-
Before delving into the specifics of our proposed mechanism, let us first provide a succinct overview of the strong CP problem. The QCD Lagrangian in the SM can be characterized as follows:
$ \begin{aligned}[b] \mathcal{L}_{ {\rm{QCD}}}^{}=&\sum\limits_{q}^{} \bar{q} \left({\rm i} \not D - m_q^{} {\rm e}^{{\rm i}\theta_q}_{} \right)q - \frac{1}{4} G^{a\mu\nu}_{} G_{\mu\nu}^{a} \\ & - \theta \frac{\alpha_s^{}}{8\pi} G^{a\mu\nu}_{}\tilde{G}_{\mu\nu}^{a}\,, \end{aligned} $
(1) where
$ \theta_q^{} $ denotes the phase from the Yukawa couplings of quark fields, θ denotes the QCD vacuum angle,$ G^{a}_{\mu\nu} $ denotes the gluon field strength tensor, and$ \tilde{G}^{a}_{\mu\nu} $ denotes its dual. Following the application of a chiral phase transformation to the quark fields, it can be described as follows:$ \begin{array}{*{20}{l}} q\rightarrow {\rm e}^{-{\rm i} \gamma_5^{} \theta_q/2}_{} q \,, \end{array} $
(2) Furthermore, their mass terms can remove phases
$ \theta_q^{} $ from the QCD Lagrangian, i.e.,$ \begin{aligned}[b] \mathcal{L}_{ {\rm{QCD}}}^{}=&\sum\limits_{q}^{} \bar{q} \left({\rm i} \not D - m_q^{} \right)q - \frac{1}{4} G^{a\mu\nu}_{} G_{\mu\nu}^{a} - \bar{\theta} \frac{\alpha_s^{}}{8\pi} G^{a\mu\nu}_{}\tilde{G}_{\mu\nu}^{a}\\ & {\rm{with}}\; \; \bar{\theta}\equiv\theta- {\rm{Arg}} {\rm{ Det}} \left(M_d^{} M_u^{} \right)\,. \end{aligned} $
(3) Here,
$ M_{d}^{} $ and$ M_{u}^{} $ denote the respective mass matrices of the SM down-type and up-type quarks, respectively. To satisfy the upper limits on the electric dipole moment of the neutron, the value of$ \bar{\theta} $ should be extremely small rather than the theoretically expected order of unity, i.e.,$ \begin{array}{*{20}{l}} \left|\bar{\theta}\right|<10^{-10}_{}\,. \end{array} $
(4) This fine tuning of ten orders of magnitude is commonly termed as the strong CP problem.
-
We now demonstrate our mechanism in a realistic model. All the scalars and fermions in the model are summarized in Table 1. The two Higgs singlets
$ \xi_{1,2}^{} $ are distinguished by$ Z^{(1)}_{3}\times Z^{(2)}_{3} $ discrete symmetries as well as the two Higgs doublets$ \phi_{1,2}^{} $ . Besides three generations of the SM quarks$ q_L^{} $ ,$ d_R^{} $ , and$ u_R^{} $ and SM leptons$ l_L^{} $ and$ e_R^{} $ , we introduce three right-handed neutrinos$ N_R^{} $ to realize a seesaw [18−22] mechanism for the generation of tiny neutrino masses and also a leptogenesis [23] mechanism for the explanation of cosmological baryon asymmetry. Here, the family indices of the fermions are omitted for simplicity. Moreover, there is a$ \bar{\theta} $ -characterized mirror symmetry between the two Higgs singlets$ \xi_{1,2}^{} $ , i.e.