-
We consider the action for symmetric teleparallel gravity proposed by Y Xu et al. [53],
$ \begin{equation} \mathcal{S} = \int\frac{1}{16\pi}\,f(Q,T)\sqrt{-g}\,{\rm d}^4x+\int \mathcal{L}_m\,\sqrt{-g}\,{\rm d}^4x\, , \end{equation} $
(1) where the arbitrary f is a function of the non-metricity scalar Q and the trace of the energy momentum tensor T, g is the determinant of the metric
$ g_{\mu\nu} $ , and$ \mathcal{L}_m $ is the matter Lagrangian density.The non-metricity tensor is explicitly given by [37]
$ \begin{equation} Q_{\lambda\mu\nu} = \bigtriangledown_{\lambda} g_{\mu\nu}, \end{equation} $
(2) Additionally, we can define the superpotential or non-metricity conjugate as
$ \begin{equation} P^\alpha\;_{\mu\nu} = \frac{1}{4}\left[-Q^\alpha\;_{\mu\nu}+2Q_{(\mu}\;^\alpha\;_{\nu)}+Q^\alpha g_{\mu\nu}-\tilde{Q}^\alpha g_{\mu\nu}-\delta^\alpha_{(\mu}Q_{\nu)}\right], \end{equation} $
(3) where the traces of the non-metricity tensor are
$ \begin{equation} Q_{\alpha} = Q_{\alpha}\;^{\mu}\;_{\mu},\; \tilde{Q}_\alpha = Q^\mu\;_{\alpha\mu}. \end{equation} $
(4) By taking the following contraction from the previous definition, we can deduce the non-metricity scalar as [37]
$ Q = -Q_{\alpha\mu\nu}\,P^{\alpha\mu\nu} $
(5) $ \quad = -g^{\mu\nu}\left(L^\beta_{\,\,\,\alpha\mu}\,L^\alpha_{\,\,\,\nu\beta}-L^\beta_{\,\,\,\alpha\beta}\,L^\alpha_{\,\,\,\mu\nu}\right), $
(6) where the disformation
$ L^\beta_{\,\,\,\mu\nu} $ is described as$ \begin{equation} L^\beta_{\,\,\,\mu\nu} = \frac{1}{2}Q^\beta_{\,\,\,\mu\nu}-Q_{(\mu\,\,\,\,\,\,\nu)}^{\,\,\,\,\,\,\beta}. \end{equation} $
(7) The gravitational equations of motion can now be obtained by varying the action regarding the metric tensor
$ g_{\mu\nu} $ and can be written as$ \begin{aligned}[b] \frac{-2}{\sqrt{-g}}\bigtriangledown_\alpha\left(\sqrt{-g}\,f_Q\,P^\alpha\;_{\mu\nu}\right)-\frac{1}{2}g_{\mu\nu}f +f_T \left(T_{\mu\nu} +\Theta_{\mu\nu}\right) \end{aligned} $
$ \begin{aligned}[b] -f_Q\left(P_{\mu\alpha\beta}\,Q_\nu\;^{\alpha\beta}-2\,Q^ {\alpha\beta}\,\,_{\mu}\,P_{\alpha\beta\nu}\right) = 8\pi T_{\mu\nu}, \end{aligned} $
(8) where
$ f_Q = \dfrac{\partial f}{\partial Q} $ , and$ f_T = \dfrac{\partial f}{\partial T} $ .By definition, the energy-momentum tensor for the fluid depiction of spacetime can be obtained as
$ \begin{equation} T_{\mu\nu} = -\frac{2}{\sqrt{-g}}\frac{\delta\left(\sqrt{-g}\,\mathcal{L}_m\right)}{\delta g^{\mu\nu}}, \end{equation} $
(9) and
$ \begin{equation} \Theta_{\mu\nu} = g^{\alpha\beta}\frac{\delta T_{\alpha\beta}}{\delta g^{\mu\nu}}. \end{equation} $
(10) -
The static and spherically symmetric WH metric with Schwarzschild coordinates
$ (t,\,r,\,\theta,\,\Phi) $ is given by [5, 8]$ \begin{equation} {\rm d}s^2 = {\rm e}^{2\phi(r)}{\rm d}t^2-\left(1-\frac{b(r)}{r}\right)^{-1}{\rm d}r^2-r^2\,{\rm d}\theta^2-r^2\,\sin^2\theta\,{\rm d}\Phi^2, \end{equation} $
(11) where
$ \phi(r) $ and$ b(r) $ denote the redshift and shape function, respectively. Furthermore, both conform to the following requirements [5, 8]:$ (1) $ For the condition$ r>r_0 $ , the shape function$ b(r) $ must satisfy$ b(r) < r $ . At the throat of the WH, where$ r = r_0 $ , the condition$ b(r_0) = r_0 $ must be met.$ (2) $ The shape function$ b(r) $ must satisfy the flaring-out condition at the throat, which requires that$ b'(r_0) < 1 $ .$ (3) $ The asymptotic flatness condition requires that the limit$ \dfrac{b(r)}{r} \rightarrow 0 $ as$ r\rightarrow \infty $ .$ (4) $ The redshift function$ \phi(r) $ should be finite everywhere.In this study, to analyze the WH solution, we assume an anisotropic energy-momentum tensor provided by [5, 8],
$ \begin{equation} T_{\mu}^{\nu} = \left(\rho+p_t\right)u_{\mu}\,u^{\nu}-p_t\,\delta_{\mu}^{\nu}+\left(p_r-p_t\right)v_{\mu}\,v^{\nu}, \end{equation} $
(12) where ρ indicates the energy density,
$ p_r $ and$ p_t $ denote the radial and tangential pressures, respectively, and both are a function of the radial coordinate r.$ u_{\mu} $ and$ v_{\mu} $ are the four-velocity vector and unitary space-like vectors, respectively. Additionally, both meet the requirements$ u_{\mu}u^{\nu} = -v_{\mu}v^{\nu} = 1 $ . We find that the trace of the energy-momentum tensor is$ T = \rho-p_r-2p_t $ .In this study, we discuss the matter Lagrangian
$ \mathcal{L}_m = -P $ [71−74], and hence, Eq. (10) can be viewed as$ \begin{equation} \Theta_{\mu\nu} = -g_{\mu\nu}\,P-2\,T_{\mu\nu}, \end{equation} $
(13) where
$ P = \dfrac{p_r+2\,p_t}{3} $ represents the total pressure.For the metric (11), the non-metricity scalar Q is given by
$ \begin{equation} Q = -\frac{b}{r^2}\left[\frac{rb^{'}-b}{r(r-b)}+2\phi^{'}\right]. \end{equation} $
(14) Now, by incorporating Eqs. (11), (12), and (14) into the equation of motion (8), the following field equations for
$ f(Q,T) $ gravity can be obtained [75]:$ \begin{aligned}[b] 8 \pi \rho =& \frac{(r-b)}{2 r^3} \Bigg[f_Q \left(\frac{(2 r-b) \left(r b'-b\right)}{(r-b)^2}+\frac{b \left(2 r \phi '+2\right)}{r-b}\right)\\&+\frac{2 b r f_{{\rm{QQ}}} Q'}{r-b}+\frac{f r^3}{r-b}-\frac{2r^3 f_T (P+\rho )}{(r-b)}\Bigg], \end{aligned} $
(15) $ \begin{aligned}[b] 8 \pi p_r =& -\frac{(r-b)}{2 r^3} \Bigg[f_Q \left(\frac{b }{r-b}\left(\frac{r b'-b}{r-b}+2 r \phi '+2\right)-4 r \phi '\right)\\&+\frac{2 b r f_{{\rm{QQ}}} Q'}{r-b}+\frac{f r^3}{r-b}-\frac{2r^3 f_T \left(P-p_r\right)}{(r-b)}\Bigg], \end{aligned} $
(16) $ \begin{aligned}[b] 8 \pi p_t =& -\frac{(r-b)}{4 r^2} \Bigg[f_Q \Bigg(\frac{\left(r b'-b\right) \left(\frac{2 r}{r-b}+2 r \phi '\right)}{r (r-b)}+\frac{4 (2 b-r) \phi '}{r-b}\\&-4 r \left(\phi '\right)^2-4 r \phi ''\Bigg)-4 r f_{{\rm{QQ}}} Q' \phi '\\&+\frac{2 f r^2}{r-b}-\frac{4r^2 f_T \left(P-p_t\right)}{(r-b)}\Bigg]. \end{aligned} $
(17) By considering various models of
$ f(Q, T) $ gravity, we can investigate WH solutions using these field equations.Let us now discuss the Raychaudhuri equations-derived classical ECs. The physically realistic matter configuration is discussed using these conditions. The four ECs that are commonly used in GR are
$ \bullet $ Null energy condition (NEC), which requires$ \rho+p_j\geq0 $ for all j.$ \bullet $ Weak energy condition (WEC), which requires$ \rho\geq0 $ and$ \rho+p_j\geq0 $ for all j.$ \bullet $ Strong energy condition (SEC), which requires$ \rho+p_j\geq0 $ and$ \rho+\sum_jp_j\geq0 $ for all j.$ \bullet $ Dominant energy condition (DEC), which requires$ \rho\geq0 $ and$ \rho \pm p_j\geq0 $ for all j,where
$ j = r,\, t $ .These ECs are important in studying the properties of spacetime and the matter sources that generate it. For example, the violation of the NEC in a WH solution would indicate the presence of exotic matter in the throat of the WH. Additionally, a positive energy density is required for a physically realistic matter source that can sustain a WH solution in GR.
