-
The formalism for the condensate of coherent pairs, whose state is zero generalized seniority [73], is briefly reviewed in this section. For simplicity, only one type of nucleus is considered. The time-reversal self-consistent symmetry [61, 74] is assumed in this work. The single-particle state
$ |\alpha\rangle $ is hypothesized to present Kramers degeneracy with its time-reversed partner$ |\tilde{\alpha}\rangle $ ($ |\tilde{\tilde{\alpha}}\rangle = - |\alpha\rangle $ ). No additional symmetries are postulated in this study other than the two previously mentioned.The
$ 2N $ -particle system in ground state could be regarded as a condensate with N-pairs of particles,$ |\phi_{N} \rangle = \frac{1}{\sqrt{\chi_{N}}}(P^{\dagger})^{N} |0\rangle , $
(1) where
$ \begin{array}{*{20}{l}} \chi_{N} = \langle0|P^{N}(P^{\dagger})^{N} |0\rangle \end{array} $
(2) is the normalization. The coherent pair-creation operator is
$ P^{\dagger} = \frac{1}{2}\sum\limits_{\alpha}v_{\alpha}a_{\alpha}^{\dagger}a_{\tilde{\alpha}}^{\dagger} = \sum\limits_{\alpha\in \Theta }v_{\alpha}P_{\alpha}^{\dagger}, $
(3) where
$ \begin{array}{*{20}{l}} P_{\alpha}^{\dagger} = a_{\alpha}^{\dagger}a_{\tilde{\alpha}}^{\dagger} = P_{\tilde{\alpha}}^{\dagger} \end{array} $
(4) creates one pair of particles on
$ |\alpha\rangle $ and$ |\tilde{\alpha}\rangle $ orbits. In Eq. (3), Θ is a set that selects one from each of all degenerate pairs$ |\alpha\rangle $ and$ |\tilde{\alpha}\rangle $ , respectively (for example, it only selects those single-particle levels with a positive magnetic quantum number m). In Eq. (3), the summation index α and$ \alpha\in\Theta $ sum over single-particle and pair indices, respectively. The single-particle state$ |\phi_{N} \rangle $ is time even by assumptions, which implies that the pair structure$ v_{\alpha} $ (3) is real.The many-pair density matrix is introduced in Refs. [67, 68] as
$ \begin{aligned}[b] t_{\alpha_{1}\alpha_{2}\dots\alpha_{p};\beta_{1}\beta_{2}\dots\beta_{q}}^{[\gamma_{1}\gamma_{2}\dots\gamma_{r}],N} \equiv & \langle 0 | P^{N-p} P_{\gamma_{1}}P_{\gamma_{2}}\dots P_{\gamma_{r}}\\ & \times P_{\alpha_{1}}P_{\alpha_{2}}\dots P_{\alpha_{p}}P_{\beta_{1} }^{\dagger}P_{\beta_{2} }^{\dagger}\dots P_{\beta_{q}}^{\dagger}\\ & \times P_{\gamma_{1}}^{\dagger}P_{\gamma_{2}}^{\dagger}\dots P_{\gamma_{r}}^{\dagger}(P^{\dagger})^{N-q} | 0 \rangle . \end{aligned} $
(5) The pair indices
$ \alpha_{1}\alpha_{2}\dots\alpha_{p} $ ,$ \beta_{1}\beta_{2}\dots\beta_{q} $ ,$ \gamma_{1}\gamma_{2}\dots\gamma_{r} $ are all distinct. Owing to the Pauli principle, if there are duplicated P operators, or duplicated$ P^{\dagger} $ operators, Eq. (5) vanishes. Moreover,$ \alpha_{1}\alpha_{2}\dots\alpha_{p} $ and$ \beta_{1}\beta_{2}\dots\beta_{q} $ must have no common index (the common ones have been transferred to$ \gamma_{1}\gamma_{2}\dots\gamma_{r} $ ). Physically,$ P_{\gamma_{1}}\dots P_{\gamma_{r}} $ together with$ P_{\gamma_{1}}^{\dagger}\dots P_{\gamma_{r}}^{\dagger} $ Pauli block the$ [\gamma_{1}\gamma_{2}\dots\gamma_{r}] $ paired-orbitals from the space, which is explained as follows.Reference [68] introduced Pauli-blocked normalizations as a special case of Eq. (5) when
$ p = q = 0 $ ,$ \begin{aligned}[b] \chi_{N}^{[\gamma_{1}\gamma_{2}\dots\gamma_{r}]} &\equiv t_{\ ;\phantom{\beta_{q}}}^{[\gamma_{1}\gamma_{2}\dots\gamma_{r}],N}\\ & = \langle 0 | P^{N} P_{\gamma_{1}}P_{\gamma_{2}}\dots P_{\gamma_{r}}P_{\gamma_{1}}^{\dagger}P_{\gamma_{2}}^{\dagger}\dots P_{\gamma_{r}}^{\dagger}(P^{\dagger})^{N} | 0 \rangle . \end{aligned} $
(6) By substituting Eq. (3) into
$ (P^{\dagger})^{N} $ and polynomially expanding, those terms with$ P_{\gamma_{1}}^{\dagger}P_{\gamma_{2}}^{\dagger}\dots P_{\gamma_{r}}^{\dagger} $ vanish owing to the Pauli principle. In other words, the$ [P_{\gamma_{1}}P_{\gamma_{2}}\dots P_{\gamma_{r}}] $ paired-orbitals are Pauli blocked. Ref. [68] provides the relationship between the many-pair density matrix (5) and the normalizations (6),$ \begin{aligned}[b] t_{\alpha_{1}\alpha_{2}\dots\alpha_{p};\beta_{1}\beta_{2}\dots\beta_{q}}^{[\gamma_{1}\gamma_{2}\dots\gamma_{r}],M} = & \frac{(M - p)!(M - q)!}{[(M - p -q)!]^{2}} \\ & \times v_{\alpha_{1}}v_{\alpha_{2}}\dots v_{\alpha_{p}}v_{\beta_{1}}v_{\beta_{2}}\dots v_{\beta_{q}}\\ & \times \chi_{M-p-q}^{[\alpha_{1}\alpha_{2}\dots\alpha_{p}\beta_{1}\beta_{2}\dots\beta_{q}\gamma_{1}\gamma_{2}\dots\gamma_{r}]}. \end{aligned} $
(7) We could compute normalizations (2) and (6) using recursive relations [75],
$ \chi_{N} = N\sum\limits_{\alpha\in\Theta}(v_{\alpha})^{2}\chi_{N-1}^{[\alpha]} , $
(8) $ \chi_{N} - \chi_{N}^{[\alpha]} = N^{2}(v_{\alpha})^{2}\chi_{N-1}^{[\alpha]} , $
(9) with initial values
$ \chi_{0} = \chi_{0}^{[\alpha]} = \chi_{0}^{[\alpha\beta]} = \dots = 1 $ . Given that$ \chi_{0}^{[\alpha]} $ is known,$ \chi_{1} $ can be computed by Eq. (8), and then$ \chi_{1}^{[\alpha]} $ by Eq. (9). Similarly, all$ \chi_{N} $ and$ \chi_{N}^{[\alpha]} $ can be derived. It is crucial to note that if the β index is Pauli-blocked ($ P_{\beta}\ne P_{\alpha} $ ) according to Eqs. (8) and (9), they are still valid, and$ \chi_{N}^{[\alpha\beta]} $ can be obtained. Similarly,$ \chi_{N}^{[\alpha\beta\gamma]} $ can be easily obtained by Pauli blocking indices β and γ from the very beginning, and$ \chi_{N}^{[\alpha\beta\gamma\mu]} $ by Pauli blocking β, γ, and μ. To increase the computation speed, a simpler formula was used to compute$ \chi_{N}^{[\alpha\beta]} $ ($ P_{\alpha}\ne P_{\beta} $ ):$ \begin{array}{*{20}{l}} (v_{\alpha})^{2}\chi_{N}^{[\alpha]} - (v_{\beta})^{2}\chi_{N}^{[\beta]} = [(v_{\alpha})^{2} - (v_{\beta})^{2}]\chi_{N}^{[\alpha\beta]}, \end{array} $
(10) Note that if the γ (or γ together with μ) index is Pauli-blocked according to Eq. (10), it is still valid.