$\rm Scalars \& Fermions $ $ \xi_1^{} $ $ \xi_{2}^{} $ $ \phi_{1}^{} $ $ \phi_{2}^{} $ $ q_{L}^{} $ $ d_{R}^{} $ $ u_{R}^{} $ $ l_{L}^{} $ $ e_{R}^{} $ $ N_{R}^{} $ $ S U(3)_c^{} $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 3 $ $ 3 $ $ 3 $ $ 1 $ $ 1 $ $ 1 $ $ S U(2)_L^{} $ $ 1 $ $ 1 $ $ 2 $ $ 2 $ $ 2 $ $ 1 $ $ 1 $ $ 2 $ $ 1 $ $ 1 $ $ U(1)_Y^{} $ $ 0 $ $ 0 $ $ +\dfrac{1}{2} $ $ +\dfrac{1}{2} $ $ +\dfrac{1}{6} $ $ -\dfrac{1}{3} $ $ +\dfrac{2}{3} $ $ -\dfrac{1}{2} $ $ -1 $ $ 0 $ $ Z_{3}^{(1)} $ $ {\rm e}^{{\rm i}\frac{2\pi}{3}}_{} $ $ 1 $ ${\rm e}^{{\rm i}\frac{2\pi}{3}}_{} $ $ 1 $ $ 1 $ $ {\rm e}^{{\rm i}\frac{4\pi}{3}}_{} $ $ 1 $ $ 1 $ $ {\rm e}^{{\rm i}\frac{4\pi}{3}}_{} $ $ 1 $ $ Z_{3}^{(2)} $ $ 1 $ $ {\rm e}^{{\rm i}\frac{2\pi}{3}}_{} $ $ {\rm e}^{{\rm i}\frac{2\pi}{3}}_{} $ $ 1 $ $ 1 $ $ {\rm e}^{{\rm i}\frac{4\pi}{3}}_{} $ $ 1 $ $ 1 $ $ {\rm e}^{{\rm i}\frac{4\pi}{3}}_{} $ $ 1 $ Table 1. All scalars and fermions in the model. The two Higgs singlets
$ \xi_{1,2}^{} $ are denoted by$ Z^{(1)}_{3}\times Z^{(2)}_{3} $ discrete symmetries and the two Higgs doublets$ \phi_{1,2}^{} $ . In addition to three generations of the SM quarks$ q_L^{} $ ,$ d_R^{} $ , and$ u_R^{} $ and SM leptons$ l_L^{} $ and$ e_R^{} $ , we introduce three right-handed neutrinos$ N_R^{} $ to realize a seesaw mechanism for the generation of tiny neutrino masses and also a leptogenesis mechanism for the explanation of cosmological baryon asymmetry. Here, the family indices of the fermions are omitted for simplicity.$ \begin{array}{*{20}{l}} \xi_{1}^{}\stackrel{ {\rm{\; \bar{\theta}} -characterized~ mirror~ symmetry }}{\leftarrow - - - - - - - - - - - - - - - - - - - - - - - - - \rightarrow } {\rm e}^{{\rm -i}\bar{\theta}/3}_{}\xi_{2}^{} \,. \end{array} $
(5) This may be a minimal version of the
$ \bar{\theta} $ -characterized mirror symmetry [24].Based on the charge assignments in Table 1, the expressions for the allowed Yukawa and mass terms involving the fermions are as follows:
$ \begin{aligned}[b] \mathcal{L}_{Y+M}^{}=& -y_d^{}\bar{q}_L^{} \phi_1^{} d_R^{} -y_u^{}\bar{q}_L^{} \tilde{\phi}_2^{} u_R^{} -y_e^{}\bar{l}_L^{} \phi_1^{} e_R^{} \\ &-y_N^{}\bar{l}_L^{} \tilde{\phi}_2^{} N_R^{} -\frac{1}{2}M_N^{} \bar{N}_R^{} N_R^c + {\rm{H.c.}} \\ & {\rm{with}}\; \; \tilde{\phi}_{1,2}^{}= {\rm i} \tau_2^{}\phi_{1,2}^\ast\,, \end{aligned} $
(6) The full scalar potential at a renormalizable level is as follows:
$ \begin{aligned}[b]V=& \mu_1^2 \phi_1^\dagger \phi^{}_1 + \mu_2^2 \phi^\dagger_2 \phi^{}_2 + \lambda_1^{} \left(\phi^\dagger_1 \phi^{}_1\right)^2_{}+ \lambda_2^{} \left(\phi^\dagger_2 \phi^{}_2\right)^2_{} \\ &+ \lambda_3^{} \phi^\dagger_1 \phi^{}_1 \phi^\dagger_2 \phi^{}_2 +\lambda_4^{} \phi^\dagger_1 \phi^{}_2 \phi^\dagger_2 \phi^{}_1+ \mu_\xi^2 \left(\xi_1^\ast \xi_1^{}+\xi_2^\ast\xi_2^{}\right)\\ &+\kappa_1^{}\left[\left(\xi_1^\ast \xi_1^{}\right)^2_{} + \left(\xi_2^\ast \xi_2^{}\right)^2_{}\right] +\kappa^{}_2 \xi_1^\ast \xi_1^{} \xi_2^\ast\xi_2^{}\\ &+\rho_\xi^{} \left[\left(\xi_1^3+ {\rm e}^{-{\rm i}\bar{\theta}}_{}\xi_2^3 \right)+ {\rm{H.c.}}\right]+ \epsilon_1^{}\phi^\dagger_1 \phi^{}_1 \left(\xi^\ast_1\xi^{}_1 +\xi^\ast_2 \xi^{}_2\right) \\ &+ \epsilon_2^{}\phi^\dagger_2 \phi^{}_2 \left(\xi^\ast_1\xi^{}_1 +\xi^\ast_2 \xi^{}_2\right)+ \epsilon_3^{} \left(\xi_1^{} \xi_2^{} \phi^\dagger_1 \phi_2^{} + {\rm{H.c.}}\right)\,. \end{aligned} $