-
In this part, we examine WH solutions with linear functional forms of
$ f(Q, T) $ gravity, given by [53]$ \begin{equation} f(Q,T) = \alpha\,Q+\beta\,T, \end{equation} $
(18) where α and β are model parameters.
Moreover, we choose the redshift function
$ \phi(r) $ and shape function$ b(r) $ as [76]$ \phi(r) = \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }, $
(19) $ b(r) = r_0 \left(\frac{r_0}{r}\right)^{\eta }, $
(20) respectively, where λ and η are constant exponents that are strictly positive to satisfy the asymptotic flatness condition.
$ \phi_0 $ is an arbitrary constant. Here, we especially consider$ \eta > 1 $ to more easily analyze the WH solution.Using a linear form of
$ f(Q, T) $ , a particular form of the redshift and shape function, Eqs. (15)−(17) give$ \begin{aligned}[b] \\[-5pt] \rho =& \frac{\alpha}{12 (4 \pi -\beta ) (\beta +8 \pi ) r^3} \left[r_0 \left(\frac{r_0}{r}\right)^{\eta } \left(4 (\beta -12 \pi ) \eta +\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\beta (5 \eta +10 \lambda -11)+10 \beta \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }-48 \pi \right)\right) \right.\\& \left. -10 \beta \lambda r \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\lambda +\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }-1\right)\right], \end{aligned} $ (21) $ \begin{aligned}[b] p_r =& \frac{\alpha}{12 (4 \pi -\beta ) (\beta +8 \pi ) r^3} \left[r_0 \left(\frac{r_0}{r}\right)^{\eta } \left(4 \beta (2 \eta +3)-\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\beta (5 \eta +10 \lambda +13)+10 \beta \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }-144 \pi \right)-48 \pi \right) \right.\\& \left. +2 \lambda r \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(5 \beta \lambda +7 \beta +5 \beta \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }-48 \pi \right)\right], \end{aligned} $
(22) $ \begin{aligned}[b] p_t =& \frac{\alpha}{12 (4 \pi -\beta ) (\beta +8 \pi ) r^3} \left[r_0 \left(\frac{r_0}{r}\right){}^{\eta } \left(2 \beta (\eta -3)+24 \pi (\eta +1)+\lambda \phi _0 \left(\frac{r_0}{r}\right){}^{\lambda } \left(\beta (\eta +2 \lambda +17)-24 \pi (\eta +2 \lambda -1) \right.\right.\right.\\& \left.\left.\left. -2 (24 \pi -\beta ) \lambda \phi _0 \left(\frac{r_0}{r}\right){}^{\lambda }\right)\right)+2 \lambda r \phi _0 \left(\frac{r_0}{r}\right){}^{\lambda } \left(-\beta (\lambda +5)+24 \pi \lambda +(24 \pi -\beta ) \lambda \phi _0 \left(\frac{r_0}{r}\right){}^{\lambda }\right)\right]. \end{aligned} $
(23) Therefore, considering the density and pressures from Eqs. (21)−(23), we get
$ \begin{equation} \rho+p_r = \frac{-\alpha}{(\beta +8 \pi ) r^3} \left[r_0 \left(\frac{r_0}{r}\right)^{\eta } \left(\eta -2 \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }+1\right)+2 \lambda r \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }\right], \end{equation} $
(24) $ \begin{equation} \rho+p_t = \frac{\alpha}{2 (\beta +8 \pi ) r^3} \left[r_0 \left(\frac{r_0}{r}\right)^{\eta } \left(-\eta -\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\eta +2 \lambda +2 \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }+1\right)+1\right)+2 \lambda ^2 r \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\phi _0 \left(\frac{r_0}{r}\right)^{\lambda }+1\right)\right], \end{equation} $
(25) $ \begin{aligned}[b] \rho-p_r = &\frac{\alpha}{6 (4 \pi -\beta ) (\beta +8 \pi ) r^3} \left[r_0 \left(\frac{r_0}{r}\right)^{\eta } \left(-2 \beta (\eta +3)-24 \pi (\eta -1)+\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(5 \beta \eta +10 \beta \lambda +\beta +10 \beta \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \right.\right.\right.\\& \left.\left.\left. -96 \pi \right)\right)-2 \lambda r \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(5 \beta \lambda +\beta +5 \beta \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }-24 \pi \right)\right], \end{aligned} $
(26) $ \begin{aligned}[b] \rho-p_t =& \frac{\alpha}{6 (4 \pi -\beta ) (\beta +8 \pi ) r^3} \left[r_0 \left(\frac{r_0}{r}\right)^{\eta } \left(\beta (\eta +3)-12 \pi (3 \eta +1)+2 \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\beta (\eta +2 \lambda -7)+6 \pi (\eta +2 \lambda -3) \right.\right.\right.\\& \left.\left.\left. +2 (\beta +6 \pi ) \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }\right)\right)+2 \lambda r \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(-2 (\beta +6 \pi ) \lambda +5 \beta -2 (\beta +6 \pi ) \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }\right)\right], \end{aligned} $
(27) $ \begin{aligned}[b] \rho+p_r+2 p_t =& \frac{\alpha}{6 (4 \pi -\beta ) (\beta +8 \pi ) r^3} \left[r_0 \left(\frac{r_0}{r}\right)^{\eta } \left(8 \beta \eta +\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\beta (\eta +2 \lambda +5)-24 \pi (\eta +2 \lambda -3) \right.\right.\right.\\& \left.\left.\left. -2 (24 \pi -\beta ) \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }\right)\right)+2 (24 \pi -\beta ) \lambda r \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\lambda +\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }-1\right)\right]. \end{aligned} $
(28) Now, using the redshift function
$ \phi(r) $ and shape function$ b(r) $ given in Eqs. (19) and (20), respectively, we can verify that the WH solution satisfies the ECs everywhere. We discuss this in subsections IVA−IVE. -
Let us start with an analysis of the NEC. Considering the particular form of the redshift function
$ \phi(r) $ and shape function$ b(r) $ given in Eqs. (19) and (20), respectively, we can use the following boundary condition at the throat$ r = r_0 $ :$ \rho(r)+p_r(r) \bigg\vert_{(r = \,r_0)} = -\frac{\alpha (\eta +1)}{(\beta +8 \pi ) {r_0}^2} \,, $
(29) $ \rho(r)+p_t(r) \bigg\vert_{(r = \,r_0)} = -\frac{\alpha \left((\eta +1) \lambda \phi _0+\eta -1\right)}{2 (\beta +8 \pi ) {r_0}^2} \,. $
(30) Because
$ \eta>0 $ , we can verify from Eq. (29) that when$ \alpha = 1 $ and$ \beta = 0 $ , as in the GR case,$ \rho+p_r $ is always negative at the throat$ r = r_0 $ , which results in violation of the NEC. However, in the general case, i.e.,$ \alpha\neq1 $ or$ \beta\neq0 $ , we can verify that$ \rho+p_r>0 $ along with Eq. (29) impose a constraint on parameters α and β, i.e.,$ \begin{equation} \alpha <0,\,\, \beta >-8 \pi \,\,\,\,{\rm{or}} \,\,\,\, \alpha >0,\,\, \beta <-8 \pi\,. \end{equation} $
(31) In addition,
$ \rho+p_t>0 $ along with Eq. (30) impose a constraint on parameter$ \phi_0 $ , i.e.,$ \begin{equation} \phi _0>\frac{1-\eta }{\lambda (\eta+1) }\equiv \phi_c \,. \end{equation} $
(32) If the constraints from Eqs. (31) and (32) are satisfied, the NEC will be satisfied at the throat, which is unattainable in GR. Moreover, from Eq. (32), we may observe that
$ \phi_c\rightarrow +\infty $ as$ \lambda\rightarrow0 $ with$ \eta<1 $ , i.e., the NEC is not satisfied for any value of$ \phi_0 $ at the throat$ r = r_0 $ , and$ \eta = 1 $ gives$ \phi_c = 0 $ . Furthermore,$ \phi_c $ is undefined as$ \lambda \rightarrow 0 $ and$ \eta \rightarrow 1 $ . Thus, to define$ \phi_c $ , we must restrict$ \eta \nrightarrow 1 $ if$ \lambda \rightarrow 0 $ . Therefore, depending on the combination of parameters, either the NEC is satisfied for the entire spacetime or the NEC is satisfied for a finite range of the radial coordinate r around the throat, for example,$ r<r_c $ , but is violated elsewhere for$ r>r_c $ .To guarantee the physical relevance of the obtained WH solutions, it is not sufficient to satisfy the NEC at the throat. Thus, to guarantee the physical relevance of the obtained WH solutions for the entire spacetime, we begin the analysis with the combination