To provide a physical explanation, the relationship between the average occupation number and the normalizations is expressed as follows:
$ n_{\alpha} = \langle\phi_{N}|\hat{n}_{\alpha} |\phi_{N}\rangle =1- \frac{\chi_{N}^{[\alpha]}}{\chi_{N}} , $
(11) where
$ \begin{array}{*{20}{l}} \hat{n}_{\alpha} = a_{\alpha}^{\dagger}a_{\alpha} . \end{array} $
(12) Equation (11) is valid if the β index is Pauli-blocked (
$ P_{\beta}\ne P_{\alpha} $ )$ \langle\phi_{N}^{[\beta]}|\hat{n}_{\alpha} |\phi_{N}^{[\beta]}\rangle =1- \frac{\chi_{N}^{[\alpha\beta]}}{\chi_{N}^{[\beta]}} , $
(13) where
$ |\phi_{N}^{[\beta]}\rangle \equiv \frac{1}{\sqrt{\chi_{N}^{[\beta]}}}(P^{\dagger} - v_{\beta}P^{\dagger}_{\beta})^{N}|0\rangle $
(14) is the pair condensate with β and
$ \tilde{\beta} $ blocked. -
The antisymmetrized three-body Hamiltonian is
$ \begin{aligned}[b] H =& \sum\limits_{\alpha\beta}\epsilon_{\alpha \beta }a_{\alpha}^{\dagger}a_{\beta} +\frac{1}{4}\sum\limits_{\alpha\beta \gamma\mu}V_{\alpha \beta\gamma\mu }a_{\alpha}^{\dagger}a_{\beta}^{\dagger}a_{\gamma}a_{\mu}\\ & +\frac{1}{36}\sum\limits_{\alpha\beta \gamma\mu\eta\zeta}W_{\alpha \beta\gamma\mu\eta\zeta }a_{\alpha}^{\dagger}a_{\beta}^{\dagger}a_{\gamma}^{\dagger}a_{\mu}a_{\eta}a_{\zeta} . \end{aligned} $
(15) According to the ordering of
$ \alpha\beta\gamma\mu\eta\zeta $ , one could obtain$ V_{\alpha \beta\gamma\mu } = - \langle \alpha \beta | V |\gamma \mu \rangle $ and$ W_{\alpha \beta\gamma\mu\eta\zeta } = - \langle \alpha \beta \gamma | W | \mu\eta\zeta \rangle $ . H is assumed to be time-even ($ \epsilon_{\alpha \beta } = \epsilon_{\tilde{\beta}\tilde{\alpha} } $ ,$ V_{\alpha \beta\gamma\mu } = V_{\tilde{\mu}\tilde{\gamma}\tilde{\beta}\tilde{\alpha} } $ ,$ W_{\alpha \beta\gamma\mu\eta\zeta } = W_{\tilde{\zeta}\tilde{\eta}\tilde{\mu}\tilde{\gamma}\tilde{\beta}\tilde{\alpha} } $ ) and$ \epsilon_{\alpha \beta } $ ,$ V_{\alpha \beta\gamma\mu } $ ,$ W_{\alpha \beta\gamma\mu\eta\zeta } $ are assumed to be real. There is no additional assumption.Given that the one-body and two-body parts of the average energy were already derived in the original VDPC+BCS algorithm, in this study the three-body part of the average energy
$ \overline{W} =\langle \phi_{N} | \hat{W} | \phi_{N} \rangle $ is described in the canonical basis (3), where$ \hat{W} = \frac{1}{36}\sum_{\alpha\beta \gamma\mu\eta\zeta}W_{\alpha \beta\gamma\mu\eta\zeta }a_{\alpha}^{\dagger}a_{\beta}^{\dagger}a_{\gamma}^{\dagger} a_{\mu}a_{\eta}a_{\zeta} $ . Only three types contribute to the three-body part of the average energy$ \hat{W} $ ($ P_{\alpha}\ne P_{\beta} $ ,$ P_{\alpha}\ne P_{\gamma} $ and$ P_{\beta}\ne P_{\gamma} $ ):$ \begin{array}{*{20}{l}} \notag \underbrace{a_{\beta }^{\dagger}\overbrace{a_{\alpha}^{\dagger}a_{\tilde{\alpha}}^{\dagger}}^{P_{\alpha}^{\dagger}}}_{\mathtt{common}}\underbrace{\overbrace{a_{\tilde{\alpha}}^{\phantom{\dagger}}a_{\alpha}^{\phantom{\dagger}}}^{P_{\alpha}}a_{\beta }^{\phantom{\dagger}}}_{\mathtt{common}}, \underbrace{a_{\gamma }^{\dagger}\llap{ \phantom{a_{\tilde{\beta}}^{\dagger}} }}_{ \mathtt{common}} \underbrace{\overbrace{a_{\alpha}^{\dagger}a_{\tilde{\alpha}}^{\dagger}}^{P_{\alpha}^{\dagger}}\overbrace{a_{\tilde{\beta}}^{\phantom{\dagger}}a_{\beta}^{\phantom{\dagger}}}^{P_{\beta}}}_{ \mathtt{different}} \underbrace{\rlap{ \phantom{a_{\tilde{\beta}}^{\dagger}} }a_{\gamma }^{\phantom{\dagger}}}_{ \mathtt{common}} ,\, \text{and}\, \underbrace{a_{\alpha }^{\dagger}a_{\beta}^{\dagger}a_{\gamma}^{\dagger}}_{\mathtt{common}}\underbrace{a_{\gamma}^{\phantom{\dagger}}a_{\beta}^{\phantom{\dagger}}a_{\alpha }^{\phantom{\dagger}}}_{\mathtt{common}}. \end{array} $
The term "
$ \mathtt{common} $ " means that the creation and annihilation operators have common indices. There are only three types because indices α, β, γ and μ, η, ζ must differ in time-reversed pairs [67].The first type is
$ \begin{aligned}[b] {\rm type}\ 1 & = \langle 0 | P^{N} a_{\beta }^{\dagger}a_{\alpha}^{\dagger}a_{\tilde{\alpha}}^{\dagger}a_{\tilde{\alpha}}a_{\alpha}a_{\beta }(P^{\dagger})^{N} | 0 \rangle \\ & = \langle 0 | P^{N} a_{\beta }^{\dagger}a_{\alpha}^{\dagger}a_{\alpha}a_{\beta }(P^{\dagger})^{N} | 0 \rangle \\ & = \chi_{N} - \chi_{N}^{[\alpha]} - \chi_{N}^{[\beta]} + \chi_{N}^{[\alpha\beta]} . \end{aligned} $
(16) In the first step,
