-
A vector field defined on a real parameter fibre bundle over the manifold [38]
$ {\bf{W}} = {\bf{W}}_{0}+{\epsilon}{\bf{W}}_{1}+{\epsilon}^2{\bf{W}}_{2}+O({\epsilon}^3), $
(1) is professed to be an approximate Lie symmetry generator of 2nd order for a perturbed system of 2nd-order geodesic equations
$ {\bf{Y}} = {\bf{Y}}_{0}+{\epsilon}{\bf{Y}}_{1}+{\epsilon}^2{\bf{Y}}_{2}+O({\epsilon}^3), $
(2) if the following condition holds
$ ({\bf{W}})({\bf{Y}})_{{\bf{Y}} = O({\epsilon}^3)} = O({\epsilon}^3), $
(3) where,
$ {\bf{W}} = \Xi({s,x^\upsilon})\frac{\partial}{\partial{s}}+{\chi}^{\alpha}({s,x^\upsilon})\frac{\partial}{\partial{x^\upsilon}}, $
(4) $ \Xi = \Xi_{0}+\epsilon{\Xi_{1}}+{\epsilon}^2{\Xi}_{2} $ ,$ {\chi}^{\alpha} = {\chi}^{\alpha}_{0}+\epsilon{{\chi}^{\alpha}}_{1}+{\epsilon}^2{{\chi}^{\alpha}}_{2} $ and$ \alpha,\upsilon = $ $ 0,1,2,3 $ respectively.For the vector fields
$ {\bf{W}}_{0},{\bf{W}}_{1} $ and$ {\bf{W}}_{2} $ , we take the second prolongation because we are interested in finding the approximate Lie symmetries of the 2nd order for the 2nd-order perturbed differential equations. The second prolongation for W is given by:$ \begin{aligned}[b] {\bf{W}}^{[2]} = &\Xi({s,x^\upsilon})\frac{\partial}{\partial{s}}+{\chi}^{\alpha}({s,x^\upsilon})\frac{\partial}{\partial{x^\upsilon}}+{\chi}^{\alpha}_{,s}({s,x^\upsilon,{\dot{x}^\upsilon})\frac{\partial}{\partial{\dot{x}^\upsilon}}} \\ &+{\chi}^{\alpha}_{,ss}({s,x^\upsilon},{\dot{x}^\upsilon},{\ddot{x}^\upsilon})\frac{\partial}{\partial{\ddot{x}^\upsilon}}. \end{aligned} $
(5) The vector fields
$ {\bf{W}}_{i} $ $ (i = 0,1,2) $ given in equation (1) depict the exact, 1st-order and 2nd-order approximate parts of the symmetry generator W. The term$ {\bf{Y}}_{0} $ represents the exact part of the equation while the terms$ {\bf{Y}}_{1} $ and$ {\bf{Y}}_{2} $ , given in equation (2), are the approximate parts of the system of perturbed geodesic equations. The generators$ {\bf{W}}_{i} $ $ (i = 1,2) $ are called the non-trivial symmetry generators if the symmetry generator$ {\bf{W}} = {\bf{W}}_{0}+{\epsilon}{\bf{W}}_{1}+ $ $ {\epsilon}^2{\bf{W}}_{2} $ exists with$ {\bf{W}}_{0}\ne0 $ or$ {\bf{W}}_{1}\ne0 $ and$ {\bf{W}}_{2}\ne k{\bf{W}}_{0} $ ,$ {\bf{W}}_{2}\ne k{\bf{W}}_{1} $ , (k is some arbitrary number). By applying the approximate symmetry condition given in equation (3) to the perturbed system of 2nd-order geodesic equations, we will obtain a significant result of the energy rescaling factor (explained in Section III).The vector field W is said to be a Noether symmetry generator for the Lagrangian
$ L(s,{x}^{\upsilon},\dot{x}^{\upsilon}) $ , if the following condition holds:$ {\bf{W}}^{{\bf{[1]}}}{L}+(D{\Xi}){L} = {D}{h}. $
(6) where
$ h(s,{x}^{\upsilon}) $ is the gauge function and the total derivative operator D is given by:$ D = \frac{\partial}{\partial{s}}+\dot{x}^{\upsilon}\frac{\partial}{\partial{{x}^{\upsilon}}}. $
(7) The Noether theorem that reveals the importance of the Noether symmetries is stated below [39].
Theorem. If W is a Noether symmetry generator corresponding to a Lagrangian
$ L(s,{x}^{\upsilon},\dot{x}^{\upsilon}) $ of the Euler-Lagrange equations of motion, then I in equation (8) is a constant of motion associated with the symmetry generator W.$ I = \Xi{L}+({\chi}^{\upsilon}-\dot{x}^{\upsilon}{\Xi})\frac{\partial{L}}{\partial{\dot{x}^{\upsilon}}}-h. $
(8) (We use this result in Section III, to calculate the exact first integrals).