$ \rho+p_r $ and$ \rho+p_t $ separately and impose constraints on the parameters λ, η, and$ \phi_0 $ , which offers such a guarantee for$ \rho+p_r>0 $ and$ \rho+p_t>0 $ . Then, we combine the results into a unified set of constraints. -
Here, we begin with an analysis of the combination
$ \rho+p_r>0 $ . Using Eq. (24), the inequality$ \rho+p_r>0 $ with the restriction given in Eq. (31) can be written in the form$ \begin{equation} \left(\frac{r_0}{r}\right)^{\eta +1 } \left(\eta -2 \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }+1\right)+2 \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }>0\,. \end{equation} $
(33) By rearranging Eq. (33), the parameter
$ \phi_0 $ can be written with the combination of$ \lambda,\,\eta,\,r, \; {\rm{and}} \; r_0 $ as$ \phi_0 > \frac{1+\eta}{2\lambda} \,{\rm{max}}\left( \frac{\left(\dfrac{r_0}{r}\right)^{\eta +1 }}{\left(\dfrac{r_0}{r}\right)^{\lambda}\left( \left(\dfrac{r_0}{r}\right)^{\eta +1 }-1\right)}\right) \equiv \phi_{{\rm{min}}} \,. $
(34) At the throat
$ r = r_0 $ , the combination$ \rho+p_r $ is positive if$ \phi_0>\phi_c $ from Eq. (32). Moreover, from Eq. (34), we can see that$ \phi_0 $ is positive for the entire range of r, i.e., condition$ \rho+p_r $ does not have any zeroes or does not change the sign if$ \phi_0>\phi_{{\rm{min}}} $ . Thus,$ \rho+p_r $ is always positive in the entire spacetime if$ \phi_0> {\rm{max}} (\phi_c,\, \phi_{{\rm{min}}}) $ . -
Now, we look into the combination
$ \rho+p_t>0 $ . Using Eq. (25), the inequality$ \rho+p_t>0 $ with the restriction given in Eq. (31) can be written in the form$ \begin{aligned}[b]& \left(\frac{r_0}{r}\right)^{\eta +1} \left(-\eta -\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\eta +2 \lambda +2 \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }+1\right)+1\right)\\&\quad+2 \lambda ^2 \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\phi _0 \left(\frac{r_0}{r}\right)^{\lambda }+1\right) <0 \,. \end{aligned} $
(35) By rearranging Eq. (35) the same as Eq. (33), the parameter
$ \phi_0 $ has some bound. However, Eq. (35) is quadratic in$ \phi_0 $ , and this equation imposes a double constraint on the value of$ \phi_0 $ . Thus, the range of$ \phi_0 $ is given by$ \begin{equation} {\rm{max}}\left[h_-\left(\frac{r_0}{r}\right)\right]\,<\phi_0\,<{\rm{min}}\left[h_+\left(\frac{r_0}{r}\right)\right] \,, \end{equation} $
(36) where the functions
$ h_-\left(\dfrac{r_0}{r}\right) $ and$ h_+\left(\dfrac{r_0}{r}\right) $ are given by$ h_-\left(\frac{r_0}{r}\right) = \frac{-B_1\left(\dfrac{r_0}{r}\right)-\sqrt{B_1\left(\dfrac{r_0}{r}\right)^2-4A_1\left(\dfrac{r_0}{r}\right)C_1\left(\dfrac{r_0}{r}\right)}}{2A_1\left(\dfrac{r_0}{r}\right)} \,, $
(37) $ h_+\left(\frac{r_0}{r}\right) = \frac{-B_1\left(\dfrac{r_0}{r}\right)+\sqrt{B_1\left(\dfrac{r_0}{r}\right)^2-4A_1\left(\dfrac{r_0}{r}\right)C_1\left(\dfrac{r_0}{r}\right)}}{2A_1\left(\dfrac{r_0}{r}\right)}\,, $
(38) and the functions
$ A_1\left(\dfrac{r_0}{r}\right),\,B_1\left(\dfrac{r_0}{r}\right),\,{\rm{and}}\; C_1\left(\dfrac{r_0}{r}\right) $ in the form of$ \lambda\,{\rm{and}}\,\eta $ are given by$ A_1\left(\frac{r_0}{r}\right) = 2 \lambda ^2 \left(1-\left(\frac{r_0}{r}\right)^{\eta +1}\right) \left(\frac{r_0}{r}\right)^{2 \lambda } \,, $
(39) $ B_1\left(\frac{r_0}{r}\right) = \lambda \left(\frac{r_0}{r}\right)^{\lambda } \left(2 \lambda -(\eta +2 \lambda +1) \left(\frac{r_0}{r}\right)^{\eta +1}\right) \,, $
(40) $ C_1\left(\frac{r_0}{r}\right) = (1- \eta) \left(\frac{r_0}{r}\right)^{\eta +1} \,. $
(41) At the throat
$ r = r_0 $ , the combination$ \rho+p_t $ is positive if$ \phi_0>\phi_c $ from Eq. (32). Moreover, from Eq. (36), we can see that$ \phi_0 $ is positive for the entire range of r, i.e., condition$ \rho+p_t $ does not have any zeroes or does not change the sign if Eq. (36) holds. Thus,$ \rho+p_t $ is always positive in the entire spacetime. The function$ h_-\left(\dfrac{r_0}{r}\right) $ monotonically increases in the interval$ \dfrac{r_0}{r} \in (0, 1] $ , which shows that$ {\rm{max}}\left[h_-\left(\dfrac{r_0}{r}\right)\right] = h_-(1) = \phi_c $ . Interestingly, while analyzing$ \rho + p_t >0 $ , we find that if$ {B_1}^2- 4A_1 C_1 = 0 $ for some$ \dfrac{r_0}{r} $ ,$ {\rm{max}}\left[h_-\left(\dfrac{r_0}{r}\right)\right] = {\rm{min}}\left[h_+\left(\dfrac{r_0}{r}\right)\right] $ ; however, it gives a contradiction for Eq. (36) and is impossible to satisfy. Therefore, there would not be a$ \phi_0 $ such that$ \rho+p_t $ does not change sign. -
In Secs. IV.A.1 and IV.A.2, we establish the conditions necessary for maintaining the combinations
$ \rho+p_r>0 $ and$ \rho+p_t> 0 $ throughout space-time. By combining the results of our analysis, we create a set of constraints on the parameters$ \lambda,\,\eta,\;{\rm{and}}\; \phi_0 $ that enable us to find WH solutions that satisfy the NEC for the entire spacetime. This is in line with our initial assumption that either$ \alpha <0,\,\, \beta >-8 \pi \,\,\,\,{\rm{or}} \,\,\,\, \alpha >0,\,\, \beta <-8 \pi $ , which we previously established as necessary for the NEC to be valid at the throat. From Sec. IV.A.1, a necessary condition for$ \rho+p_r>0 $ is$ \phi_0> {\rm{max}} (\phi_c,\, \phi_{{\rm{min}}}) $ ; however, from Sec. IV.A.2, a necessary condition for$ \rho+p_t>0 $ is$ \phi_c\,<\phi_0\,< {\rm{min}}\left[h_+\left(\dfrac{r_0}{r}\right)\right] $ . Furthermore, a necessary condition to satisfy both combinations simultaneously is$ \phi_c\,<\phi_0\,< {\rm{min}}\left[h_+\left(\dfrac{r_0}{r}\right)\right] $ with$ {\rm{min}}\left[h_+\left(\dfrac{r_0}{r}\right)\right]> \phi_{{\rm{min}}} $ .From Eqs. (34) and (38), we find that
$\phi_{{\rm{min}}} = {\rm{min}}\left[h_+\left(\dfrac{r_0}{r}\right)\right] = 0$ in the parameter range$ \lambda < \eta +1 $ . In this range,$ \phi_0 = 0 $ is the only possible value for$ \phi_0 $ to allow the solutions to satisfy the NEC for entire spacetime, leading to the trivial redshift function$ \phi (r) = 0 $ . Consequently, when$ \lambda \geq \eta +1 $ , the NEC is satisfied for the entire spacetime if$ \phi_0 > 0 $ . This indicates that the redshift function should be non-trivial (i.e., not equal to zero) for physically relevant solutions to exist. This requirement of a non-trivial redshift function is consistent with the condition$ \phi_c > \phi_{{\rm{min}}} $ , which must be fulfilled at all times. Therefore, we restrict our analysis to only the parameter region in which$ \phi_0 > 0 $ to ensure the existence of physically meaningful solutions with non-trivial redshift functions. In particular, as highlighted in our earlier discussion, we must consider the parameters$ \lambda, \eta,\, {\rm{and}}\, \phi_0 $ such that$ \begin{align} \phi_c\,&<\phi_0\,<{\rm{min}}\left[h_+\left(\frac{r_0}{r}\right)\right],\,\,\,\eta>1,\,\,\,\lambda \geq \eta +1\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{with}} \\ & (\alpha >0,\,\, \beta <-8 \pi)\,\,\,\,{\rm{or}} \,\,\,\, (\alpha <0,\,\, \beta >-8 \pi) \,, \end{align} $
(42) for WH solutions that satisfy the NEC for the entirety of spacetime.
Subsequently, this analysis can be extended to encompass the verification of the WEC and SEC throughout the spacetime. Because these conditions are implied by the NEC, a comprehensive analysis of the entire parameter space is unnecessary, and we can instead limit our assessment to the already specified parameter region in Eq. (42). Therefore, in the following sections, we focus on this particular parameter region to conduct a further investigation into the required constraints.