$ P_{\alpha}^{\dagger} $ creates$ |\alpha\rangle $ and$ |\tilde{\alpha}\rangle $ simultaneously, which could be derived from Eq. (4). Therefore,$ |\alpha\rangle $ and$ |\tilde{\alpha}\rangle $ are either both occupied or both empty in$ (P^{\dagger})^{N} | 0 \rangle $ . As a result,$ a_{\alpha}^{\dagger}a_{\tilde{\alpha}}^{\dagger}a_{\tilde{\alpha}}a_{\alpha}(P^{\dagger})^{N} | 0 \rangle = a_{\alpha}^{\dagger}a_{\alpha}a_{\tilde{\alpha}}^{\dagger}a_{\tilde{\alpha}}(P^{\dagger})^{N} | 0 \rangle = \hat{n}_{\alpha} \hat{n}_{\tilde{\alpha}} (P^{\dagger})^{N} | 0 \rangle = \hat{n}_{\alpha}(P^{\dagger})^{N} | 0 \rangle = a_{\alpha}^{\dagger}a_{\alpha}(P^{\dagger})^{N} | 0 \rangle $ . The second step uses$ a_{\beta}^{\dagger}a_{\alpha}^{\dagger}a_{\alpha}a_{\beta } = 1 - a_{\alpha}a_{\alpha}^{\dagger} - a_{\beta}a_{\beta }^{\dagger} + a_{\beta}a_{\alpha}a_{\alpha}^{\dagger}a_{\beta }^{\dagger} $ , which could be derived by basic anticommutation relation. Thus, using definition (6), one could derive the result. Eq. (16) can also be derived by directly exchanging the order of creation and annihilation operators using the basic anticommutation relation from the very beginning, and eventually, by combining terms, it can be simplified to Eq. (16). Using Eq. (9) and$ \chi_{N}^{\beta} - \chi_{N}^{[\alpha\beta]} = N^{2}(v_{\alpha})^{2}\chi_{N-1}^{[\alpha\beta]} $ [Pauli blocking the β index ($ P_{\beta}\ne P_{\alpha} $ ) in Eq. (9)], and factorizing out$ N^{2}(v_{\alpha})^{2} $ , the following expression is obtained:$ \begin{array}{*{20}{l}} \notag {\rm type}\ 1 = N^{2}(v_{\alpha})^{2}\left(\chi_{N-1}^{[\alpha]} - \chi_{N-1}^{[\alpha\beta]}\right). \end{array} $
Then, by using
$ \chi_{N-1}^{[\alpha]} - \chi_{N-1}^{[\alpha\beta]} = (N-1)^{2}(v_{\beta})^{2}\chi_{N-2}^{[\alpha\beta]} $ [Pauli blocking the β index ($ P_{\beta}\ne P_{\alpha} $ ), replacing N by$ N-1 $ , and exchanging α and β in Eq. (9)], the final expression is derived:$ \begin{array}{*{20}{l}} {\rm type}\ 1 = N^{2}(N-1)^{2}(v_{\alpha}v_{\beta})^{2}\chi_{N-2}^{[\alpha\beta]}. \end{array} $
(17) The second type satisfies
$ a_{\gamma}^{\dagger}a_{\alpha}^{\dagger}a_{\tilde{\alpha}}^{\dagger}a_{\tilde{\beta}}a_{\beta}a_{\gamma} = a_{\gamma}^{\dagger}P_{\alpha}^{\dagger}P_{\beta}a_{\gamma} = P_{\beta}P_{\alpha}^{\dagger} - a_{\gamma}P_{\beta}P_{\alpha}^{\dagger}a_{\gamma}^{\dagger} $ according to the basic anticommutation relation. Equations (5), (7), and (9) imply$ \begin{aligned}[b] {\rm type}\ 2 &= \langle 0 | P^{N} a_{\gamma}^{\dagger}a_{\alpha}^{\dagger}a_{\tilde{\alpha}}^{\dagger}a_{\tilde{\beta}}a_{\beta}a_{\gamma} (P^{\dagger})^{N} | 0 \rangle = t_{\beta ; \alpha}^{N+1} - t_{\beta ; \alpha}^{[\gamma],N+1}\\ &=N^{2}v_{\alpha}v_{\beta}\chi_{N-1}^{[\alpha\beta]} - N^{2}v_{\alpha}v_{\beta}\chi_{N-1}^{[\alpha\beta\gamma]}\\ &= N^{2}(N-1)^{2}v_{\alpha}v_{\beta}(v_{\gamma})^{2}\chi_{N-2}^{[\alpha\beta\gamma]}. \end{aligned} $
(18) The third type satisfies
$ a_{\alpha}^{\dagger}a_{\beta}^{\dagger}a_{\gamma}^{\dagger}a_{\gamma}a_{\beta}a_{\alpha} = 1 - a_{\alpha}a_{\alpha}^{\dagger} - s a_{\beta}a_{\beta}^{\dagger} - a_{\gamma}a_{\gamma}^{\dagger} + a_{\alpha}a_{\beta}a_{\beta}^{\dagger}a_{\alpha}^{\dagger} + a_{\alpha}a_{\gamma}a_{\gamma}^{\dagger}a_{\alpha}^{\dagger} + a_{\beta}a_{\gamma}a_{\gamma}^{\dagger}a_{\beta}^{\dagger} - a_{\alpha}a_{\beta}a_{\gamma}a_{\gamma}^{\dagger}a_{\beta}^{\dagger}a_{\alpha}^{\dagger} $ according to the basic anticommutation relation. Thus, definition (6) implies$ \begin{aligned}[b] {\rm type}\ 3 &= \langle 0 | P^{N} a_{\alpha}^{\dagger}a_{\beta}^{\dagger}a_{\gamma}^{\dagger}a_{\gamma}a_{\beta}a_{\alpha} (P^{\dagger})^{N} | 0 \rangle\\ &=\chi_{N} - \chi_{N}^{[\alpha]} - \chi_{N}^{[\beta]} + \chi_{N}^{[\alpha\beta]} - \chi_{N}^{[\gamma]} + \chi_{N}^{[\alpha\gamma]} + \chi_{N}^{[\beta\gamma]} - \chi_{N}^{[\alpha\beta\gamma]} \\ &= N^{2}(N-1)^{2}(v_{\alpha}v_{\beta})^{2}\chi_{N-2}^{[\alpha\beta]} - N^{2}(N-1)^{2}(v_{\alpha}v_{\beta})^{2}\chi_{N-2}^{[\alpha\beta\gamma]}\\ &=N^{2}(N-1)^{2}(N-2)^{2}(v_{\alpha}v_{\beta}v_{\gamma})^{2}\chi_{N-3}^{[\alpha\beta\gamma]}. \end{aligned} $
(19) The expectation value of