-
The 4D CK spacetime generated by an axially symmetric gravitational source of mass M, charge Q, and spin a, surrounded by quintessence DE with EOS parameter
$ {\omega_q} $ , is described by the following metric [40]$ \begin{aligned}[b] {\rm d}{s}^2 =& -G(r,{\theta}){\rm d}{t}^2+\frac{1}{H(r,{\theta})}{\rm d}{r}^2+{\Sigma}(r,{\theta}){\rm d}{\theta}^2\\&+J(r,{\theta}){\rm d}{\phi}^2 -2K(r,{\theta}){\rm d}{\phi}{\rm d}{t}, \end{aligned} $
(9) where
$ \begin{aligned}[b] G(r,{\theta}) =& \frac{\Delta_{r}-{a}^2{\sin}^2{\theta}}{{\Sigma}(r,{\theta})}, H(r,{\theta}) = \frac{\Delta_{r}}{\Sigma(r, {\theta})},\\\Sigma(r,{\theta}) =& {a}^2+{\cos}^2{\theta},\\J(r,{\theta}) =& \frac{{\sin}^2{\theta}(({r}^2+{a}^2)^2-\Delta_{r}{\sin}^2{\theta})}{\Sigma(r,{\theta})},\\K(r,{\theta}) =& \frac{{a}{\sin}^2{\theta}(({r}^2+{a}^2)-\Delta_{r})}{\Sigma(r,{\theta})},\\ \Delta_{r} =& {a}^2+{r}^2+{Q}^2-2rM-{\alpha}{r}^{1-3{\omega}_q} \end{aligned} $
(10) In the above equation (10), α is the quintessence parameter, which depicts the magnitude of the quintessence scalar field around a BH, satisfying the following inequality [40]:
$ {\alpha \leqslant \frac{2^{1+3{\omega}_q}}{1-3{\omega}_q}}. $
(11) The horizons can be calculated by substituting
$ \Delta_{r} = 0 $ .The inequality given in (11) holds when the cosmological horizon determined by the quintessential DE exists. It is observed that the total charge Q does not affect the range of α, i.e. the range of α remains the same in the absence of the charge Q [40]. When quintessence does not exist, i.e. as
$ \alpha\to 0 $ , the metric given in (9) reduces to the KN BH, which further reduces to the rotational situation in the Kiselev quintessence BH, i.e. the Kerr BH as$ Q\to 0 $ . In the particular case when$ a\to 0 $ , the metric given in (9) corresponds to the RN spacetime surrounded by quintessence DE, and in the absence of the total charge Q it further reduces to the quintessential Schwarzschild BH according to the Kiselev description. In the present paper, we consider three different DE models, i.e.$ {\omega}_{c} = -1 $ ,${\omega}_{q} = -{2}/{3}$ and${\omega}_{n} = -{1}/{3}$ , to discuss the gravitational energy (mass) and 2nd-order approximate Lie symmetries of CK spacetime surrounded by DE. -
In the cosmological constant model, we consider
$ {\omega}_{c} = -1 $ and from (11),$\alpha \leqslant {1}/{16}$ . In this particular case the function$ \Delta_{r} $ is defined as$ \Delta_{r} = {a}^2+{r}^2+{Q}^2-2rM-{\alpha}{r}^{4}. $
(12) To explore the approximate Lie symmetries of the CK BH surrounded by the DE with
$ {\omega}_{c} = -1 $ , we define the mass M, charge Q and spin parameter a of the BH as a small perturbation parameter ϵ. Therefore, we consider$ 2M = \epsilon,{Q}^2 = {k_1}{{\epsilon}^2}, {a}^2 = {k_2}{{\epsilon}^2}. $
(13) To avoid a naked singularity,
$0 < k_1+k_2 \leqslant {1}/{4}$ . Using (13) in the above metric (12) and retaining the first and second powers of ϵ, we construct the following system of perturbed 2nd-order geodesic equations:$ \begin{aligned}[b] \ddot{t} =& \frac{2\alpha{r}}{1-\alpha{r}^2}{\dot{t}\dot{r}}-\epsilon\frac{(1-3\alpha{r}^2)}{r^{2}(1-\alpha{r}^2)^{2}}{\dot{t}}{\dot{r}}-\frac{\epsilon^2}{r^3(1-\alpha{r}^2)^3}\Big[(1-2k_1-3\alpha{r}^2+6k_1\alpha{r}^2-4k_1{\alpha^2}{r^4}+2k_2{\alpha^2}{r^4}-2k_2{\alpha^3}{r^6})\dot{r}\dot{t}\\&-\sin2{\theta}k_2{\alpha}{r^{3}}(1-\alpha{r}^2)^3{\dot{\theta}\dot{t}}-{3{r}\sqrt{k_2}\sin^2{\theta}}{(1-\alpha{r}^2)}^2{\dot{r}}{\dot{\phi}}\Big]+O({\epsilon}^3), \end{aligned} $ (14) $ \begin{aligned}[b] \ddot{r} =& r(1-{\alpha}{r}^{2})(\dot{\theta}^2+{\sin}^2{\theta}{\dot{\phi}^2})-\frac{{\alpha}{r}({\dot{r}^2}-{(1-{\alpha}{r}^{2})^{2}{\dot{t}^2}})}{(1-\alpha{r}^{2})} -\epsilon\Bigg[\dot{\theta}^2+{\sin}^2{\theta}{\dot{\phi}^2}+\frac{\dot{t}^2}{2r^2}(1+\alpha{r}^2)-\frac{1-3\alpha{r}^2}{2r^2(1-\alpha{r}^2)}\dot{r}^2\\&+ 2\sqrt{k_2}\sin^2{\theta}\alpha{r}(1-\alpha{r}^2)\dot{t}\dot{\phi}\Bigg]+{\epsilon}^2\Bigg(\frac{\dot{t}^2}{2{r}^3}(1+2k_1+2k_2{\alpha}{r}^2-2k_2{\alpha}r^2{\cos^2}{\theta}(1-\alpha{r}^2))\\&+\frac{\dot{r}^2}{2{r}^3(1-\alpha{r}^{2})^3}\big(1-2k_1+{6}{k_1}{\alpha}{r}^{2}-{3}{\alpha}{r}^{2}-{4}{k_1}{\alpha}^2{r}^{4}-2k_2{\sin^2{\theta}}(1-\alpha{r^2})^3)\Bigg)+O({\epsilon}^3), \end{aligned} $
(15) $ \begin{aligned}[b] \ddot{\theta} =& \sin{\theta}\cos{\theta}\dot{\phi}^2-\frac{2}{r}{\dot{r}{\dot{\theta}}}-\epsilon\sqrt{k_2}\sin2{\theta}\alpha{\dot{t}{\dot{\phi}}}+\epsilon^2\Bigg[\frac{k_2 \sin2{\theta}}{2r^4(1-\alpha{r}^2)}[\alpha{r}^2(1-\alpha{r}^2)\dot{t}^2+\dot{r}^2]+\frac{2k_2\cos^2{\theta}}{r^3}\dot{r}\dot{\theta}\\&-\frac{\sqrt{k_2}\sin2{\theta}}{r^3}\dot{t}\dot{\phi}+\frac{k_2\sin2{\theta}}{2r^2}[\dot{\theta}^2+\sin^2{\theta}(1-2\alpha{r}^2)\dot{\phi}^2]\Bigg]+O({\epsilon}^3), \end{aligned} $