-
Let us turn to the WEC analysis. For the WEC, the combinations
$ \rho>0,\,\rho+p_r>0,\,{\rm{and}}\,\rho+p_t>0 $ must be satisfied. We discuss$ \rho+p_r>0\,{\rm{and}}\,\rho+p_t>0 $ in subsection IV A. Therefore, in this subsection, we study the positivity of energy density, i.e.,$ \rho>0 $ . The following boundary condition applies at the throat:$ \begin{equation} \rho(r) \bigg\vert_{(r = \,r_0)} = -\frac{\alpha \left(\lambda \phi _0 (-5 \beta \eta +\beta +48 \pi )-4 \beta \eta +48 \pi \eta \right)}{12 (4 \pi -\beta ) (\beta +8 \pi ) {r_0}^2} \,. \end{equation} $
(43) Here, we can clearly see that ρ is always positive at
$ r = r_0 $ under the conditions given in Eq. (42) except$ \alpha <0,\,\, \beta >-8 \pi $ . Therefore, we again restrict Eq. (42) to satisfy the NEC in the entire spacetime and make ρ positive at the throat so that$ \begin{aligned}[b] &\phi_c\,<\phi_0\,<{\rm{min}}\left[h_+\left(\frac{r_0}{r}\right)\right],\,\,\,\,\,\,\eta>1,\,\,\,\,\,\,\lambda \geq \eta +1\,\,\,\,\,\,\\&{\rm{with}}\,\,\,\,\,\, (\alpha >0,\,\, \beta <-8 \pi) \,. \end{aligned} $
(44) In addition,
$ \rho>0 $ along with Eq. (43) impose a constraint on the parameter$ \phi_0 $ , i.e.,$ \begin{equation} \phi _0>\frac{4\eta \left(\beta-12\pi\right) }{\lambda \left(48\pi+\beta-5\beta\eta\right)}\equiv \phi_{2c} \,. \end{equation} $
(45) Now, using Eq. (21), the inequality
$ \rho>0 $ with the restriction given in (44) can be written in the form$ \begin{aligned}[b]& \left(\frac{r_0}{r}\right)^{\eta +1} \Bigg(4 (\beta -12 \pi ) \eta +\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \Bigg(\beta (5 \eta +10 \lambda -11)\\&\quad +10 \beta \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }-48 \pi \Bigg)\Bigg)\\ &\quad -10 \beta \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\lambda +\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }-1\right)<0 \,. \end{aligned} $
(46) By rearranging Eq. (46) the same as Eq. (35), i.e., the analysis of
$ \rho + p_t $ , the parameter$ \phi_0 $ has some bound. However, Eq. (46) is quadratic in$ \phi_0 $ , and this equation imposes a double constraint on the value of$ \phi_0 $ . Thus, the range of the parameter$ \phi_0 $ is given by$ \begin{equation} {\rm{max}}\left[g_-\left(\frac{r_0}{r}\right)\right]\,<\phi_0\,<{\rm{min}}\left[g_+\left(\frac{r_0}{r}\right)\right] \,, \end{equation} $
(47) where the functions
$ g_-\left(\dfrac{r_0}{r}\right) $ and$ g_+\left(\dfrac{r_0}{r}\right) $ are given by$ g_-\left(\frac{r_0}{r}\right) = \frac{-B_2\left(\dfrac{r_0}{r}\right)-\sqrt{B_2\left(\dfrac{r_0}{r}\right)^2-4A_2\left(\dfrac{r_0}{r}\right)C_2\left(\dfrac{r_0}{r}\right)}}{2A_2\left(\dfrac{r_0}{r}\right)} \,, $
(48) $ g_+\left(\frac{r_0}{r}\right) = \frac{-B_2\left(\dfrac{r_0}{r}\right)+\sqrt{B_2\left(\dfrac{r_0}{r}\right)^2-4A_2\left(\dfrac{r_0}{r}\right)C_2\left(\dfrac{r_0}{r}\right)}}{2A_2\left(\dfrac{r_0}{r}\right)} \,, $
(49) and the functions
$ A_2\left(\dfrac{r_0}{r}\right),\,B_2\left(\dfrac{r_0}{r}\right),\,{\rm{and}}\,C_2\left(\dfrac{r_0}{r}\right) $ in the form of$ \lambda,\,\eta,\,{\rm{and}}\,\beta $ are given by$ A_2\left(\frac{r_0}{r}\right) = -10 \beta \lambda ^2 \left(1-\left(\frac{r_0}{r}\right)^{\eta +1}\right) \left(\frac{r_0}{r}\right)^{2 \lambda } \,, $
(50) $ \begin{aligned}[b]B_2\left(\frac{r_0}{r}\right) =& \lambda \left(\frac{r_0}{r}\right)^{\lambda } \Bigg(\left(\frac{r_0}{r}\right)^{\eta +1} (\beta (5 \eta\\& +10 \lambda -11)-48 \pi )-10 \beta (\lambda -1)\Bigg) \,, \end{aligned}$
(51) $ C_2 \left(\frac{r_0}{r}\right) = 4 (\beta- 12 \pi) \eta \left(\frac{r_0}{r}\right){}^{\eta +1} \,. $
(52) At the throat
$ r = r_0 $ , the energy density ρ is positive under the restriction given in Eq. (44). Moreover, from Eq. (47), we can see that$ \phi_0 $ is positive for the entire range of r, i.e., ρ does not have any zeroes or does not change the sign if Eq. (47) holds. Thus, the energy density ρ is always positive in the entire spacetime. The function$ g_-\left(\dfrac{r_0}{r}\right) $ monotonically increases in the interval$ \dfrac{r_0}{r} \in (0, 1] $ , which shows that$ {\rm{max}}\left[g_-\left(\dfrac{r_0}{r}\right)\right] = g_-(1) \equiv \phi_{2c} $ . Here, we can verify that$ \phi_{c}>\phi_{2c} $ and$ {\rm{min}}\left[h_+\left(\dfrac{r_0}{r}\right)\right]<{\rm{min}}\left[g_+\left(\dfrac{r_0}{r}\right)\right] $ under the restrictions given in Eq. (44), revealing that bounds on$ \phi_0 $ arising from the NEC are stronger than those arising from$ \rho>0 $ , i.e., if we choose parameters from restrictions obtained from the NEC to satisfy the NEC through the entire space, this process will keep ρ positive everywhere, and thus the WEC will also be satisfied through the entire space. However, the converse of this is not true, i.e.,$ \rho>0 \nrightarrow $ verification of the NEC. This one sided result guarantees that we do not get$ {\rm{max}}\left[g_-\left(\dfrac{r_0}{r}\right)\right]\, = {\rm{min}}\left[g_+\left(\dfrac{r_0}{r}\right)\right] $ . -
Let us now analyze the SEC. For the SEC, the combinations
$\rho+p_r>0,\,\rho+p_t>0 $ and$ \rho+p_r+2p_t>0 $ must be satisfied. We discuss$\rho+p_r>0 $ and$ \rho+p_t>0 $ in subsection IV.A. Therefore, in this subsection, we study the positivity of$ \rho+p_r+2p_t $ . The following boundary condition applies at the throat:$ \begin{aligned}[b]& \rho(r)+p_r(r)+2p_t(r) \bigg\vert_{(r = \,r_0)} \\=& \frac{\alpha \left(\lambda \phi _0 (\beta (\eta +7)-24 \pi (\eta -1))+8 \beta \eta \right)}{6 (4 \pi -\beta ) (\beta +8 \pi ) {r_0}^2} \,. \end{aligned} $
(53) Here, we can see that
$ \rho+p_r+2p_t $ is always positive at$ r = r_0 $ under the conditions given in Eq. (44). In addition,$ \rho+p_r+2p_t>0 $ along with Eq. (53) impose a constraint on the parameter$ \phi_0 $ , i.e.,$ \begin{equation} \phi _0>-\frac{8 \beta \eta }{\beta \eta \lambda +7 \beta \lambda -24 \pi \eta \lambda +24 \pi \lambda }\equiv \phi_{3c} \,. \end{equation} $
(54) Now, using Eq. (28), the inequality
$ \rho+p_r+2p_t>0 $ with the restriction given in (44) can be written in the form$ \begin{aligned}[b]& \left(\frac{r_0}{r}\right)^{\eta +1} \Bigg(8 \beta \eta +\lambda \phi _0 \left(\dfrac{r_0}{r}\right)^{\lambda } \Bigg(\beta (\eta +2 \lambda +5)\\&\quad -24 \pi (\eta +2 \lambda -3)-2 (24 \pi -\beta ) \lambda \phi _0 \left(\dfrac{r_0}{r}\right)^{\lambda }\Bigg)\Bigg)\\&\quad +2 (24 \pi -\beta ) \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\lambda +\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }-1\right)<0 \,. \end{aligned} $
(55) By rearranging Eq. (55) the same as Eq. (35), i.e., the analysis of
$ \rho + p_t $ , the parameter$ \phi_0 $ has some bound. However, Eq. (55) is quadratic in$ \phi_0 $ , and this equation imposes a double constraint on the value of$ \phi_0 $ . Thus, the range of the parameter$ \phi_0 $ is given by$ \begin{equation} {\rm{max}}\left[f_-\left(\frac{r_0}{r}\right)\right]\,<\phi_0\,<{\rm{min}}\left[f_+\left(\frac{r_0}{r}\right)\right] \,, \end{equation} $
(56) where the functions
$ f_-\left(\dfrac{r_0}{r}\right) $ and$ f_+\left(\dfrac{r_0}{r}\right) $ are given by$ f_-\left(\frac{r_0}{r}\right) = \frac{-B_3\left(\dfrac{r_0}{r}\right)-\sqrt{B_3\left(\dfrac{r_0}{r}\right)^2-4A_3\left(\dfrac{r_0}{r}\right)C_3\left(\dfrac{r_0}{r}\right)}}{2A_3\left(\dfrac{r_0}{r}\right)} \,, $