(7) The Yukawa couplings and the Majorana masses involving the right-handed neutrinos are responsible for the reaization of seesaw and leptogenesis. We do not examine the details of seesaw and leptogenesis which are beyond the goal of the present work. It should be noted that the
$ \bar{\theta} $ -characterized mirror symmetry (5) is exactly complied in the classical Lagrangian where the kinetic terms are not given for simplicity.We clarify that the fields in Table 1 with the
$ \bar{\theta} $ -characterized mirror symmetry in Eq. (5) to aid in solving the strong CP problem. After the two Higgs singlets, the two Higgs doublets and the three generations of fermions take the phase rotations as below,$ \begin{array}{*{20}{l}} &&\left(\begin{array}{l}\xi_{1}^{}\rightarrow \xi_{1} \\ \xi_{2}^{} \rightarrow {\rm e}^{+{\rm i}\bar{\theta}/3}_{} \xi_2^{}\end{array} \right)\,,\; \; \; \; \left(\begin{array}{l} \phi_{1}^{}\rightarrow {\rm e}^{+{\rm i}\bar{\theta}/3}_{} \phi_{1}\\ \phi_{2}^{}\rightarrow \phi_{2} \end{array}\right)\,,\\ \\&&\left(\begin{array}{l}\,\,q_{L}^{}\rightarrow q_{L}\\ \,d_{R}^{}\rightarrow {\rm e}^{-{\rm i}\bar{\theta}/3}_{}d_{R}\\ \,u_{R}^{}\rightarrow u_{R}\\ \,\,\,l_{L}^{} \rightarrow l_{L}\\ \,\,e_{R}^{}\rightarrow {\rm e}^{-{\rm i}\bar{\theta}/3}_{}e_{R} \\ N_{R}^{} \rightarrow N_{R}^{}\\ \end{array}\right) \,, \end{array} $
(8) the QCD Lagrangian (3) and the scalar potential (7) can simultaneously remove the parameter
$ \bar{\theta} $ 1 as follows:$ \begin{array}{*{20}{l}} \mathcal{L}_{ {\rm{QCD}}}^{} & \Rightarrow & \sum\limits_{q}^{} \bar{q} \left({\rm i} \not D - m_q^{} \right)q - \frac{1}{4} G^{a\mu\nu}_{} G_{\mu\nu}^{a}\,, \end{array} $
(9) $ \begin{aligned}[b] V \Rightarrow & \mu_1^2 \phi_1^\dagger \phi^{}_1 + \mu_2^2 \phi^\dagger_2 \phi^{}_2 + \lambda_1^{} \left(\phi^\dagger_1 \phi^{}_1\right)^2_{}+ \lambda_2^{} \left(\phi^\dagger_2 \phi^{}_2\right)^2_{} \\ & + \lambda_3^{} \phi^\dagger_1 \phi^{}_1 \phi^\dagger_2 \phi^{}_2 +\lambda_4^{} \phi^\dagger_1 \phi^{}_2 \phi^\dagger_2 \phi^{}_1+ \mu_\xi^2 \left(\xi_1^\ast \xi_1^{}+\xi_2^\ast\xi_2^{}\right) \\ & +\kappa_1^{}\left[\left(\xi_1^\ast \xi_1^{}\right)^2_{} + \left(\xi_2^\ast \xi_2^{}\right)^2_{}\right] +\kappa^{}_2 \xi_1^\ast \xi_1^{} \xi_2^\ast\xi_2^{}\\ & +\rho_\xi^{} \left[\left(\xi_1^3+\xi_2^3 \right)+ {\rm{H.c.}}\right] + \epsilon_1^{}\phi^\dagger_1 \phi^{}_1 \left(\xi^\ast_1\xi^{}_1 +\xi^\ast_2 \xi^{}_2\right) \\ \end{aligned} $
$ \begin{aligned}[b] \quad + \epsilon_2^{}\phi^\dagger_2 \phi^{}_2 \left(\xi^\ast_1\xi^{}_1 +\xi^\ast_2 \xi^{}_2\right)+ \epsilon_3^{} \left(\xi_1^{} \xi_2^{} \phi^\dagger_1 \phi_2^{} + {\rm{H.c.}}\right)\,, \end{aligned} $
(10) The Yukawa and mass terms (6) can remain invariant with the unshown kinetic terms.