(16) $ \begin{aligned}[b] \ddot{\phi} =& -2\cot{\theta}\dot{\theta}\dot{\phi}-\frac{2}{r}{\dot{r}{\dot{\phi}}}+\epsilon\left[\frac{2\sqrt{k_2}\alpha}{r(1-\alpha{r}^2)}\dot{t}\dot{r}+2\sqrt{k_2}\alpha{\cot{\theta}}{\dot{t}}{\dot{\theta}}\right]+\epsilon^2\Bigg[\frac{2\sqrt{k_2}\cot{\theta}}{r^3}\dot{t}\dot{\theta}+\frac{2k_2}{r^3(1-\alpha{r}^2)}(1-\alpha{r}^2)\dot{r}\dot{\phi}\\&-\frac{\sqrt{k_2}(1-3\alpha{r}^2)}{r^4(1-\alpha{r}^2)^2}\dot{t}\dot{r}+\frac{2k_2{\alpha{\sin^2{\theta}}}}{(1-\alpha{r}^2)}\dot{\theta}\dot{\phi}\Bigg]+O({\epsilon}^3). \end{aligned} $
(17) In the absence of the DE parameter, i.e. when
$ \alpha \to 0 $ , the system of 2nd-order perturbed geodesic equations$(14)-(17)$ reduces to the system of a CK BH [32]. For$ k_{2} = 0 $ , the above system of equations$(14)-(17)$ represents the system of perturbed geodesic equations for the quintessential RN spacetime [30, 31]; in the absence of DE parameter α, we get the perturbed system for RN spacetime [29]; and as the electric charge$ Q \to 0 $ we get the perturbed system for the Schwarzschild spacetime [28]. Now we calculate the 2nd-order approximate Lie symmetries for the above equations$(14)-(17)$ . For this purpose we examine the exact and 1st-order approximate Lie symmetries first, by applying the approximate symmetry condition (3) in the above equations. Therefore, by substituting$ \epsilon = 0,{\epsilon}^2 = 0 $ , we obtain a system of exact (unperturbed) geodesic equations. Using Maple software we get the following six exact Lie symmetries.$ \begin{aligned}[b] {\bf{Y}}_{0} =& s\frac{\partial}{\partial{s}},\;\; {\bf{Y}}_{1} = \frac{\partial}{\partial{s}}, \;\;{\bf{Y}}_{2} = \frac{\partial}{\partial{t}},\;\; {\bf{Y}}_{3} = \frac{\partial}{\partial{\phi}},\\ {\bf{Y}}_{4} =& \sin{\phi}\frac{\partial}{\partial{\theta}}+\cot{\theta}\cos{\phi}\frac{\partial}{\partial{\phi}},\\ {\bf{Y}}_{5} =& -\cos{\phi}\frac{\partial}{\partial{\theta}}+\cot{\theta}\sin{\phi}\frac{\partial}{\partial{\phi}}. \end{aligned} $
(18) The exact Lie symmetries
$ {\bf{Y}}_{0} $ and$ {\bf{Y}}_{1} $ , corresponding to$ \Xi = {g}_{0}{s}+{g}_{1} $ , give the dilation algebra$ d_2 $ . The exact Lie symmetry generator$ {\bf{Y}}_{1} = \partial/\partial{s} $ represents the time-translational symmetry as s is the proper time, and the other four symmetry generators$ {\bf{Y}}_{2} $ ,$ {\bf{Y}}_{3} $ ,$ {\bf{Y}}_{4} $ and$ {\bf{Y}}_{5} $ , which form the symmetry algebra$ so(3)\oplus{\mathbb{R}} $ correspond to energy and momentum conservation.To explore the 1st-order approximate symmetries, we take
$ {\epsilon}^2 = 0 $ , in the above system$(14)-(17)$ . Now, by applying the approximate symmetry condition given in equation (3) and the exact (unperturbed) Lie symmetries given in equation (18), we obtain a set of 70 partial differential equations (PDEs), keeping only first terms of ϵ. After solving this set of determining equations we obtain the six approximate Lie symmetry generators (trivial) of 1st-order given in (18). Next we use these exact and the 1st-order approximate symmetries to calculate the approximate Lie symmetries of order two for the above system of equations$(14)-(17)$ . Using the approximate symmetry condition given in equation (3), and retaining terms with$ {\epsilon}^2 $ , we obtain a system of 70 PDEs once again. Consequently, we do not find any new symmetry generators, and recoup the same six Lie symmetries given in (18) as approximate trivial symmetry generators of the 2nd order. It is found that in the set of 70 PDEs for the 1st-order approximate symmetry case, the terms that contain$ \Xi_{s} = g_{0} $ disappear. But in the case of approximate Lie symmetries of order two for the CK BH surrounded by DE,$ \Xi_{s} = g_{0} $ do not vanish instinctively, but collect a rescaling factor to vanish, in order to satisfy the PDEs. In this case we find the following energy rescaling factor:$ \begin{aligned}[b] \frac{\dot{t}}{{r}^3(1-{\alpha}{r^{2}})^3}\Big[1-2k_1-3{\alpha}{r^{2}}+6{k_1}{\alpha}{r^{2}}-4{k_1}{\alpha}^2{r}^4+2{k_2}{\alpha^{2}}{r^{4}}-2{k_2}{\alpha^{3}}{r^{6}}\Big]-\frac{\dot{\phi}}{{r}^2(1-{\alpha}{r^{2}})}\Big[3\sqrt{k_2}\sin^{2}{\theta}\Big]-\sin2{\theta}k_2{\alpha}\dot{t}\dot{\theta}. \end{aligned} $ (19) Next we consider the extreme effects on the energy, in the equatorial plane, i.e. in the regions where the rotational effect is maximam (
$\theta = {\pi}/{2}$ ), which implies$ \dot{\theta} = 0 $ .The scaling factor contains the derivatives of t and ϕ, and the derivatives only apply to the paths of the particles. Hence, to get the energy of the underlying spacetime, we replace the derivatives by the exact first integrals (obtained by using Neother theorem, i.e.