(57) $ f_+\left(\frac{r_0}{r}\right) = \frac{-B_3\left(\dfrac{r_0}{r}\right)+\sqrt{B_3\left(\dfrac{r_0}{r}\right)^2-4A_3\left(\dfrac{r_0}{r}\right)C_3\left(\dfrac{r_0}{r}\right)}}{2A_3\left(\dfrac{r_0}{r}\right)} \,, $
(58) and the functions
$ A_3\left(\dfrac{r_0}{r}\right),\,B_3\left(\dfrac{r_0}{r}\right),\,{\rm{and}}\,C_3\left(\dfrac{r_0}{r}\right) $ in the form of$ \lambda,\,\eta,\,{\rm{and}}\,\beta $ are given by$ A_3\left(\frac{r_0}{r}\right) = 2 (24 \pi -\beta ) \lambda ^2 \left(1-\left(\frac{r_0}{r}\right)^{\eta +1}\right) \left(\frac{r_0}{r}\right)^{2 \lambda } \,, $
(59) $ \begin{aligned}[b] B_3\left(\frac{r_0}{r}\right) =& \lambda \left(\frac{r_0}{r}\right)^{\lambda } \Bigg(2 (24 \pi -\beta ) (\lambda -1) -\left(\frac{r_0}{r}\right)^{\eta +1}\\&\times (24 \pi (\eta +2 \lambda -3)-\beta (\eta +2 \lambda +5))\Bigg) \,, \end{aligned} $
(60) $ C_3 \left(\frac{r_0}{r}\right) = 8 \beta \eta \left(\frac{r_0}{r}\right)^{\eta +1} \,. $
(61) At the throat
$ r = r_0 $ ,$ \rho+p_r+2p_t $ is positive under the restriction given in Eq. (44). Moreover, from Eq. (56), we can see that$ \rho+p_r+2p_t $ is positive for the entire range of r, i.e.,$ \rho+p_r+2p_t $ does not have any zeroes or does not change the sign if Eq. (56) holds. Thus,$ \rho+p_r+2p_t $ is always positive in the entire spacetime. The function$ f_-\left(\dfrac{r_0}{r}\right) $ monotonically increases in the interval$ \dfrac{r_0}{r} \in (0, 1] $ , which shows that$ {\rm{max}}\left[f_-\left(\dfrac{r_0}{r}\right)\right] = f_-(1) \equiv \phi_{3c} $ . Here, we can verify that$ \phi_{c}>\phi_{4c} $ and$ {\rm{min}}\left[h_+\left(\dfrac{r_0}{r}\right)\right]< {\rm{min}}\left[f_+\left(\dfrac{r_0}{r}\right)\right] $ under the restrictions given in Eq. (44), which reveals that bounds on$ \phi_0 $ arising from the NEC are stronger than those arising from$ \rho+p_r+2p_t >0 $ , i.e., if we choose parameters from restrictions obtained from the NEC to satisfy the NEC through the entire space, this process will keep$ \rho+p_r+2p_t $ positive everywhere, and thus the SEC will also be satisfied through the entire space. However, the converse of this is not true, i.e.,$ \rho+p_r+2p_t >0 \nrightarrow $ verification of the NEC. This one sided result guarantees that we do not get${\rm{max}}\left[f_-\left(\dfrac{r_0}{r}\right)\right]\, = {\rm{min}}\left[f_+\left(\dfrac{r_0}{r}\right)\right]$ . -
Finally, let us analyze the DEC. For the DEC, the combinations
$\rho > 0,\; \rho+p_r > 0,\;\rho+p_t > 0, \rho-p_r > 0,\;{\rm{and}}\; \rho-p_t >0$ must be satisfied. We discuss$\rho > 0, \,\rho+p_r >0, {\rm{and}}\;\;\rho+p_t > 0$ in subsections IV A−IV B. Therefore, in this subsection, we study the positivity of$\rho-p_r\,\;{\rm{and}} \rho-p_t$ . The following boundary condition applies at the throat for$ \rho-p_r $ $ \begin{aligned}[b]& \rho(r)-p_r(r) \bigg\vert_{(r = \,r_0)} \\=& -\frac{\alpha \left(\lambda \phi _0 (-5 \beta \eta +\beta +48 \pi )+2 \beta (\eta +3)+24 \pi (\eta -1)\right)}{6 (4 \pi -\beta ) (\beta +8 \pi ) r_0^2} \,, \end{aligned} $
(62) $ \begin{aligned}[b]& \rho(r)-p_t(r) \bigg\vert_{(r = \,r_0)} \\=& \frac{\alpha \left(2 \lambda \phi _0 (\beta (\eta -2)+6 \pi (\eta -3))+\beta (\eta +3)-12 \pi (3 \eta +1)\right)}{6 (4 \pi -\beta ) (\beta +8 \pi ) {r_0}^2} \,. \end{aligned} $
(63) Here, we can see that
$ \rho-p_t $ is always positive at$ r = r_0 $ under the conditions given in Eq. (44) and does not require any extra conditions other than those given in Eq. (44). However,$ \rho-p_r $ along with Eq. (62) impose a constraint on parameter$ \phi_0 $ to be positive at the throat, i.e.,$ \begin{equation} \phi _0>\frac{2 \beta \eta +6 \beta +24 \pi \eta -24 \pi }{5 \beta \eta \lambda -\beta \lambda -48 \pi \lambda }\equiv \phi_{4c} \,. \end{equation} $
(64) By taking the combination
$ \rho-p_r $ at the throat$ r = r_0 $ , i.e., Eq. (62) along with the restrictions given in Eqs. (44) and (64), we can verify the positivity of the combination$ \rho - p_r $ at the throat. To guarantee the physical relevance of the obtained WH solutions, it is not sufficient to satisfy the DEC at the throat. Thus, to guarantee the physical relevance of the obtained WH solutions for the entire spacetime, we begin the analysis for the combination$ \rho-p_r $ and$ \rho-p_t $ separately and impose constraints on the parameters β, λ, η, and$ \phi_0 $ , which offers such a guarantee for$ \rho-p_r>0 $ and$ \rho-p_t>0 $ . Then, we combine the results into a unified set of constraints. -
Here, we begin with the analysis of the combination
$ \rho-p_r>0 $ . Using Eq. (26), the inequality$ \rho-p_r>0 $ with the restriction given in Eq. (44) can be written in the form$ \begin{aligned}[b]& \left(\dfrac{r_0}{r}\right)^{\eta +1} \Bigg(-2 \beta (\eta +3)-24 \pi (\eta -1)+\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }\\&\quad\times \left(5 \beta \eta +10 \beta \lambda +\beta +10 \beta \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }-96 \pi \right)\Bigg)\\&\quad -2 \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(5 \beta \lambda +\beta +5 \beta \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }-24 \pi \right)<0 \,. \end{aligned} $
(65) As in the previous case, Eq. (65) is quadratic in
$ \phi_0 $ and hence imposes a double constraint on the value of$ \phi_0 $ . Thus, the range of the parameter$ \phi_0 $ is given by$ \begin{equation} {\rm{max}}\left[F_-\left(\frac{r_0}{r}\right)\right]\,<\phi_0\,<{\rm{min}}\left[F_+\left(\frac{r_0}{r}\right)\right] \,, \end{equation} $
(66) where the functions
$ F_-\left(\dfrac{r_0}{r}\right) $ and$ F_+\left(\dfrac{r_0}{r}\right) $ are given by$ F_-\left(\frac{r_0}{r}\right) = \frac{-B_4\left(\dfrac{r_0}{r}\right)-\sqrt{B_4\left(\dfrac{r_0}{r}\right)^2-4A_4\left(\dfrac{r_0}{r}\right)C_4\left(\dfrac{r_0}{r}\right)}}{2A_4\left(\dfrac{r_0}{r}\right)} \,, $
(67) $ F_+\left(\frac{r_0}{r}\right) = \frac{-B_4\left(\dfrac{r_0}{r}\right)+\sqrt{B_4\left(\dfrac{r_0}{r}\right)^2-4A_4\left(\dfrac{r_0}{r}\right)C_4\left(\dfrac{r_0}{r}\right)}}{2A_4\left(\dfrac{r_0}{r}\right)} \,, $
(68) and the functions
$ A_4\left(\dfrac{r_0}{r}\right),\,B_4\left(\dfrac{r_0}{r}\right),\,{\rm{and}}\;C_4\left(\dfrac{r_0}{r}\right) $ in the form of$ \lambda,\;\eta,\;{\rm{and}}\;\beta $ are given by$ A_4\left(\frac{r_0}{r}\right) = -10 \beta \lambda ^2 \left(1-\left(\frac{r_0}{r}\right)^{\eta +1}\right) \left(\frac{r_0}{r}\right)^{2 \lambda } \,, $
(69) $ \begin{aligned}[b] B_4\left(\frac{r_0}{r}\right) =& \lambda \left(\frac{r_0}{r}\right)^{\lambda } \Bigg(\left(\frac{r_0}{r}\right)^{\eta +1} (5 \beta \eta +10 \beta \lambda +\beta -96 \pi )\\&-2 (5 \beta \lambda +\beta -24 \pi )\Bigg) \,, \end{aligned} $
(70) $ C_4 \left(\frac{r_0}{r}\right) = -2 (\beta (\eta +3)+12 \pi (\eta -1)) \left(\frac{r_0}{r}\right){}^{\eta +1} \,. $
(71) Thus,
