 $ 0.28 $m( K^+ K^- )$ shape of combinatorial background0.16 $m( K^+ K^- )$ shape of non-$\phi$ 0.06 Total 0.80 Table 2. Systematic uncertainties on
${\cal{B}}( B^0 \to J/ \psi\phi)$ for multiplicative and additive sources.A profile likelihood method is used to compute the upper limit of
$ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ [37, 38]. The profile likelihood ratio as a function of$ {\cal{B}} \equiv {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ is defined as$ \lambda_0({\cal{B}}) \equiv \frac{L({\cal{B}},\widehat{\widehat{\nu}})}{L(\widehat{{\cal{B}}},\widehat{\nu})}\;, $
(11) where
$ \nu $ represents the set of fit parameters other than$ {\cal{B}} $ ,$ \widehat{{\cal{B}}} $ and$ \widehat{\nu} $ are the maximum likelihood estimators, and$ \widehat{\widehat{\nu}} $ is the profiled value of the parameter$ \nu $ that maximises L for the specified$ {\cal{B}} $ . Systematic uncertainties are incorporated by smearing the profile likelihood ratio function with a Gaussian function which has a zero mean and a width equal to the total systematic uncertainty:$ \lambda({\cal{B}}) = \int_{-\infty}^{+\infty}{\lambda_0}({\cal{B}}'){\times} G({\cal{B}}-{\cal{B}}',0,{\sigma_{\rm{sys}}}({\cal{B}}')){\rm d} {\cal{B}}' \;. $
(12) The smeared profile likelihood ratio curve is shown in Fig. 7. The 90% confidence interval starting at
$ {\cal{B}} = 0 $ is shown as the red area, which covers 90% of the integral of the$ \lambda({\cal{B}}) $ function in the physical region. The obtained upper limit on$ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ at 90% CL is$ 1.1\times10^{-7} $ .
Search for the rare decay B0 → J/ψϕ
- Received Date: 2020-11-16
- Available Online: 2021-04-15
Abstract: A search for the rare decay