$\dot{t} = \dfrac{M}{1-\alpha{r}^2}, $ $ \dot{\phi} = -\dfrac{M^2}{2r^2}$ ) and using (13) in (19) we get the energy rescaling factor for the CK spacetime surrounded by DE with$ {\omega}_{c} = -{1} $ , as a function of charge, gravitational mass, spin parameter of BH along with DE parameter.$ \begin{aligned}[b] M_{C-K-{c}} =& \frac{M}{2{r}(1-{\alpha}{r^{2}})^3}\Bigg[1-\frac{Q^{2}}{2M^{2}}+3{\alpha}{r^{2}}\left[\frac{Q^{2}}{2M^{2}}-1\right]\\&+\alpha^{2}r^{4}\left[\frac{a^{2}}{2M^{2}}-\frac{Q^{2}}{M^{2}}\right]-\frac{a^{2}\alpha^{3}r^{6}}{2M^{2}}\Bigg]+\frac{3aM}{4r^{2}}. \end{aligned} $
(20) As
$ {\alpha\to 0} $ , we get the energy rescaling factor for the CK metric without DE [32]:$ M_{C-K} = \frac{M}{{2r}}\Bigg[1-\frac{{Q}^2}{2{M}^2}\Bigg]+\frac{3aM}{4r^{2}}. $
(21) It should be noted, if we retain only first powers of α in the expansion of (20), the terms involving charge Q get canceled. Therefore, to include the effect of charge along with spin and the DE, we retained the first and second powers of α in the expansion of (20), to separate the terms involving α from those which are independent of the parameter α. We get the following energy rescaling factor:
$ \begin{aligned}[b] M_{C-K-{c}} =& \frac{M}{2r}\Bigg[1-\frac{{Q}^2}{2{M}^2}-3{\alpha^{2}}{r^4}+\frac{{\alpha^{2}}{r^4}}{2{M}^2}(2Q^2+a^2)\Bigg] +\frac{3aM}{4r^{2}}. \end{aligned} $
(22) From equations (21) and (22), we observe that the total energy in the CK spacetime surrounded by DE is different from the total energy in the CK BH by the given expression:
$ {E}_{c} = \frac{\alpha^2{r^3}}{4M}(2Q^2+a^2)-\frac{3M{\alpha^2}r^3}{2}. $
(23) In equation (23), the parameters of the BH, charge Q, spin a and the DE parameter α appear at the same order. Also, we observe that the presence of the cosmological constant term will increase or decrease the total energy of the underlying spacetime if the behavior of the expression (23) is positive or negative. The investigation of the behavior of
$ {E}_{{c}} $ is explained in the subsequent figures.From the graphical results (Fig. 1, Fig. 2, Fig. 3) we observe that the behavior of
$ {E}_{c} $ is decreasing. Therefore, we remark that the contribution of cosmological constant does not play any role in increasing the energy content of the CK metric surrounded by the DE despite considering the different values of charge Q, spin parameter a and DE parameter α. Hence, in the cosmological constant model with$ {\omega}_{c} = -1 $ , the influence of DE results in reducing the total energy (mass) of the CK spacetime surrounded by the DE.Figure 1. (color online) Plots showing the behavior of
$ {E}_{c} $ for the CK BH surrounded by DE for$ {\omega}_{c} = -1 $ with different values of α and fixed values$ Q = 0.89 $ ,$ M = 1 $ ,$ a = 0.5 $ . -
In the quintessence DE model, we consider a fixed value of the EOS parameter
${\omega}_{q} = -{2}/{3}$ , and for this particular value the function$ \Delta_{r} $ takes the following form$ \Delta_{r} = {a}^2+{r}^2+{Q}^2-2rM-{\alpha}{r}^{3}. $
(24) From equation (11), we see that for
${\omega}_{q} = -{2}/{3}$ ,$\alpha \leqslant {1}/{6}$ . Using (13) in the above metric and preserving only first and second powers of ϵ, we construct a system of 2nd-order perturbed geodesic equations given below:$ \begin{aligned}[b] \ddot{t} =& \frac{\alpha}{1-\alpha{r}}\dot{t}\dot{r}-\epsilon\left(\frac{\big(1-2\alpha{r}\big)}{{r^{2}{(1-\alpha{r})^2}}} \dot{t}\dot{r}+\frac{\sqrt{k_{2}}{\alpha}{\sin}^2{\theta}}{(1-{\alpha}{r})}\dot{r}\dot{\phi}\right) -\frac{{\epsilon}^2}{{{r}^3}(1-\alpha{r})^3}(1-2{k_{1}}+{5{k_{1}}{\alpha}{r}}-3{k_{1}{\alpha}^2{r}^2}\\ &-2{\alpha}{r}+{k_{2}{\alpha}{r}(1-\alpha{r})}[\cos^{2}{\theta}(5-4{\alpha}{r})-(1-\alpha{r})])\dot{t}\dot{r} \\ & -k_{2}{\alpha{\sin^{2}{\theta}}}{r^2}\dot{t}\dot{\theta}+\sqrt{k_{2}}r\frac{ \sin^{2}{\theta}(4{\alpha}{r}-3)}{(1-{\alpha}{r})^{2}}\dot{r}\dot{\phi}+O({\epsilon}^3), \end{aligned} $ (25) $ \begin{aligned}[b] \ddot{r} =& \frac{\dot{t}^2}{2r^{2}}(\alpha{r}^2(1-\alpha{r}))+\frac{\alpha{\dot{r}^2}}{2(1-\alpha{r})}-r(1-\alpha{r})({\dot{\theta}^2}+{\sin}^2{\theta}{\dot{\phi}^2}) -\epsilon\Bigg[\frac{\dot{t}^2}{2r^{2}}+\frac{(2{\alpha}{r}-1)\dot{r}^2}{2r^{2}(1-\alpha{r})^2}+\sqrt{k_2}{\alpha}(1-\alpha{r}){\sin^2{\theta}}\dot{t}\dot{\phi}+{\dot{\theta}^2}+{\sin}^2{\theta}{\dot{\phi}^2}\Bigg] \\ & +\epsilon^{2}\Big[\frac{\dot{t}^2}{2r^{2}}(\alpha(k_1+k_2))+\frac{1}{r}(1+2{k}_1)-2k_1{\alpha}\Big] \\& -\frac{\dot{r}^2}{2r^3(1-\alpha{r})^3}\Big[2(k_1+k_2)(1-\alpha{r})^2+2\alpha{r}-1-\alpha{r}(1-\alpha{r}) [k_1+k_2+k_2(1-\alpha{r})\cos^{2}{\theta}]\Big] \\& +k_2\frac{\sin2\theta}{r^2}{\dot{r}\dot{\theta}}+\frac{\dot{\theta^2}}{r}[k_1+k_2{\sin^2{\theta}}+k_2{\alpha{r}}{\cos^2{\theta}}]+\sqrt{k_2}\frac{\sin^2{\theta}}{r^2}{\dot{t}\dot{\phi}}+\frac{\dot{\phi}^2}{r}[k_1+k_2{\sin^2{\theta}}+k_2{\alpha{r}}]\sin^2{\theta})+O({\epsilon}^3), \end{aligned} $
(26) $ \begin{aligned}[b] \ddot{\theta} =& \sin{\theta}{\cos{\theta}}{\dot{\phi^2}}-\frac{2}{r}{\dot{r}}{\dot{\theta}}-\epsilon\frac{{\sqrt{k_2}}\alpha{\sin2{\theta}}}{r}\dot{t}\dot{\phi}-\epsilon^{2} \Bigg[\frac{k_2{\sin2{\theta}}\alpha}{2r^3}\dot{t}^2-\frac{k_2{\sin2{\theta}}}{2r^4(1-\alpha{r})}\dot{r}^2-\frac{2{k_2}\cos^2{\theta}}{r^3}{\dot{r}}{\dot{\theta}}-\frac{k_2{\sin2{\theta}}}{2r^2}\dot{\theta^2}\\&+\frac{\sqrt{k_2}{\sin2{\theta}}}{r^3}\dot{t}\dot{\phi}-\frac{k_2{\sin2{\theta}}{\sin^2{\theta}}}{2r^2}\dot{\phi^2}(1+2\alpha{r})\Bigg]+O({\epsilon}^3), \end{aligned} $
(27) $ \begin{aligned}[b] \ddot{\phi} =& -\frac{2}{r}{\dot{r}\dot{\phi}}+\cot{\theta}{\dot{\theta}{\dot{\phi}}}+\epsilon\Bigg[\frac{\sqrt{k_2}{{\alpha}}}{r^2(1-\alpha{r})}{\dot{t}\dot{r}}+\frac{{2\sqrt{k_2}}\alpha{\cot{\theta}}}{r}{\dot{t}\dot{\theta}}\Bigg] -\epsilon^2\Bigg[\frac{\sqrt{k_2}(1-\alpha{r})}{r^4(1-\alpha{r})^2}\dot{t}\dot{r}-\frac{2\sqrt{k_2}\cot{\theta}}{r^3}\dot{t}\dot{\theta}-\frac{2k_2}{r^3(1-\alpha{r})}{\dot{r}}\dot{\phi} \\ & -\Bigg[\frac{k_2{\alpha}\cot{\theta}\sin^2{\theta}}{r(1-\alpha{r})}-\frac{(2-\alpha{r})k_2{\alpha}\sin2{\theta}}{2r(1-\alpha{r})}\Bigg]\dot{\theta}\dot{\phi}\Bigg]+O({\epsilon}^3). \end{aligned} $
(28) When the quintessence does not exist, i.e. as
$ \alpha \to 0 $ , the above system of equations$(25)-(28)$ corresponds to the perturbed system for the KN spacetime [32]. As in the prior case, we study the 2nd-order approximate Lie symmetries for this BH spacetime and recovered the same six Lie symmetry generators given in (18) as trivial 2nd-order approximate Lie symmetries.The exact symmetry generators and the trivial 1st-order approximate symmetry generators did not give any new result, but in the 2nd-order approximate symmetries of the CK BH surrounded by DE we noticed the terms containing
$ \Xi_{s} = g_{0} $ pick up a rescaling factor which consists of terms involving$ \dot{t} $ ,$ \dot{\phi} $ and$ \dot{\theta} $ , to provide a necessary cancellation. We consider the equatorial plane, i.e.$\theta = {\pi}/{2}$ , which implies$ \dot{\theta} = 0 $ . This rescaling factor corresponds to the rescaling of the energy in the spacetime field of the CK BH with quintessence. Hence, for the quintessence DE model we find the following rescaling factor:$ \begin{aligned}[b]& \frac{\dot{t}}{{r}^3(1-{\alpha}{r})^3}\Big[1-2k_1+5{k_1}{\alpha}{r}-3{k_1}{\alpha}^2{r}^2-2{\alpha}{r}\\& \quad -{k_2}{\alpha}{r}(1-{\alpha}{r})^2\Big]+\frac{\dot{\phi}}{{r}^2(1-{\alpha}{r})^2}\Big[\sqrt{k_2}(4{\alpha}{r}-3)\Big]. \end{aligned} $
(29) After replacing the derivatives by the exact first integrals, i.e.