$ \hat{W} $ is$ \begin{aligned}[b] \langle \phi_{N} | \hat{W} | \phi_{N} \rangle =&\sum\limits_{\alpha,\beta\in\Theta}^{P_{\alpha}\ne P_{\beta}}2V_{\beta\alpha\tilde{\alpha}\tilde{\alpha}\alpha\beta}\langle \phi_{N} | a_{\beta}^{\dagger}a_{\alpha}^{\dagger}a_{\tilde{\alpha}}^{\dagger}a_{\tilde{\alpha}}a_{\alpha}a_{\beta} | \phi_{N} \rangle \\ &+\sum\limits_{\alpha,\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma} 2V_{\gamma\alpha\tilde{\alpha}\tilde{\beta}\beta\gamma}\langle \phi_{N} |a_{\gamma}^{\dagger}a_{\alpha}^{\dagger}a_{\tilde{\alpha}}^{\dagger}a_{\tilde{\beta}}a_{\beta}a_{\gamma} | \phi_{N}\rangle \\ & +\sum\limits_{\alpha,\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma} (\frac{1}{3}V_{\alpha\beta\gamma\gamma\beta\alpha}+V_{\tilde{\alpha}\beta\gamma\gamma\beta\tilde{\alpha}})\\&\times\langle \phi_{N} |a_{\alpha}^{\dagger}a_{\beta}^{\dagger}a_{\gamma}^{\dagger}a_{\gamma}a_{\beta}a_{\alpha} | \phi_{N}\rangle. \end{aligned} $
(20) The term "
$ \pmb{dif}\,\alpha\beta\gamma $ " means$ P_{\alpha}\ne P_{\beta} $ ,$ P_{\alpha}\ne P_{\gamma} $ , and$ P_{\beta}\ne P_{\gamma} $ (no two are the same). The first term of Eq. (20) collects 72 equal contributions, which not only cancels the factor$ 1/36 $ in$ \hat{W} $ but also yields the factor 2. These 72 equal contributions are further explained next. It is not too difficult to find$ V_{\beta\alpha\tilde{\alpha}\tilde{\alpha}\alpha\beta} = - V_{\beta\alpha\tilde{\alpha}\tilde{\alpha}\beta\alpha} $ and$a_{\beta}^{\dagger}a_{\alpha}^{\dagger} a_{\tilde{\alpha}}^{\dagger} a_{\tilde{\alpha}}a_{\alpha}a_{\beta} = $ $ -a_{\beta}^{\dagger}a_{\alpha}^{\dagger}a_{\tilde{\alpha}}^{\dagger}a_{\tilde{\alpha}}a_{\beta}a_{\alpha} $ . Then, the following expression is obtained:$\sum_{\alpha,\beta\in\Theta}^{P_{\alpha}\ne P_{\beta}}\frac{1}{36}V_{\beta\alpha\tilde{\alpha}\tilde{\alpha}\alpha\beta} \langle \phi_{N} | a_{\beta}^{\dagger}a_{\alpha}^{\dagger} a_{\tilde{\alpha}}^{\dagger} a_{\tilde{\alpha}}a_{\alpha} a_{\beta} | \phi_{N} \rangle = \sum_{\alpha,\beta\in\Theta}^{P_{\alpha}\ne P_{\beta}}\frac{1}{36}V_{\beta\alpha\tilde{\alpha}\tilde{\alpha}\beta\alpha} \langle \phi_{N} | a_{\beta}^{\dagger}a_{\alpha}^{\dagger}a_{\tilde{\alpha}}^{\dagger}a_{\tilde{\alpha}}a_{\beta}a_{\alpha} | \phi_{N} \rangle$ . Each term in these two summations is distinct because they do not follow the same order, as in$ 21\bar{1}\bar{1}12 \ne 21\bar{1}\bar{1}21 $ . Thus, in terms of the last 3 indices, any permutation of the set$ \{ \tilde{\alpha} $ , α,$ \beta\} $ contributes. Besides, based on the time-even assumption introduced before, the following expression is obtained:$ V_{\beta\alpha\tilde{\alpha}\tilde{\alpha}\alpha\beta} = V_{\tilde{\beta}\tilde{\alpha}\alpha\alpha\tilde{\alpha}\tilde{\beta}} $ . Given that$ a_{\alpha}^{\dagger}(P^{\dagger})^{N} | 0 \rangle = a_{\tilde{\alpha}}^{\dagger}(P^{\dagger})^{N} | 0 \rangle $ (both block the pair indices α from$ (P^{\dagger})^{N} | 0 \rangle $ ), it is obtained that$ \langle \phi_{N} | a_{\beta}^{\dagger}a_{\alpha}^{\dagger} a_{\tilde{\alpha}}^{\dagger} a_{\tilde{\alpha}}a_{\alpha} a_{\beta} | \phi_{N} \rangle = $ $ \langle \phi_{N} | a_{\tilde{\beta}}^{\dagger}a_{\tilde{\alpha}}^{\dagger}a_{\alpha}^{\dagger}a_{\alpha}a_{\tilde{\alpha}}a_{\tilde{\beta}} | \phi_{N} \rangle $ . In conclusion, all orderings of the permutations that contribute are$ \begin{array}{*{20}{l}} \notag \underbrace{\ \beta\ \alpha\ \tilde{\alpha}\ }_{\mathcal{P}\{\alpha\tilde{\alpha}\beta\}\ } \underbrace{\ \tilde{\alpha}\ \alpha\ \beta\ }_{\ \mathcal{P}\{\alpha\tilde{\alpha}\beta\}}\quad + \quad \underbrace{\ \tilde{\beta}\ \tilde{\alpha}\ \alpha\ }_{\mathcal{P}\{\alpha\tilde{\alpha}\tilde{\beta}\}\ } \underbrace{\ \alpha\ \tilde{\alpha}\ \tilde{\beta}\ }_{\ \mathcal{P}\{\alpha\tilde{\alpha}\tilde{\beta}\}}. \end{array} $
The symbol
$ \mathcal{P}\{\alpha\tilde{\alpha}\beta\} $ denotes all permutations of the set$ \{\alpha $ ,$ \tilde{\alpha} $ ,$ \beta \}$ . Thus, the total number of permutations that contribute are$ \mathrm{P}_{3}^{3}\times \mathrm{P}_{3}^{3} + \mathrm{P}_{3}^{3}\times \mathrm{P}_{3}^{3} = 2\times \mathrm{P}_{3}^{3}\times \mathrm{P}_{3}^{3} = 72 $ , where$ \mathrm{P}_{3}^{3} = 3! $ is the number of permutations. The second term of Eq. (20) collects 72 equal contributions as well, which are$ \begin{array}{*{20}{l}} \notag \underbrace{\ \gamma\ \alpha\ \tilde{\alpha}\ }_{\mathcal{P}\{\alpha\rlap{ \phantom{\tilde{\beta}} }\tilde{\alpha}\gamma\}\ } \underbrace{\ \tilde{\beta}\ \beta\ \gamma\ }_{\ \mathcal{P}\{\beta\tilde{\beta}\gamma\}}\quad + \quad \underbrace{\ \tilde{\gamma}\ \tilde{\alpha}\ \alpha\ }_{\mathcal{P}\{\alpha\rlap{ \phantom{\tilde{\beta}} }\tilde{\alpha}\tilde{\gamma}\}\ } \underbrace{\ \beta\ \tilde{\beta}\ \tilde{\gamma}\ }_{\ \mathcal{P}\{\beta\tilde{\beta}\tilde{\gamma}\}}. \end{array} $
The third term is slightly more complicated and will be thoroughly described next.