-
When the Higgs scalars
$ \xi_{1}^{} $ ,$ \xi_2^{} $ ,$ \phi_1^{} $ , and$ \phi_{2}^{} $ develop their nonzero vacuum expectation values$ v_{\xi_1}^{} $ ,$ v_{\xi_2}^{} $ ,$ v_{\phi_1}^{} $ , and$ v_{\phi_2}^{} $ , respectively, they are expressed as follows:$ \xi_{1}^{} =\left(v_{\xi_1}^{}+h_{\xi_1}^{}+ {\rm i} P_{\xi_1}^{}\right)/\sqrt{2}\,, $
(11) $ \xi_{2}^{} =\left(v_{\xi_2}^{}+h_{\xi_2}^{}+{\rm i}P_{\xi_2}^{}\right)/\sqrt{2}\,, $
(12) $ \phi_{1}^{}=\left[\begin{array}{c} \phi^+_{1}\\ \left(v_{\phi_1}^{}+h_{\phi_1}^{}+ {\rm i} P_{\phi_1}^{}\right)/\sqrt{2}\end{array}\right]\,, $
(13) $ \phi_{2}^{}=\left[\begin{array}{c} \phi^+_{2}\\ \left(v_{\phi_2}^{}+h_{\phi_2}^{}+ {\rm i} P_{\phi_2}^{}\right)/\sqrt{2}\end{array}\right]\,. $
(14) Three would-be-Goldstone bosons:
$ G_W^{\pm}=\left(v_{\phi_1}^{}\phi^{\pm}_{1} +v_{\phi_2}^{} \phi^{\pm}_{2} \right)/\sqrt{v_{\phi_1}^2 + v_{\phi_2}^2}\,, $
(15) $ G_Z^{}=\left(v_{\phi_1}^{}P^{}_{\phi_1} +v_{\phi_2}^{} P^{}_{\phi_2} \right)/\sqrt{v_{\phi_1}^2 + v_{\phi_2}^2}\,, $
(16) eaten by the longitudinal components of the SM gauge bosons
$ W^{\pm}_{} $ and Z. Therefore, besides a pair of massive charged scalars,$ \begin{aligned}[b] H^{\pm}_{}=&\left(v_{\phi_1}^{}\phi^{\pm}_{2} - v_{\phi_2}^{} \phi^{\pm}_{1} \right)/\sqrt{v_{\phi_1}^2 + v_{\phi_2}^2}\; \; {\rm{with}}\\ m_{H^{\pm}}^2 =& -\left[\lambda_4^{}+\epsilon_3^{} v_\xi^2 /\left(2 v_1^{} v_2^{}\right)\right]\left(v_1^2+v_2^2\right)\,,\; \; \end{aligned} $
(17) we eventually obtain seven massive neutral scalars including four scalars and three pseudo scalars, i.e.,
$ \begin{aligned}[b] &h_{\phi_1}^{}\,,\; \; h_{\phi_2}^{}\,,\; \; h_\xi^{}=\left(h^{}_{\xi_1} +h^{}_{\xi_2} \right)/\sqrt{2}\,,\\ &S_\xi^{} =\left(h^{}_{\xi_1} -h^{}_{\xi_2}\right)/\sqrt{2}\,; \end{aligned} $
(18) $ \begin{aligned}[b] &a_\phi^{}=\left(v_{\phi_1}^{}P^{}_{\phi_2} -v_{\phi_2}^{} P^{}_{\phi_1} \right)/\sqrt{v_{\phi_1}^2 + v_{\phi_2}^2}\,,\\ &a_\xi^{}=\left(P^{}_{\xi_1} +P^{}_{\xi_2} \right)/\sqrt{2}\,,\; \; P_\xi^{}=\left(P^{}_{\xi_1} -P^{}_{\xi_2} \right)/\sqrt{2}\,.\; \; \; \; \end{aligned} $
(19) With the minimum of the scalar potential, we obtain the mass-squared matrix of three scalars