$ \rho-p_r $ is positive at the throat$ r = r_0 $ under the restriction given in Eq. (44) with the extra restriction on$ \phi_0 $ in Eq. (64). Moreover, from Eq. (66), we can see that$ \rho-p_r $ is positive for the entire range of r, i.e.,$ \rho-p_r $ does not have any zeroes or does not change the sign if Eq. (66) holds. Thus,$ \rho-p_r $ is always positive in the entire spacetime. The function$ F_-\left(\dfrac{r_0}{r}\right) $ monotonically increases in the interval$ \dfrac{r_0}{r} \in (0, 1] $ , which shows that$ {\rm{max}}\left[F_-\left(\dfrac{r_0}{r}\right)\right] = F_-(1) \equiv \phi_{4c} $ . Additionally, in this case, we must verify whether we obtain$B_4\left(\dfrac{r_0}{r}\right)^2 - $ $ 4A_4\left(\dfrac{r_0}{r}\right)C_4\left(\dfrac{r_0}{r}\right) = 0 $ at any point$ \dfrac{r_0}{r} $ , which corresponds to$ {\rm{max}}\left[F_-\left(\dfrac{r_0}{r}\right)\right]\, = \,{\rm{min}}\left[F_+\left(\dfrac{r_0}{r}\right)\right] $ and prevents us from obtaining a suitable value of$ \phi_0 $ . Now, taking the coordinate transformation$ \left(\dfrac{r_0}{r}\right)^{1+\eta} = x $ , we can rewrite the equation$ B_4\left(\dfrac{r_0}{r}\right)^2-4A_4\left(\dfrac{r_0}{r}\right)C_4\left(\dfrac{r_0}{r}\right) = 0 $ in the form$ \begin{aligned}[b]& \left[-10 \beta \lambda -2 \beta +x (5 \beta \eta +10 \beta \lambda +\beta -96 \pi )+48 \pi \right]^2\\&\quad +80 \beta \left[\beta (\eta +3)+12 \pi (\eta -1)\right] \left(x-1\right) x = 0 \,. \end{aligned} $
(72) Eq. (72) is quadratic in x; thus, it gives two roots,
$ x_1 $ and$ x_2 $ , and we can verify that$ x_1 $ and$ x_2 $ are real and belong to the interval$ (0,1] $ under the restrictions given in Eq. (44), which correspond to${\rm{max}}\left[F_-\left(\dfrac{r_0}{r}\right)\right]\, = $ $ {\rm{min}}\left[F_+\left(\dfrac{r_0}{r}\right)\right]$ . Therefore, we must require extra restrictions other than those given in Eq. (44) to avoid these roots, and we impose a constraint on β and η in the form$ \begin{equation} \frac{12 \pi -12 \pi \eta }{\eta +3}<\beta <-8 \pi \,\,\,\,\,\,{\rm{and}}\,\,\,\,\,\,\eta>9 \,. \end{equation} $
(73) Now, using the extra restrictions given in Eq. (73) with Eqs. (44) and (64), we can guarantee that
${\rm{max}}\left[F_-\left(\dfrac{r_0}{r}\right)\right]\, = \, r {\rm{min}}\left[F_+\left(\dfrac{r_0}{r}\right)\right]$ does not occur, and because${\rm{max}}\left[F_-\left(\dfrac{r_0}{r}\right)\right] = \phi_{4c}$ , we can guarantee the positivity of$ \rho- p_r $ for the entire spacetime. -
Now, we look into the combination
$ \rho-p_t>0 $ . Using Eq. (27), the inequality$ \rho-p_r>0 $ with the restriction given in Eq. (44) can be written in the form$ \begin{aligned}[b] &\left(\dfrac{r_0}{r}\right)^{\eta +1} \Bigg(\beta (\eta +3)-12 \pi (3 \eta +1)+2 \lambda {\phi_0} \left(\frac{r_0}{r}\right)^{\lambda }\Bigg.\\ &\Bigg.\times \left(\beta (\eta +2 \lambda -7)+6 \pi (\eta +2 \lambda -3)+2 (\beta +6 \pi ) \lambda {\phi_0}\left(\frac{r_0}{r}\right)^{\lambda }\right)\Bigg)\\ & +2 \lambda {\phi_0} \left(\frac{r_0}{r}\right)^{\lambda } \left(-2 (\beta +6 \pi ) \lambda +5 {\beta -2} (\beta +6 \pi ) \lambda {\phi_0} \left(\frac{r_0}{r}\right)^{\lambda }\right)<0 \,. \end{aligned} $
(74) By rearranging Eq. (74) the same as Eq. (35), i.e., the analysis of
$ \rho + p_t $ , the parameter$ \phi_0 $ has some bound. However, Eq. (74) is quadratic in$ \phi_0 $ , and this equation imposes a double constraint on the value of$ \phi_0 $ . Thus, the range of the parameter$ \phi_0 $ is given by$ \begin{equation} {\rm{max}}\left[G_-\left(\frac{r_0}{r}\right)\right]\,<\phi_0\,<{\rm{min}}\left[G_+\left(\frac{r_0}{r}\right)\right] \,, \end{equation} $
(75) where the functions
$ G_-\left(\dfrac{r_0}{r}\right) $ and$ G_+\left(\dfrac{r_0}{r}\right) $ are given by$ G_-\left(\frac{r_0}{r}\right) = \frac{-B_5\left(\dfrac{r_0}{r}\right)-\sqrt{B_5\left(\dfrac{r_0}{r}\right)^2-4A_5\left(\dfrac{r_0}{r}\right)C_5\left(\dfrac{r_0}{r}\right)}}{2A_5\left(\dfrac{r_0}{r}\right)} \,, $
(76) $ G_+\left(\frac{r_0}{r}\right) = \frac{-B_5\left(\dfrac{r_0}{r}\right)+\sqrt{B_5\left(\dfrac{r_0}{r}\right)^2-4A_5\left(\dfrac{r_0}{r}\right)C_5\left(\dfrac{r_0}{r}\right)}}{2A_5\left(\dfrac{r_0}{r}\right)} \,, $
(77) and the functions
$ A_5\left(\dfrac{r_0}{r}\right),\,B_5\left(\dfrac{r_0}{r}\right),\,{\rm{and}}\,C_5\left(\dfrac{r_0}{r}\right) $ in the form of$ \lambda,\,\eta,\,{\rm{and}}\,\beta $ are given by$ A_5\left(\frac{r_0}{r}\right) = 4 (\beta +6 \pi ) \lambda ^2 \left(\left(\frac{r_0}{r}\right)^{\eta +1}-1\right) \left(\frac{r_0}{r}\right)^{2 \lambda } \,, $
(78) $ \begin{aligned}[b] B_5\left(\frac{r_0}{r}\right) =& 2 \lambda \left(\frac{r_0}{r}\right)^{\lambda } \Bigg(\left(\frac{r_0}{r}\right)^{\eta +1} (\beta (\eta +2 \lambda -7)\\&+6 \pi (\eta +2 \lambda -3))-2 (\beta +6 \pi ) \lambda +5 \beta \Bigg) \,, \end{aligned} $
(79) $ C_5 \left(\frac{r_0}{r}\right) = (\beta (\eta +3)-12 \pi (3 \eta +1)) \left(\frac{r_0}{r}\right)^{\eta +1} \,. $
(80) Here, we can verify that the roots of the equation
$ B_5\left(\dfrac{r_0}{r}\right)^2-4A_5\left(\dfrac{r_0}{r}\right)C_5\left(\dfrac{r_0}{r}\right) = 0 $ do not lie in the interval$ (0,1] $ and also do not result in$ {\rm{max}}\left[G_-\left(\dfrac{r_0}{r}\right)\right]\, = {\rm{min}}\left[G_+\left(\dfrac{r_0}{r}\right)\right] $ . Thus,$ \rho-p_t $ is positive in the entire spacetime with the restrictions$ \begin{equation} \phi_0\,>\,\phi_{4c},\,\,\,\,\eta>9,\,\,\,\,\lambda \geq \eta+1, \,\,\,\, {\rm{and}} \,\,\,\,\frac{12 \pi -12 \pi \eta }{\eta +3}<\beta <-8 \pi \,. \end{equation} $
(81) Hence, we can see that the DEC requires more restrictions than the NEC to be satisfied throughout the spacetime. In the next subsection, we combine all the necessary conditions to satisfy the NEC, WEC, SEC, and DEC.
-
In subsections IV A-IV D, we analyze the WH solution and form several conditions necessary for the ECs to be satisfied. They are summarized as follows:
Solution satisfying the NEC:
1. Choose
$ (\alpha >0,\,\, \beta <-8 \pi)\,\,\,\,{\rm{or}} \,\,\,\, (\alpha <0,\,\, \beta >-8 \pi) $ ,2. Choose
$ \eta>1 $ and$ \lambda \geq \eta +1 $ ,3. Choose
$ \phi_c\,<\phi_0\,<{\rm{min}}\left[h_+\left(\dfrac{r_0}{r}\right)\right] $ .Solution satisfying the NEC and WEC:
1. Choose
$ \alpha >0 $ and$ \beta <-8 \pi $ ,2. Choose
$ \eta>1 $ and$ \lambda \geq \eta +1 $ ,3. Choose
$ \phi_c\,<\phi_0\,<{\rm{min}}\left[h_+\left(\dfrac{r_0}{r}\right)\right] $ .Solution satisfying the NEC, WEC, and SEC:
1. Choose
$ \alpha >0 $ and$ \beta <-8 \pi $ ,2. Choose
$ \eta>1 $ and$ \lambda \geq \eta +1 $ ,3. Choose
$ \phi_c\,<\phi_0\,<{\rm{min}}\left[h_+\left(\dfrac{r_0}{r}\right)\right] $ .Solution satisfying the NEC, WEC, SEC, and DEC:
1. Choose
$ \alpha >0 $ and$ \beta <-8 \pi $ ,2. Choose
$ \eta>9 $ such that$ \dfrac{12 \pi -12 \pi \eta }{\eta +3}<\beta <-8 \pi $ ,3. Choose
$ \lambda \geq \eta +1 $ ,4. Choose
$ \phi_{4c}\,<\phi_0\,<{\rm{min}}\left[F_+\left(\dfrac{r_0}{r}\right)\right] $ .Now, considering the above analysis, we explore two examples of solutions. The first satisfies the NEC, WEC, and SEC, as shown in Fig. 1, and the second is for the solution satisfying all the ECs, i.e., the NEC, WEC, SEC, and DEC, as shown in Fig. 2. This is done by considering several particular values of α, β, λ, η, and
$ \phi_0 $ . -
In this section, we consider the following non-linear form of
$ f(Q,T) $ [77]:$ \begin{equation} f(Q,T) = Q+\gamma\,Q^2+\mu\,T \,, \end{equation} $
(82) where γ and μ are model parameters.