$ \dot{t} = \dfrac{M}{1-\alpha{r}}, \dot{\phi} = -\dfrac{M^2}{2{r^2}} $ , we get:$ \begin{aligned}[b] M_{C-K-Q} =& \frac{M}{{2r}(1-{\alpha}{r})^2}\Big[1-2k_1+5{k_1}{\alpha}{r}-3{k_1}{\alpha}^2{r}^2-2{\alpha}{r}\\&-{k_2}{\alpha}{r}(1-{\alpha}{r})^2\Big]-\frac{M}{{4{r}^2}}\Big[\sqrt{k_2}(4{\alpha}{r}-3)\Big]. \end{aligned} $
(30) Using (13) in (30) we get the rescaling factor of energy for the CK spacetime surrounded by DE that is dependent on charge Q, gravitational mass M and spin a of BH along with quintessence parameter α:
$ \begin{aligned}[b] M_{C-K-Q} =& \frac{M}{{2r}(1-{\alpha}{r})^2}\Bigg[1-\frac{{Q}^2}{2{M}^2}+\frac{{Q}^2{\alpha{r}}}{4{M}^2}(5-3{\alpha}{r})\\&-2{\alpha}{r}- \frac{{a}^2{\alpha}{r}}{4{M}^2}(1-{\alpha}{r})^2\Bigg]-\frac{M{a}}{{4{r}^2}}(4{\alpha}{r}-3). \end{aligned} $
(31) In the absence of quintessence parameter α we get the energy rescaling factor for CK spacetime [32].
Now we check the influence of quintessence DE on the total energy of underlying spacetime. In the expansion of above equation (31), retaining terms with α and neglecting all higher powers of α we get the following expression:
$ M_{C-K-Q} = \frac{M}{{2r}}\Bigg[1-\frac{{Q}^2}{2{M}^2}\Bigg]+\frac{\alpha}{8M}(Q^2-a^2)-\frac{{\alpha}Ma}{r}+\frac{3aM}{4r^{2}}. $
(32) From equation (32), it is clear that the energy in the CK BH surrounded by the quintessence differs from the energy in the CK BH [32] by the expression given below:
$ \begin{split} {E}_{q} = \frac{\alpha}{8M}(Q^2-a^2)-\frac{{\alpha}Ma}{r}. \end{split} $
(33) In equation (33), charge Q and spin a appear quadratically while the DE parameter α comes in linearly. It is noted that the effect of quintessence DE may increase or decrease the energy content of the underlying spacetime if the function
$ {E}_{q} $ is increasing or decreasing. The effect of quintessence on the energy content of the CK BH surrounded by quintessence is explained through the graphs below.From Fig. 4, Fig. 5 and Fig. 6, we observe that the behavior of the function
$ {E}_{q} $ is decreasing, which shows that the energy of the underlying spacetime may decrease for different values of spin parameter a, charge Q and quintessence parameter$\alpha \leqslant {1}/{6}$ . Hence, for${\omega}_{q} = -{2}/{3}$ , the increase in the energy content is improbable, despite considering different values of BH parameters and the DE parameter.Figure 4. (color online) Plots showing the behavior of
$ {E}_{q} $ for the CK BH surrounded by quintessence for${\omega}_{q} = -{2}/{3}$ with different values of α and fixed values$ Q = 1 $ ,$ M = 1 $ ,$ a = 0.5 $ . -
It is well known that the frustrated network of cosmic strings may produce negative pressure for
${\omega}_{n} = -{1}/{3}$ [24]. With${\omega}_{n} = -{1}/{3}$ , the function$ \Delta_{r} $ is defined as:$ \Delta_{r} = {a}^2+{r}^2+{Q}^2-2rM-{\alpha}{r}^{2}. $
(34) Like the previous two cases, here we also construct the system of 2nd-order perturbed geodesic equations by introducing the BH parameters in terms of a perturbation parameter. The perturbed geodesic equations of 2nd-order with
${\omega}_{n} = -{1}/{3}$ are given below:$ \begin{aligned}[b] \ddot{t} =& -{\epsilon}[\frac{\dot{t}\dot{r}}{{r}^2{(1-\alpha)}}-\frac{2\alpha{\sqrt{k_2}\sin^2{\theta}}}{r(1-\alpha)}{\dot{r}\dot{\phi}}-\frac{{{\epsilon}^2}}{{r}^3{(1-\alpha)^2}}\Big[(1-2k_1+{2}{k_1}{\alpha}-2k_2\alpha{\cos^2}{\theta}(1-\alpha))\dot{t}\dot{r}\\&-{\sin2{\theta}k_1{\alpha}}{r}(1-\alpha)^2{\dot{t}\dot{\theta}}-{(3-\alpha){\sqrt{k_2}\sin^2{\theta}})}{r}\dot{r}\dot{\phi}\Big] +O({\epsilon}^3), \end{aligned} $ (35) $ \begin{aligned}[b] \ddot{r} =& r(1-{\alpha})(\dot{\theta}^2+{\sin}^2{\theta}{\dot{\phi}^2})-\epsilon\Bigg(\frac{\dot{t}^2}{2{r}^2}{{(1-\alpha)}}-\frac{{\dot{r}^2}}{2{r}^{2}{(1-\alpha)}}+ +{\dot{\theta}^2}+{\sin}^2{\theta}{\dot{\phi}^2}\Bigg)+{\epsilon}^2\Big[\Bigg(\frac{\dot{t}^2}{2{r}^3}(1+2k_1-2k_1{\alpha}+2k_2\alpha{\cos^2}{\theta}(1-\alpha)\Bigg) \\&+ \frac{\dot{r}^2}{2{r}^3(1-\alpha)^2}\big(1-2({1-\alpha})(k_1+k_2{\sin^2{\theta}})-2k_2{\alpha}(1-\alpha)\cos^2{\theta})+\frac{k_2\sin2{\theta}}{r^2}\dot{r}\dot{\theta}\\&+\dot{\theta}^2\Bigg(\frac{k_1}{r}+\frac{k_2\sin^2{\theta}}{r}+\frac{k_2{\alpha}\cos^2{\theta}}{r}\Bigg)+\Bigg(\frac{\sqrt{k_2}\sin^2{\theta}(1-\alpha)}{r^2}\dot{t}\dot{\phi}\Bigg)+\dot{\phi}^2\Bigg(\frac{k_1\sin^2{\theta}}{r}+ \frac{k_2\sin^2{\theta}}{r}[\sin^2{\theta}+\alpha{\cos^2{\theta}}]\Bigg)+O({\epsilon}^3), \end{aligned} $
(36) $ \begin{aligned}[b] \ddot{\theta} =& \sin{\theta}\cos{\theta}{\dot{\phi}}^2-\frac{2}{r}{\dot{r}}{\dot{\theta}}-\epsilon\frac{\sqrt{k_2}\sin2{\theta}\alpha}{r^2}\dot{t}\dot{\phi}+\epsilon^2\Bigg[\frac{k_2\sin2{\theta}}{2r^4(1-\alpha)}(\alpha(1-\alpha)\dot{t}^2+\dot{r}^2)+\frac{2k_2\cos^2{\theta}}{r^3}\dot{r}\dot{\theta}+\frac{k_2\sin2{\theta}}{2r^2}\dot{\theta}^2\\&-\frac{\sqrt{k_2}\sin2{\theta}}{r^3}\dot{t}\dot{\phi}+\frac{k_2\sin2{\theta}\sin^2{\theta}}{2r^2}(1-2\alpha)\dot{\phi}^2\Bigg]+O({\epsilon}^3),, \end{aligned} $
(37) $ \begin{aligned}[b] \ddot{\phi} =& -2\cot{\theta}{\dot{\phi}}{\dot{\theta}}-\frac{2}{r}{\dot{r}}{\dot{\phi}}+\epsilon\frac{2\sqrt{k_2}\cot{\theta}\alpha}{r^2}\dot{t}\dot{\theta} +\epsilon^2\Bigg[\frac{2\sqrt{k_2}\cot{\theta}}{r^3}\dot{t}\dot{\theta}-\frac{\sqrt{k_2}}{r^4(1-\alpha)}\dot{t}\dot{r}+\frac{2k_2}{r^3(1-\alpha)}(1-\alpha{\cos^2{\theta}})\dot{r}\dot{\phi}\\& +2\cot{\theta}\dot{\theta}\dot{\phi}\Bigg[\frac{k_2}{r^2(1-\alpha)}+\frac{k_2\cos^2{\theta}}{r^2(1-\alpha)}[1-2\alpha]-\frac{k_2}{r^2}[1+\cos^2{\theta}]\Bigg]+\frac{k_2\sin2{\theta}\alpha({\alpha-2})}{2r^2(1-\alpha)}\dot{\theta}\dot{\phi}\Bigg]+O({\epsilon}^3). \end{aligned} $
(38) For
$\omega{_n} = -{1}/{3}$ ,$ 0<\alpha<1/2 $ . The above system of approximate equations$(35)-(38)$ reduces to the system of the CK BH [32] when the DE does not exist ($ \alpha\to 0 $ ).First, we illustrate the exact symmetries for the above system of perturbed differential equations
$(35)-(38)$ . For the exact case we substitute$ \epsilon = 0, \epsilon^2 = 0 $ (no mass, charge and spin) in the above equations and get an exact system of geodesic equations. Using the approximate symmetry condition given in equation (3) in the unperturbed system we get the eight Lie symmetry generators. Out of these eight symmetries, six Lie symmetries are given in (18) and the remaining two symmetries are:$ {\bf{Y}}_{6} = t\partial/\partial{t} $ and$ {\bf{Y}}_{7} = r\partial/\partial{r} $ . Now letting$ \epsilon^2 = 0 $ (no charge and spin) we get the 1st-order approximate geodesic equations. Next, we calculate the 1st-order approximate symmetries, using the approximate symmetry condition given in (3) and the exact (unperturbed) Lie symmetry generators. At this stage we find a set of 70 PDEs. After solving this system of equations we obtain the same eight symmetries as 1st-order trivial approximate symmetries. Using these exact and 1st-order approximate symmetries into the equations$(35)-(38)$ , we obtain the trivial approximate Lie symmetry generators of second order. Hence, we conclude that for the EOS parameter${\omega}_{n} = -{1}/{3}$ , no non-trivial symmetry is obtained at first and second order like the earlier cases discussed here. In this calculation it is noticed that in the set of 70 PDEs, for the case of 2nd-order approximate Lie symmetries the terms involving$ \Xi_{s} = g_{0} $ do not disappear automatically but, pick up a scale factor (energy rescaling factor) to make the system of equations (PDEs) consistent. The scale factor has derivatives of t, ϕ and θ. We consider the equatorial plane, i.e. when$\theta = {\pi}/{2}$ , and get the following scale factor:$ \frac{\dot{t}}{{r}^3}\Big[1-2k_1+2{k_1}{\alpha}\Big]-\frac{\dot{\phi}}{{r}^2}[(3-\alpha)\sqrt{k_2}]. $