The expressions
$ V_{\alpha\beta\gamma\gamma\beta\alpha} = V_{\tilde{\alpha}\tilde{\beta}\tilde{\gamma}\tilde{\gamma}\tilde{\beta}\tilde{\alpha}} $ and$ V_{\tilde{\alpha}\beta\gamma\gamma\beta\tilde{\alpha}} = V_{\alpha\tilde{\beta}\tilde{\gamma}\tilde{\gamma}\tilde{\beta}\alpha} $ have already been derived. However, in general,$ V_{\alpha\beta\gamma\gamma\beta\alpha} $ is not equal to$ V_{\tilde{\alpha}\beta\gamma\gamma\beta\tilde{\alpha}} $ . Therefore, the discussion is split into two cases: no tilde and two tildes. In the case "no tilde",$ V_{\alpha\beta\gamma\gamma\beta\alpha} = -V_{\alpha\beta\gamma\gamma\alpha\beta} = V_{\alpha\beta\gamma\beta\alpha\gamma} = -V_{\alpha\beta\gamma\beta\gamma\alpha} = V_{\alpha\beta\gamma\alpha\gamma\beta} = -V_{\alpha\beta\gamma\alpha\beta\gamma} $ ; only these 6 permutations contribute. If other orderings of the first three indices and last three indices are set, such as$ V_{\beta\alpha\gamma\gamma\beta\alpha} $ , then indices α and β are exchanged (they are both subscripts of the summation, belong to the same space, and are commutative), leading to$ V_{\alpha\beta\gamma\gamma\alpha\beta} $ , i.e., one of the six previous permutations. Evidently, these six permutations have their time-reversed partner, i.e.,$ V_{\tilde{\alpha}\tilde{\beta}\tilde{\gamma}\tilde{\gamma}\tilde{\beta}\tilde{\alpha}} = -V_{\tilde{\alpha}\tilde{\beta}\tilde{\gamma}\tilde{\gamma}\tilde{\alpha}\tilde{\beta}} = V_{\tilde{\alpha}\tilde{\beta}\tilde{\gamma}\tilde{\beta}\tilde{\alpha}\tilde{\gamma}} = -V_{\tilde{\alpha}\tilde{\beta}\tilde{\gamma}\tilde{\beta}\tilde{\gamma}\tilde{\alpha}} = V_{\tilde{\alpha}\tilde{\beta}\tilde{\gamma}\tilde{\alpha}\tilde{\gamma}\tilde{\beta}} = -V_{\tilde{\alpha}\tilde{\beta}\tilde{\gamma}\tilde{\alpha}\tilde{\beta}\tilde{\gamma}} $ , so there are$ 2 \times 6 = 12 $ in total, which makes the factor$ 1/3 $ . There is an alternative formula to calculate this number,$ 72 \div 6 = 12 $ . If α, β, and γ are assumed not to be commutative, there are 72 permutations. However, because they are commutative, we need to divide by$ \mathrm{P}_{3}^{3} $ , which is the number of all permutations of$\{ \alpha $ , β,$ \gamma \}$ . In the case "two tildes", given that there are 2 commutative indices β and γ, the total number of the permutations that contribute are$ 72 \div \mathrm{P}_{2}^{2} = 36 $ , which cancels the factor$ \frac{1}{36} $ .Substituting Eqs. (17), (18), and (19) into Eq. (20), the following expression is obtained:
$ \begin{aligned}[b] \langle \phi_{N} | \hat{W} | \phi_{N} \rangle =&\frac{N^{2}(N-1)^{2}}{\chi_{N}}\Biggr( \sum\limits_{\alpha,\beta\in\Theta}^{P_{\alpha}\ne P_{\beta}} G_{\alpha\alpha,\beta}(v_{\alpha}v_{\beta})^{2}\chi_{N-2}^{[\alpha\beta]}\\ &+\sum\limits_{\alpha,\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma} G_{\alpha\beta,\gamma}v_{\alpha}v_{\beta}(v_{\gamma})^{2}\chi_{N-2}^{[\alpha\beta\gamma]}\\ &+\frac{(N-2)^{2}}{3}\sum\limits_{\alpha,\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma} F_{\alpha\beta\gamma} (v_{\alpha}v_{\beta}v_{\gamma})^{2}\chi_{N-3}^{[\alpha\beta\gamma]}\Biggr), \end{aligned} $
(21) where
$ G_{\alpha\beta,\gamma} = V_{\gamma\alpha\tilde{\alpha}\tilde{\beta}\beta\gamma}+V_{\tilde{\gamma}\alpha\tilde{\alpha}\tilde{\beta}\beta\tilde{\gamma}} = 2V_{\gamma\alpha\tilde{\alpha}\tilde{\beta}\beta\gamma}, $
(22) $ F_{\alpha\beta\gamma} = V_{\alpha\beta\gamma\gamma\beta\alpha}+V_{\tilde{\alpha}\beta\gamma\gamma\beta\tilde{\alpha}} + V_{\alpha\tilde{\beta}\gamma\gamma\tilde{\beta}\alpha} + V_{\alpha\beta\tilde{\gamma}\tilde{\gamma}\beta\alpha} . $
(23) Note that
$ G_{\alpha\beta,\gamma} = G_{\beta\alpha,\gamma} = G_{\tilde{\alpha}\beta,\gamma}=G_{\alpha\beta,\tilde{\gamma}} $ ,$ F_{\alpha\beta\gamma} = F_{\mathcal{P}\{\alpha\beta\gamma\}} = F_{\tilde{\alpha}\beta\gamma} $ ,$ G_{\alpha\alpha,\gamma} = F_{\alpha\alpha\gamma} $ ,$ G_{\alpha\beta,\alpha}=G_{\alpha\beta,\beta} = F_{\alpha\alpha\alpha}=0 $ , and$ \sum_{\alpha,\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma} V_{\tilde{\alpha}\beta\gamma\gamma\beta\tilde{\alpha}} = \sum_{\alpha,\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma} V_{\alpha\tilde{\beta}\gamma\gamma\tilde{\beta}\alpha} = \sum_{\alpha,\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma} V_{\alpha\beta\tilde{\gamma}\tilde{\gamma}\beta\alpha} $ .By appending the three-body result (21) to the two-body expression, which is Eq. (25) of Ref. [1], the following average energy is obtained:
$ \begin{aligned}[b] \langle \phi_{N} | H | \phi_{N} \rangle =&\frac{N^{2}}{\chi_{N}}\Biggl[ \sum\limits_{\alpha\in\Theta} (2\epsilon_{\alpha\alpha}+G_{\alpha\alpha}) (v_{\alpha})^{2}\chi_{N-1}^{[\alpha]}\\ &+\sum\limits_{\alpha,\beta\in\Theta}^{P_{\alpha}\ne P_{\beta}} G_{\alpha\beta}v_{\alpha}v_{\beta}\chi_{N-1}^{[\alpha\beta]}\\ &+(N-1)^{2}\Biggl(\sum\limits_{\alpha,\beta\in\Theta}^{P_{\alpha}\ne P_{\beta}} \Lambda_{\alpha\beta}(v_{\alpha}v_{\beta})^{2}\chi_{N-2}^{[\alpha\beta]}\\ &+\sum\limits_{\alpha,\beta\in\Theta}^{P_{\alpha}\ne P_{\beta}} G_{\alpha\alpha,\beta}(v_{\alpha}v_{\beta})^{2}\chi_{N-2}^{[\alpha\beta]}\\ &+\sum\limits_{\alpha,\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma} G_{\alpha\beta,\gamma}v_{\alpha}v_{\beta}(v_{\gamma})^{2}\chi_{N-2}^{[\alpha\beta\gamma]}\\ &+\frac{(N-2)^{2}}{3}\sum\limits_{\alpha,\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma} F_{\alpha\beta\gamma} (v_{\alpha}v_{\beta}v_{\gamma})^{2}\chi_{N-3}^{[\alpha\beta\gamma]}\Biggr)\Biggr], \end{aligned} $
(24) where
$ G_{\alpha\beta}=V_{\alpha\tilde{\alpha}\tilde{\beta}\beta} , $
(25) $ \Lambda_{\alpha\beta}= V_{\alpha\beta\beta\alpha} +V_{\alpha\tilde{\beta}\tilde{\beta}\alpha} . $
(26) The average energy is expressed by normalizations in Eq. (24), which is used in coding.