Moreover, we choose the same redshift function
$ \phi(r) $ and shape function$ b(r) $ as used in the linear model given by Eqs. (19) and (20). Using a non-linear form of$ f(Q,T) $ , a particular form of the redshift and shape function, energy density ρ, radial pressure$ p_r $ , and tangential pressure$ p_t $ are calculated from the field equations (Eqs. (15)−(17)) and written as$ \begin{aligned}[b] \rho = &\frac{1}{12 (4 \pi -\mu ) (\mu +8 \pi ) r^6 \left(r-r_0 \left(\frac{r_0}{r}\right)^{\eta }\right)^2}\left[r r_0^3 \left(\frac{r_0}{r}\right)^{3 \eta } \left(\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\mu \left(2 \gamma \left(5 \eta ^2+20 (\eta +1) \lambda +34 \eta +49\right) \right.\right.\right.\right.\\& \left.\left.\left.\left. +r^2 (5 \eta +10 \lambda -11)\right)+10 \lambda \mu \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(4 \gamma (\eta +1)+r^2\right)-48 \pi \left(2 \gamma (\eta +1)+r^2\right)\right)-4 (12 \pi -\mu ) \left(2 \gamma (\eta +2)^2 \right.\right.\right. \\& \left.\left.\left. +\eta r^2\right)\right) +2 r^2 r_0^2 \left(\frac{r_0}{r}\right)^{2 \eta } \left(\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(-5 \lambda \mu \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(2 \gamma (\eta +1)+3 r^2\right)-\mu \left(10 \gamma (\eta (\lambda +2)+\lambda +3)+r^2 (5 \eta \right.\right.\right.\right. \\& \left.\left.\left.\left. +15 \lambda -16)\right)+48 \pi r^2\right) +4 \eta (12 \pi -\mu ) r^2\right)+r^6 \left(\frac{r_0}{r}\right)^{\eta +1} \left(4 \eta (\mu -12 \pi )+\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\mu (5 \eta +30 \lambda -31)+30 \lambda \right.\right.\right. \\& \left.\left.\left. \mu \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }-48 \pi \right)\right)-10 \lambda \mu r^6 \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\lambda +\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }-1\right)+\gamma r_0^4 \left(\frac{r_0}{r}\right)^{4 \eta } \left(-(\eta (11 \eta +30)+27) \mu +24 \pi \right.\right. \\& \left.\left. (\eta (3 \eta +10)+11)+2 \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }\left(-\mu \left(5 \eta ^2+10 (\eta +1) \lambda +14 \eta +19\right)+48 \pi (\eta +1)-10 (\eta +1) \lambda \mu \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }\right)\right)\right] \,, \end{aligned} $
(83) $ \begin{aligned}[b] p_r =& \frac{1}{12 (4 \pi -\mu ) (\mu +8 \pi ) r^6 \left(r-r_0 \left(\frac{r_0}{r}\right)^{\eta }\right)^2}\left[r r_0^3 \left(\frac{r_0}{r}\right)^{3 \eta } \left(\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(-\mu \left(2 \gamma \left(5 \eta ^2+20 (\eta +1) \lambda +82 \eta +97\right) \right.\right.\right.\right.\\& \left.\left.\left.\left. +r^2 (5 \eta +10 \lambda +13)\right)-10 \lambda \mu \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(4 \gamma (\eta +1)+r^2\right)+48 \pi \left(10 \gamma (\eta +1)+3 r^2\right)\right)+4 \mu \left(4 \gamma \eta (\eta +1)-2 \gamma + \right.\right.\right.\\& \left.\left.\left. (2 \eta +3) r^2\right)-48 \pi \left(r^2-2 \gamma (2 \eta +3)\right)\right)+2 r^2 r_0^2 \left(\frac{r_0}{r}\right)^{2 \eta } \left(\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(2 \gamma \mu (5 (\eta +1) \lambda +22 \eta +27)+5 \lambda \mu \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \right.\right.\right.\\& \left.\left.\left. \left(2 \gamma (\eta +1)+3 r^2\right)-96 \pi \left(\gamma \eta +\gamma +2 r^2\right)+5 \mu r^2 (\eta +3 \lambda +4)\right)+4 r^2 (12 \pi -(2 \eta +3) \mu )\right)+r^6 \left(\frac{r_0}{r}\right)^{\eta +1} \left(4 (2 \eta +3) \right.\right.\\& \left.\left. \mu -\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\mu (5 \eta +30 \lambda +41)+30 \lambda \mu \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }-336 \pi \right)-48 \pi \right)+2 \lambda r^6 \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(5 \lambda \mu +7 \mu +5 \lambda \mu \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \right.\right.\\& \left.\left. -48 \pi \right)+\gamma r_0^4 \left(\frac{r_0}{r}\right)^{4 \eta } \left((3-\eta (13 \eta +18)) \mu +24 \pi ((\eta -2) \eta -7)+2 \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\mu \left(5 \eta ^2+10 (\eta +1) \lambda +38 \eta +43\right) \right.\right.\right.\\& \left.\left.\left. -144 \pi (\eta +1)+10 (\eta +1) \lambda \mu \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }\right)\right)\right] \,, \end{aligned} $
(84) $ \begin{aligned}[b] p_t =& \frac{1}{12 (4 \pi -\mu ) (\mu +8 \pi ) r^6 \left(r-r_0 \left(\frac{r_0}{r}\right)^{\eta }\right)^2}\left[2 r^2 r_0^2 \left(\frac{r_0}{r}\right)^{2 \eta } \left(\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\lambda (24 \pi -\mu ) \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(2 \gamma (\eta +1)+3 r^2\right) \right.\right.\right.\\& \left.\left.\left. -\mu \left(2 \gamma (\eta (\lambda +8)+\lambda +9)+r^2 (\eta +3 \lambda +22)\right)+24 \pi \left(2 \gamma (\eta (\lambda +3)+\lambda +4)+r^2 (\eta +3 \lambda -1)\right)\right)-2 r^2 ((\eta -3) \mu \right.\right.\\& \left.\left. +12 \pi (\eta +1))\right)+r r_0^3 \left(\frac{r_0}{r}\right)^{3 \eta } \left(\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(-2 \lambda (24 \pi -\mu ) \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(4 \gamma (\eta +1)+r^2\right)+\mu \left(2 \gamma (\eta (\eta +4 \lambda +38)+ \right.\right.\right.\right.\\& \left.\left.\left.\left. 4 \lambda +41)+r^2 (\eta +2 \lambda +17)\right)-24 \pi \left(2 \gamma (\eta (\eta +4 \lambda +10)+4 \lambda +13)+r^2 (\eta +2 \lambda -1)\right)\right)+2 \mu \left(2 \gamma (\eta (\eta +10)+13) \right.\right.\right.\\& \left.\left.\left. +(\eta -3) r^2\right)+24 \pi (\eta +1) \left(2 \gamma (\eta +1)+r^2\right)\right)+r^6 \left(\frac{r_0}{r}\right)^{\eta +1} \left(2 (\eta -3) \mu +24 \pi (\eta +1)+\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\mu (\eta +6 \lambda +37) \right.\right.\right.\\& \left.\left.\left. -24 \pi (\eta +6 \lambda -1)-6 \lambda (24 \pi -\mu ) \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }\right)\right)+2 \lambda r^6 \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(-(\lambda +5) \mu +24 \pi \lambda +\lambda (24 \pi -\mu ) \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }\right)+\gamma \right.\\ &\left. r_0^4 \left(\frac{r_0}{r}\right)^{4 \eta } \left(-(\eta (\eta +18)+33) \mu -24 \pi (\eta +1)^2+2 \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(-\mu (\eta (\eta +2 \lambda +22)+2 \lambda +23)+24 \pi (\eta (\eta +2 \lambda +4) \right.\right.\right.\\& \left.\left.\left. +2 \lambda +5)+2 (\eta +1) \lambda (24 \pi -\mu )\phi _0 \left(\frac{r_0}{r}\right)^{\lambda }\right)\right)\right] \,. \end{aligned} $
(85) Finding the NEC in the radial and tangential directions is made possible by the following components:
$ \begin{equation} \rho+p_r = -\frac{\left(r_0 \left(\frac{r_0}{r}\right)^{\eta } \left(2 \gamma (\eta +1) r_0 \left(\frac{r_0}{r}\right)^{\eta }-r^3\right)+r^4\right) \left(r_0 \left(\frac{r_0}{r}\right)^{\eta } \left(\eta -2 \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }+1\right)+2 \lambda r \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }\right)}{(\mu +8 \pi ) r^6 \left(r-r_0 \left(\frac{r_0}{r}\right)^{\eta }\right)} \,, \end{equation} $