(39) Now we replace these derivatives (
$ \dot{t} $ and$ \dot{\phi} $ ) by the exact first integrals of the geodesic equations. Using equation (8) and the exact Lie symmetry generators we get$ \dot{t} = \dfrac{M}{1-\alpha}, \dot{\phi} = -\dfrac{M^2}{2{r^2}} $ . Hence, in the case of${\omega}_{c} = -{1}/{3}$ , we get the following rescaling factor of energy for the CK BH spacetime surrounded by DE$ M_{C-K-n} = \frac{M}{2{r}(1-{\alpha})}\Bigg[1-\frac{{Q}^2}{2{M}^2}(1-{\alpha})\Bigg]+\frac{(3-\alpha)Ma}{4r^{2}}. $
(40) In the absence of DE we get the energy rescaling factor for the CK BH [32] from (40). Now we discuss the influence of DE on the energy content of the quintessential CK BH. It is observed, for
${\omega}_{n} = -{1}/{3}$ , the total energy in the CK BH surrounded by DE varies from the energy in CK BH by the following expression (details are given in Appendix):$ {E}_{n} = \frac{M\alpha}{2r}\Bigg[\frac{1}{1-\alpha}-\frac{a}{2r}\Bigg]. $
(41) Unlike the previous cases, here the contribution due to the DE term
$ {E}_{n} $ is independent of the charge Q. In order to analyze the significant features of DE, we sketch the expression (41) versus DE parameter α and radial distance r and examine its dependence on the BH parameters M and a.From Fig. 7, it is clear that the behavior of
$ {E}_n $ is decreasing for different values of the DE parameter α. Fig. 8 shows the effect of the DE with different values of spin a. Here we observe that if the DE parameter α is initially small, then the value of$ {E}_n $ will increase at first and then it shows a gradual decline for the larger values of α. Hence, here we remark that the contribution of the DE term for${\omega}_{n} = -{1}/{3}$ , first results in increasing the total energy of the underlying spacetime for very small α, and then decreasing for comparatively larger values of α. -
$ M_{C-K-c} = \frac{M}{2{r}(1-{\alpha})}\Bigg[1-\frac{{Q}^2}{2{M}^2}(1-{\alpha})\Bigg]-\frac{\alpha{Ma}}{4r^{2}}, $
First-Order expansion:
$ \frac{M}{2r}(1+\alpha)\Bigg[1-\frac{{Q}^2}{2{M}^2}+\frac{{Q}^2{\alpha}}{2{M}^2}\Bigg]-\frac{\alpha{Ma}}{4r^{2}}+O(\alpha^2) = \frac{M{\alpha}}{2r}\Bigg[1-\frac{a}{2r}\Bigg], $
Second-Order expansion:
$ \begin{aligned}[b]& \frac{M}{2r}(1+\alpha+{\alpha}^2)\Big[1-\frac{{Q}^2}{2{M}^2}+\frac{{Q}^2{\alpha}}{2{M}^2}\Big]-\frac{\alpha{Ma}}{4r^{2}}+O(\alpha^3)\\ =& \frac{M{\alpha}}{2r}\Big[1+\alpha-\frac{a}{2r}\Big], \end{aligned} $
Third-Order expansion:
$ \begin{aligned}[b]& \frac{M}{2r}(1+\alpha+{\alpha}^2+{\alpha}^3)\Big[1-\frac{{Q}^2}{2{M}^2}+\frac{{Q}^2{\alpha}}{2{M}^2}\Big]-\frac{\alpha{Ma}}{4r^{2}}+O(\alpha^4)\\ =& \frac{M{\alpha}}{2r}\Big[(1+\alpha+{\alpha}^2)-\frac{a}{2r}\Big], \end{aligned} $
In compact form we get the following expression
$ \frac{M{\alpha}}{2r}\Bigg[(1+\alpha+{\alpha}^2+{\alpha}^3+...)-\frac{a}{2r}\Bigg] = \frac{M{\alpha}}{2r}\Bigg[\frac{1}{1-\alpha}-\frac{a}{2r}\Bigg]. $
Effect of dark energy models on the energy content of charged and rotating black holes
- Received Date: 2021-08-25
- Available Online: 2022-01-15
Abstract: The energy content of the charged-Kerr (CK) spacetime surrounded by dark energy (DE) is investigated using approximate Lie symmetry methods for the differential equations. For this, we consider three different DE scenarios: cosmological constant with an equation of state parameter