For a physical explanation, another equivalent expression can be obtained based on occupation numbers. Taking Eqs. (9) and (11) into (21), the following equation is obtained:
$ \begin{aligned}[b] \langle \phi_{N} | \hat{W} | \phi_{N} \rangle =&\sum\limits_{\alpha,\beta\in\Theta}^{_{P_{\alpha}\ne P_{\beta}}} G_{\alpha\alpha,\beta}\langle \phi_{N} | \hat{n}_{\alpha} | \phi_{N} \rangle \langle \phi_{N-1}^{[\alpha]} | \hat{n}_{\beta} | \phi_{N-1}^{[\alpha]} \rangle \\ &+\sum\limits_{\alpha,\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma} G_{\alpha\beta,\gamma}\frac{v_{\alpha}}{v_{\beta}} \left( 1-\langle \phi_{N} | \hat{n}_{\alpha} | \phi_{N} \rangle \right) \\ &\times\langle \phi_{N}^{[\alpha]} | \hat{n}_{\beta} | \phi_{N}^{[\alpha]} \rangle \langle \phi_{N-1}^{[\alpha\beta]} | \hat{n}_{\gamma} | \phi_{N-1}^{[\alpha\beta]} \rangle \\ &+\frac{1}{3}\sum\limits_{\alpha,\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma} F_{\alpha\beta\gamma}\langle \phi_{N} | \hat{n}_{\alpha} | \phi_{N} \rangle \langle \phi_{N-1}^{[\alpha]} | \hat{n}_{\beta} | \phi_{N-1}^{[\alpha]} \rangle \end{aligned} $
$ \begin{aligned}[b] \qquad\qquad~\times\langle \phi_{N-2}^{[\alpha\beta]} | \hat{n}_{\gamma} | \phi_{N-2}^{[\alpha\beta]} \rangle. \end{aligned} $
(27) -
The average energy gradient expressed by the pair structure
$ v_{\alpha} $ (3) is derived in this section. In addition, the analytical formula$ v_{\alpha} $ at energy minimum is presented. Finally, the asymptotic behavior of$ v_{\alpha} $ away from (above or below) the Fermi surface is described.Equation (21) expresses the three-body part
$ \overline{W} $ of the average energy in terms of (Pauli-blocked) normalizations$ \chi_{N} $ . To derive the gradient of$ \overline{W} $ , the gradient of$ \chi_{N} $ is first introduced. Under infinitesimal change of$ v_{\alpha} $ ,$ \delta v_{\alpha} $ , the variation of$ \chi_{N} $ [1] is$ \delta \chi_{N} = \frac{2}{v_{\alpha}}(\chi_{N} - \chi_{N}^{[\alpha]})\delta v_{\alpha} \tag{28a} $
$ \;\;\;\quad = 2N^{2}v_{\alpha} \chi_{N-1}^{[\alpha]}\delta v_{\alpha}. \tag{28b} $
The last step uses Eq. (9).
If the β index (
$ P_{\beta}\ne P_{\alpha} $ ) is Pauli blocked in Eqs. (28a) and (28b) from the very beginning, the derivation remains valid, so$ \delta \chi_{N}^{[\beta]} $ can be obtained. Note that$ \delta \chi_{N}^{[\alpha]}/\delta v_{\alpha} = 0 $ . Similarly,$ \delta \chi_{N}^{[\beta\gamma]} $ could be easily obtained by Pauli blocking indices β and γ from the very beginning and$ \delta \chi_{N}^{[\beta\gamma\mu]} $ by Pauli blocking β, γ, and μ. Substituting$ \delta \chi_{N} $ (28a),$ \delta \chi_{N}^{[\beta\gamma]} $ , and$ \delta \chi_{N}^{[\beta\gamma\mu]} $ into Eq. (21), applying simple calculus, and then collecting similar terms, the energy gradient is obtained:$ \begin{aligned}[b] \frac{\partial \overline{W}}{\partial v_{\alpha}} =& \frac{\partial \left( \langle \phi_{N} | \hat{W} | \phi_{N} \rangle \right)}{\partial v_{\alpha}} \\={}&- \frac{2N^{2}(N-1)^{2}}{\chi_{N}} \Biggl[ \sum\limits_{\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma}G_{\alpha\beta,\gamma}v_{\beta} (v_{\gamma})^{2}\chi_{N-2}^{[\alpha\beta\gamma]} \\ &+ \frac{\chi_{N}^{[\alpha]}}{N^{2}(N-1)^{2}v_{\alpha}} \left( \langle \phi_{N}^{[\alpha]} | \hat{W} | \phi_{N}^{[\alpha]} \rangle - \overline{W} \right) \Biggr]. \end{aligned}\tag{29a} $
It is necessary to derive an equivalent expression to Eq. (29a) by substituting another form of
$ \delta \chi_{N} $ , i.e., Eq. (28b), into Eq. (21),$ \begin{aligned}[b] \frac{\partial \overline{W}}{\partial v_{\alpha}} =&\frac{2N^{2}}{\chi_{N}} \Biggl[ (N-1)^{2} \sum\limits_{\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma} G_{\alpha\beta,\gamma}v_{\beta}(v_{\gamma})^{2}\chi_{N-2}^{[\alpha\beta\gamma]}\\&+v_{\alpha}\chi_{N-1}^{[\alpha]} \left( f_{\alpha} + \langle \phi_{N-1}^{[\alpha]} | \hat{W} | \phi_{N-1}^{[\alpha]} \rangle - \overline{W} \right) \Biggr], \end{aligned}\tag{29b} $
where
$ \begin{aligned}[b] f_{\alpha} =&(N-1)^{2} \sum\limits_{\beta\in\Theta}^{P_{\beta}\ne P_{\alpha}}\left( G_{\alpha\alpha,\beta}+G_{\beta\beta,\alpha} \right) (v_{\beta})^{2} \frac{\chi_{N-2}^{[\alpha\beta]}}{\chi_{N-1}^{[\alpha]}}\\ &+(N-1)^{2}(N-2)^{2}\sum\limits_{\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma}F_{\alpha\beta\gamma} (v_{\beta}v_{\gamma})^{2} \frac{\chi_{N-3}^{[\alpha\beta\gamma]}}{\chi_{N-1}^{[\alpha]}} \\ &+(N-1)^{2}\sum\limits_{\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma}G_{\beta\gamma,\alpha}v_{\beta}v_{\gamma} \frac{\chi_{N-2}^{[\alpha\beta\gamma]}}{\chi_{N-1}^{[\alpha]}} \end{aligned} $