(86) $ \begin{aligned}[b] \rho+p_t =& \frac{1}{2 (\mu +8 \pi ) r^6 \left(r-r_0 \left(\frac{r_0}{r}\right)^{\eta }\right)^2} \left[2 r^2 r_0^2 \left(\frac{r_0}{r}\right)^{2 \eta } \left(\lambda \phi _0 \left(\frac{r_0}{r}\right){}^{\lambda } \left(2 \gamma (\eta (\lambda +3)+\lambda +4)+\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(2 \gamma (\eta +1)+ \right.\right.\right.\right. \\& \left.\left.\left.\left. 3 r^2\right)+r^2 (\eta +3 \lambda +1)\right)+(\eta -1) r^2\right)-r r_0^3 \left(\frac{r_0}{r}\right)^{3 \eta } \left(2 \gamma (\eta (\eta +6)+7)+\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(2 \gamma (\eta (\eta +4 \lambda +12)+4 \lambda \right.\right.\right. \\& \left.\left.\left. +15)+2 \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(4 \gamma (\eta +1)+r^2\right)+r^2 (\eta +2 \lambda +1)\right)+(\eta -1) r^2\right)-r^6 \left(\frac{r_0}{r}\right)^{\eta +1} \left(\eta +\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\eta +6 \lambda \right.\right.\right. \\& \left.\left.\left. +6 \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }+1\right)-1\right)+2 \lambda ^2 r^6 \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\phi _0 \left(\frac{r_0}{r}\right)^{\lambda }+1\right)+2 \gamma r_0^4 \left(\frac{r_0}{r}\right)^{4 \eta } \left(\eta (\eta +4)+\lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda } \left(\eta (\eta +2 \lambda \right.\right.\right. \\& \left.\left.\left. +6) +2 \lambda +2 (\eta +1) \lambda \phi _0 \left(\frac{r_0}{r}\right)^{\lambda }+7\right)+5\right)\right] \,. \end{aligned} $
(87) In this particular instance, we observe that the NEC along the radial and tangential directions becomes undefinable at the WH's throat, or
$ r = r_0 $ . This demonstrates that WH solutions are impossible to achieve using this shape function (20). As a result, we draw the conclusion that postulating a non-linear form (82) is inappropriate for WH solutions with the shape function (20). Yet, there are other shape function options that we might explore more in the future. -
Because there are two different metrics across the thin shell to match the condition along the boundary, we must use the Israel junction condition to obtain the solutions (in general, we use the junction condition because, along hypersurfaces, the metric must be continuous as well as differentiable; therefore, we check both the Christoffel symbol and Riemann curvature tensor to see what the boundary condition leads to, because in thin shell formulation, we can obtain such a thing via the calculations performed below).
We also note that the thin shell or three-manifold would be denoted by Σ. Outside of the thin shell, there are Schwarzschild solutions denoted by
$ M^+ $ , and inside, there is a WH$ M^- $ , and the total space-time would be$ M^+\cup\Sigma\cup M^- $ . We can focus the stress σ and pressure p, construct the effective potential from this, and find the condition for certain exotic matter given the NEC violation.This can be done as follows. We have the interior solutions
$ \begin{equation} {\rm d}s^2 = {\rm e}^{2\phi(r)}{\rm d}t^2-(f(r))^{-1}{\rm d}r^2-r^2\,{\rm d}\theta^2-r^2\,\sin^2\theta\,{\rm d}\Phi^2\,. \end{equation} $
(88) For the exterior solutions, we take the Schwarzschild solution of the form
$ \begin{equation} {\rm d}s^2 = -F(r){\rm d}t^2+(F(r))^{-1}{\rm d}r^2+r^2+{\rm d}\Omega^2\,. \end{equation} $
(89) We also note that in both cases, the space-like component is spherically symmetric, and on the boundary, we can obtain the FLRW metric
$ \begin{equation} {\rm d}s^2 = -{\rm d}\tau^2+a(\tau)^2 {\rm d}\Omega^2\,. \end{equation} $
(90) Now, if we take the formula for the first junction condition, we get
$ \begin{equation} K_{ab}^{\pm} = -n_{\gamma}^{\pm}\left(\frac{\partial^2x^{\gamma}_{\pm}}{\partial \zeta^a \partial \zeta^b}+\Gamma^{\gamma}_{\alpha\beta}\frac{\partial x^{\alpha}_{\pm}}{d\zeta^a}\frac{\partial x^{\beta}_{\pm}}{d\zeta^b}\right)\,, \end{equation} $
(91) and using the first Israel junction condition, we can obtain the proper boundary condition.
For interior geometry, we obtain the following components:
$ \begin{equation} K^{\tau-}_{\tau} = \frac{f'(a)+2\ddot{a}}{2\sqrt{f(a)+\dot{a}}};\,\,\,\,\,\,\,\,\,K^{\theta-}_{\theta} = \frac{\sqrt{f(a)+\dot{a}^2}}{a};\,\,\,\,\,\,\,\,\, K^{\phi-}_{\phi} = \sin^2{\theta} K^{\theta-}_{\theta}\,. \end{equation} $
(92) For exterior geometry, we obtain the following components:
$ \begin{equation} K^{\tau+}_{\tau} = \frac{F'(a)+2\ddot{a}}{2\sqrt{F(a)+\dot{a}}};\,\,\,\,\,\,\,\,\,K^{\theta+}_{\theta} = \frac{\sqrt{F(a)+\dot{a}^2}}{a};\,\,\,\,\,\,\,\,\,K^{\phi+}_{\phi} = \sin^2{\theta} K^{\theta+}_{\theta}\,, \end{equation} $
(93) where a dot denotes the derivative with respect to the proper time (τ), and a prime denotes the derivative with respect to ordinary time.
Now, to calculate the surface stress and pressure for the thin shell to sustain itself, we use the Lankoz equation
$ \begin{equation} S_{ab} = \frac{1}{8\pi}\left[g_{ab}K-K_{ab}\right]\,, \end{equation} $
(94) where
$ a,b = 0,2,3 $ because, at the shell, r is constant,$ \begin{equation} \sigma(a) = -\frac{1}{4\pi a}\left[\sqrt{F(a)+\dot{a}^2}-\sqrt{f(a)+\dot{a}^2}\right] \end{equation} $
(95) and
$ \begin{aligned}[b] p(a) =& \frac{1}{16\pi a}\Bigg[\frac{2F(a)+aF'(a)+2a\ddot{a}+2\dot{a}^2}{\sqrt{F(a)+\dot{a}^2}}\\&-\frac{2f(a)+af'(a)+2a\ddot{a}+2\dot{a}^2}{\sqrt{f(a)+\dot{a}^2}}\Bigg]\,. \end{aligned} $
(96) Note that at the throat
$ a = a_0 $ , we get$ \dot{a_0} = 0 $ ; hence, at the throat, we get$ \begin{equation} \sigma(a_0) = -\frac{1}{4\pi a_0}\left[\sqrt{F(a_0)}-\sqrt{f(a_0)}\right] \end{equation} $
(97) and also
$ \begin{equation} p(a_0) = \frac{1}{16\pi a_0}\left[\frac{2F(a_0)+a_0F'(a_0)}{\sqrt{F(a_0)}}-\frac{2f(a_0)+a_0f'(a_0)}{\sqrt{f(a_0)}}\right]\,. \end{equation} $
(98) Note that at the throat, the NEC must be violated. In other words,
$ \sigma(a_0)+p(a_0)<0 $ at the throat. The violation of the NEC on the shell would imply the presence of exotic matter.By following the prescription given by [72, 73], we can go further and calculate the potential
$ V(r) $ by noting that the energy-momentum has a conservation relation,$ \begin{equation} \frac{\rm d}{{\rm d}\tau}(\sigma \phi) = p\frac{{\rm d}\phi}{{\rm d}\tau} = 0\,, \end{equation} $
(99) where
$ \sigma = 4\pi a^2 $ . From the conservation equation above, we can find$ \begin{equation} \sigma ' = -\frac{2}{a}(\sigma+p)\,. \end{equation} $
(100) Following the prescription given in [66], the last equation has the form
$ \dot{a}^2+V(a) $ ; therefore, from the above equation, we can get$ \begin{equation} V(a) = \frac{f(a)}{2}+\frac{F(a)}{2}-\frac{(f(a)-F(a))^2}{64a^2\pi^2\sigma^2}-4a^2\pi^2\sigma^2\,. \end{equation} $
(101) We also note that in our case,
$ f(r) $ and$ F(r) $ are given by the following:$ f(r) = 1-\frac{b(r)}{r} $
and
$ F(r) = 1-\frac{2GM}{r} $
Outside the thin shell, we can take the Schwarzschild solution because there is no matter, and hence, the Schwarzschild solution is applicable in a vacuum with spherical symmetry.
Figure 3 shows that a thin shell in the junction feels a similar potential (in natural units) to that of a massive particle in the Schwarzschild metric.
Non-exotic static spherically symmetric thin-shell wormhole solution in f (Q, T ) gravity
- Received Date: 2023-03-23
- Available Online: 2023-07-15
Abstract: In this study, we conduct an analysis of traversable wormhole solutions within the framework of linear