(30) $ \begin{aligned}[b] =& \sum\limits_{\beta\in\Theta}^{P_{\beta}\ne P_{\alpha}}\left( G_{\alpha\alpha,\beta}+G_{\beta\beta,\alpha} \right) \langle \phi_{N-1}^{[\alpha]} | \hat{n}_{\beta} | \phi_{N-1}^{[\alpha]} \rangle \\ &+\sum\limits_{\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma}F_{\alpha\beta\gamma} \langle \phi_{N-1}^{[\alpha]} | \hat{n}_{\beta} | \phi_{N-1}^{[\alpha]} \rangle \langle \phi_{N-2}^{[\alpha\beta]} | \hat{n}_{\gamma} | \phi_{N-2}^{[\alpha\beta]} \rangle \\ +&\sum\limits_{\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma}G_{\beta\gamma,\alpha}\frac{v_{\gamma}}{v_{\beta}} \langle \phi_{N-1}^{[\alpha]} | \hat{n}_{\beta} | \phi_{N-1}^{[\alpha]} \rangle ( 1-\langle \phi_{N-2}^{[\alpha\beta]} | \hat{n}_{\gamma} | \phi_{N-2}^{[\alpha\beta]} \rangle ). \end{aligned} $
(31) $ f_{\alpha} $ is the three-body part of single-pair energy, similar to the three-body part of common HF single-particle energy.By appending the three-body results (29a) and (29b) to the two-body expressions, which are Eqs. (31) and (32) of Ref. [1], the average energy gradient is obtained:
$ \begin{aligned}[b] \frac{\partial \overline{E}}{\partial v_{\alpha}} =&- \frac{2}{\chi_{N}} \Biggl[ N^{2}\sum\limits_{\beta\in\Theta}^{P_{\beta}\ne P_{\alpha}}G_{\alpha\beta}v_{\beta} \chi_{N-1}^{[\alpha\beta]} \\&+N^{2}(N-1)^{2}\sum\limits_{\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma}G_{\alpha\beta,\gamma}v_{\beta} (v_{\gamma})^{2}\chi_{N-2}^{[\alpha\beta\gamma]} \\&+ \frac{\chi_{N}^{[\alpha]}}{v_{\alpha}} \left( \langle \phi_{N}^{[\alpha]} | H | \phi_{N}^{[\alpha]} \rangle - \overline{E} \right) \Biggr] \end{aligned}\tag{32a} $
$ \begin{aligned}[b] \quad =&\frac{2N^{2}}{\chi_{N}} \Biggl[ \sum\limits_{\beta\in\Theta}^{P_{\beta}\ne P_{\alpha}}G_{\alpha\beta}v_{\beta} \chi_{N-1}^{[\alpha\beta]} \\ &+(N-1)^{2} \sum\limits_{\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma} G_{\alpha\beta,\gamma}v_{\beta}(v_{\gamma})^{2}\chi_{N-2}^{[\alpha\beta\gamma]}\\ &+v_{\alpha}\chi_{N-1}^{[\alpha]} \left( d_{\alpha}+f_{\alpha} + \langle \phi_{N-1}^{[\alpha]} | H | \phi_{N-1}^{[\alpha]} \rangle - \overline{E} \right) \Biggr]. \end{aligned}\tag{32b} $
The gradient of
$ \overline{E} $ is perpendicular to$ \vec{v} $ because the overall norm of$ v_{\alpha} $ does not affect$ \overline{E} $ , which is$ \begin{equation*} \nabla\, \overline{E} \cdot \vec{v} = \sum\limits_{\alpha\in\Theta}v_{\alpha} \frac{\partial \overline{E}}{\partial v_{\alpha}} = 0. \end{equation*} $
This identity is used for checking codes.
The three-body part of the HF single-particle energy is as follows:
$ \begin{aligned}[b] e_{\alpha}^{(3)} &= \frac{1}{2}\sum\limits_{\beta,\gamma\in \mathrm{SD}}V_{\alpha\beta\gamma\gamma\beta\alpha} \\ &= \sum\limits_{\beta\in \mathrm{SD}} \left( \delta_{\alpha}V_{\alpha\beta\tilde{\alpha}\tilde{\alpha}\beta\alpha} + \frac{1}{2}V_{\alpha\beta\tilde{\beta}\tilde{\beta}\beta\alpha} \right) +\frac{1}{2}\sum\limits_{\beta,\gamma\in \mathrm{SD}}^{\pmb{dif}\,\alpha\beta\gamma} V_{\alpha\beta\gamma\gamma\beta\alpha}\\ &=\delta_{\alpha}\sum\limits_{\beta\in\Theta \atop \beta\in \mathrm{SD}}^{\phantom{\pmb{dif}\,\alpha\beta\gamma}} G_{\alpha\alpha,\beta} + \frac{1}{2}\sum\limits_{\beta\in\Theta \atop \beta\in \mathrm{SD}}^{\phantom{\pmb{dif}\,\alpha\beta\gamma}} G_{\beta\beta,\alpha} + \frac{1}{2}\sum\limits_{\beta,\gamma\in\Theta \atop \beta,\gamma\in \mathrm{SD} }^{\pmb{dif}\,\alpha\beta\gamma}F_{\alpha\beta\gamma}\\ &=\frac{1}{2}\sum\limits_{\beta,\gamma\in\Theta }^{ \beta,\gamma\in \mathrm{SD} }F_{\alpha\beta\gamma}, \end{aligned} $
(33) where
$ \beta \in \mathrm{SD} $ means the β orbit occupied in the HF Slater determinant ($ n_{\beta} = 1 $ ), and$ \begin{equation*} \delta_{\alpha} = \begin{cases} 1, \qquad {}& \text{if }\; \alpha \in \mathrm{SD},\\ 0, \qquad {}& \text{else}. \end{cases} \end{equation*} $
The HF single-particle energy, which includes three-body forces, is
$ e_{\alpha} = \epsilon_{\alpha\alpha}+\sum\limits_{\beta\in \Theta }^{\beta\in \mathrm{SD}}\Lambda_{\alpha\beta} +\frac{1}{2}\sum\limits_{\beta,\gamma\in\Theta }^{ \beta,\gamma\in \mathrm{SD} }F_{\alpha\beta\gamma}. $
(34) The Fermi energy
$ e_{F} \equiv (e_{h.o.} + e_{l.e.})/2 $ , where$ e_{h.o.} $ and$ e_{l.e.} $ are the HF single-particle energy$ e_{\alpha} $ of the highest occupied orbit and lowest empty orbit. If$ n_{\alpha} $ (11) is set to 1 for occupied orbits and 0 for empty orbits, which is equivalent to setting$ v_{\alpha} $ (3) to a very large number and 0, respectively, the pair condensate (1) reduces to the HF Slater determinant. In this case,$ f_{\alpha} \approx 2e_{\alpha}^{(3)} $ , where$ e_{\alpha}^{(3)} $ is the three-body part of the HF single-particle energy$ e_{\alpha} $ .At energy minimum, the gradients given by (32a) and (32b) vanish, which implies
$ v_{\alpha}=\frac{\langle \phi_{N}^{[\alpha]} | H | \phi_{N}^{[\alpha]} \rangle - \overline{E} }{-N^{2} A_{\alpha} / \chi_{N}^{[\alpha]}} \tag{35a} $
$\;\quad =\frac{- A_{\alpha} / \chi_{N-1}^{[\alpha]}}{ d_{\alpha}+f_{\alpha} + \langle \phi_{N-1}^{[\alpha]} | H | \phi_{N-1}^{[\alpha]} \rangle - \overline{E} },\tag{35b} $
where
$ \begin{aligned}[b] A_{\alpha} =\sum\limits_{\beta\in\Theta}^{P_{\beta}\ne P_{\alpha}}G_{\alpha\beta}v_{\beta} \chi_{N-1}^{[\alpha\beta]}+ (N-1)^{2} \sum\limits_{\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma}G_{\alpha\beta,\gamma}v_{\beta}(v_{\gamma})^{2}\chi_{N-2}^{[\alpha\beta\gamma]} . \end{aligned} $
(36) Numerically, (35a) is usually chosen when
$ e_{\alpha} \ll e_{F} $ (here$ \ll $ means that the α orbit is well below the Fermi surface), and (35b) is usually selected when$ e_{\alpha} \gg e_{F} $ . When$ e_{\alpha} \ll e_{F} $ , physical arguments imply$ \langle \phi_{N}^{[\alpha]} | H | \phi_{N}^{[\alpha]} \rangle - \overline{E} \approx 2(e_{F}- e_{\alpha}) $ and$ d_{\alpha} +f_{\alpha} + \langle \phi_{N-1}^{[\alpha]} | \hat{W} | \phi_{N-1}^{[\alpha]} \rangle - \overline{W} \approx 0 $ . To avoid the numerical sign problem resulting from the subtraction of two very close numbers, (35a) is chosen. When$ e_{\alpha} \gg e_{F} $ , physical arguments imply$\langle \phi_{N}^{[\alpha]} | H | \phi_{N}^{[\alpha]} \rangle - \overline{E} \approx 0$ and$d_{\alpha} + f_{\alpha} + \langle \phi_{N-1}^{[\alpha]} | \hat{W} | \phi_{N-1}^{[\alpha]} \rangle - \overline{W} \approx 2(e_{\alpha} - e_{F})$ , so (35b) is selected.The asymptotic behavior of
$ v_{\alpha} $ away from (above or below) the Fermi surface is also implied by the foregoing analysis,$\quad\;\;\; v_\alpha \approx \begin{cases}\dfrac{2\left(e_F-e_\alpha\right)}{-N^2 A_\alpha / \chi_N^{[\alpha]}}, & \text { if }\; e_\alpha \ll e_F, \quad\quad\quad\quad\quad\quad\quad(37\text {a})\\ \dfrac{-A_\alpha / \chi_{N-1}^{[\alpha]}}{2\left(e_\alpha-e_F\right)}, & \text { if } \; e_\alpha \gg e_F .\quad\quad\quad\quad\quad\quad\quad(37\text {b})\end{cases} $
For a physical explanation, equivalent expressions to Eq. (35a) and (35b) can be derived in terms of occupation numbers:
$ v_{\alpha}=\frac{\langle \phi_{N}^{[\alpha]} | H | \phi_{N}^{[\alpha]} \rangle - \overline{E}}{-B_{\alpha} } \tag{38a} $
$ \quad\; =\frac{ -C_{\alpha} }{d_{\alpha}+f_{\alpha} + \langle \phi_{N-1}^{[\alpha]} | H | \phi_{N-1}^{[\alpha]} \rangle - \overline{E}} , \tag{38b} $
where
$ \begin{aligned}[b] B_{\alpha} =& \sum\limits_{\beta\in\Theta}^{P_{\alpha}\ne P_{\beta}}G_{\alpha\beta}\frac{1}{v_{\beta}} \langle \phi_{N}^{[\alpha]} | \hat{n}_{\beta} | \phi_{N}^{[\alpha]} \rangle \\ &+\sum\limits_{\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma}G_{\alpha\beta,\gamma}\frac{1}{v_{\beta}} \langle \phi_{N}^{[\alpha]} | \hat{n}_{\beta} | \phi_{N}^{[\alpha]} \rangle \langle \phi_{N-1}^{[\alpha\beta]} | \hat{n}_{\gamma} | \phi_{N-1}^{[\alpha\beta]} \rangle , \end{aligned} $
(39) $ \begin{aligned}[b] C_{\alpha} =& \sum\limits_{\beta\in\Theta}^{P_{\alpha}\ne P_{\beta}} G_{\alpha\beta}v_{\beta} ( 1-\langle \phi_{N-1}^{[\alpha]} | \hat{n}_{\beta} | \phi_{N-1}^{[\alpha]} \rangle ) \\ +&\sum\limits_{\beta,\gamma\in\Theta}^{\pmb{dif}\,\alpha\beta\gamma}G_{\alpha\beta,\gamma}v_{\beta} ( 1-\langle \phi_{N-1}^{[\alpha]} | \hat{n}_{\beta} | \phi_{N-1}^{[\alpha]} \rangle ) \langle \phi_{N-1}^{[\alpha\beta]} | \hat{n}_{\gamma} | \phi_{N-1}^{[\alpha\beta]} \rangle , \end{aligned} $
(40) and equivalent expressions to Eq. (37a) and (37b) can also be derived in terms of occupation numbers:
$\quad\quad\quad v_\alpha \approx \begin{cases}\dfrac{2\left(e_F-e_\alpha\right)}{-B_\alpha}, & \text { if }\; e_\alpha \ll e_F, \quad\quad\quad\quad\quad\text {(41a) }\\ \dfrac{-C_\alpha}{2\left(e_\alpha-e_F\right)}, & \text { if }\; e_\alpha \gg e_F .\quad\quad\quad\quad\quad\text {(41b) } \end{cases} $
The exact [Eqs. (35a) and (35b)] and asymptotic [Eqs. (37a) and (37b)] expressions for
$ v_{\alpha} $ are used to minimize the energy in the algorithm.
Extending the VDPC+BCS formalism by including three-body forces
- Received Date: 2022-06-15
- Available Online: 2023-04-15
Abstract: Recently, Jia proposed a formalism to apply the variational principle to a coherent-pair condensate for a two-body Hamiltonian. The present study extends this formalism by including three-body forces. The result is the same as the so-called variation after particle-number projection in the BCS case, but now, the particle number is always conserved, and the time-consuming projection is avoided. Specifically, analytical formulas of the average energy are derived along with its gradient for a three-body Hamiltonian in terms of the coherent-pair structure. Gradient vanishment is required to obtain analytical expressions for the pair structure at the energy minimum. The new algorithm iterates on these pair-structure expressions to minimize energy for a three-body Hamiltonian. The new code is numerically demonstrated when applied to realistic two-body forces and random three-body forces in large model spaces. The average energy can be minimized to practically any arbitrary precision.