$ h_{\phi_1}^{} $ ,$ h_{\phi_2}^{} $ and$ h_\xi^{} $ , i.e.$ \begin{array}{*{20}{l}}\\ \mathcal{L}\supset-\dfrac{1}{2}\left[h_{\phi_1}^{}\; h_{\phi_2}^{}\; h_\xi^{}\right] \left[\begin{array}{ccc} 2\lambda_1^{}v_{\phi_1}^2 -\dfrac{1}{2}\epsilon_3^{} v_\xi^2 \dfrac{v_{\phi_2}^{}}{v_{\phi_1}^{}} & \left(\lambda_3^{}+\lambda_4^{}\right) v_{\phi_1}^{} v_{\phi_2}^{} +\dfrac{1}{2}\epsilon_3^{} v_\xi^2 & \sqrt{2} \left(\epsilon_1^{} +\dfrac{1}{2}\epsilon_3^{}\right) v_{\phi_1}^{} v_\xi^{}\\ \left(\lambda_3^{}+\lambda_4^{}\right) v_{\phi_1}^{} v_{\phi_2}^{} +\dfrac{1}{2}\epsilon_3^{} v_\xi^2 & 2\lambda_2^{}v_{\phi_2}^2 -\dfrac{1}{2}\epsilon_3^{} v_\xi^2 \dfrac{v_{\phi_1}^{}}{v_{\phi_2}^{}} & \sqrt{2} \left(\epsilon_2^{} +\dfrac{1}{2}\epsilon_3^{}\right) v_{\phi_2}^{} v_\xi^{} \\ \sqrt{2} \left(\epsilon_1^{} +\dfrac{1}{2}\epsilon_3^{}\right) v_{\phi_1}^{} v_\xi^{} & \sqrt{2} \left(\epsilon_2^{} +\dfrac{1}{2}\epsilon_3^{}\right) v_{\phi_2}^{} v_\xi^{} & 2\kappa_1^{} v_\xi^2 + \dfrac{3}{\sqrt{2}}\rho_\xi^{} v_\xi^{} - \dfrac{1}{2} \epsilon_3^{} v_{\phi_1}^{} v_{\phi_2}^{} \end{array}\right] \left[\begin{array}{c}h_{\phi_1}^{}\\ h_{\phi_2}^{}\\ h_\xi^{}\end{array}\right] .\;\\ \end{array} $
(20) Hereafter, we consider the following:
$ \begin{array}{*{20}{l}} v_{\xi_1}^{}= v_{\xi_2}^{}\equiv v_{\xi}^{}\,, \end{array} $
(21) which can be easily deduced from the minimization of the scalar potential. By diagonalizing the mass-squared matrix (20), we obtain three mass eigenstates
$ H_{1,2,3}^{} $ with Yukawa couplings. For simplicity, we do not perform this diagonalization in the present work. For the forth scalar$ S_\xi^{} $ without Yukawa couplings, it corresponds to a mass eigenstate with the following mass square,$ m_{S_\xi}^2= 2\kappa_1^{} v_\xi^2 + \frac{3}{\sqrt{2}}\rho_\xi^{} v_\xi^{} - \frac{1}{2} \epsilon_3^{} v_{\phi_1}^{} v_{\phi_2}^{} \,. $
(22) We then consider the pseudo scalars
$ a_{\phi}^{} $ ,$ a_{\xi}^{} $ and$ P_\xi^{} $ . Their mass-squared matrix is given by$ \begin{array}{*{20}{l}} \mathcal{L}\supset-\dfrac{1}{2}\left[a_{\phi}^{}\; \; a_\xi^{}\; \; P_\xi^{}\right] \left[\begin{array}{ccc} -\dfrac{1}{2}\epsilon_3^{}v_\xi^2\left(\dfrac{v_{\phi_1}^{}}{v_{\phi_2}^{}} + \dfrac{v_{\phi_2}^{}}{v_{\phi_1}^{}}\right) & \; \; -\dfrac{1}{4} \epsilon_3^{} v_\xi^{}\sqrt{v_{\phi_1}^2+v_{\phi_2}^2} &\; \; 0\\ -\dfrac{1}{4} \epsilon_3^{} v_\xi^{}\sqrt{v_{\phi_1}^2+v_{\phi_2}^2} &\; \; -9\sqrt{2} \rho_\xi^{} v_\xi^{} -\epsilon_3^{} v_{\phi_1}^{} v_{\phi_2}^{} &\; \; 0 \\ \; \; 0 &\; \; 0 & \; \; -9\sqrt{2} \rho_\xi^{} v_\xi^{} -\epsilon_3^{} v_{\phi_1}^{} v_{\phi_2}^{} \end{array}\right] \left[\begin{array}{c}a_{\phi}^{}\\ a_\xi^{}\\ P_\xi^{} \end{array}\right]. \\\end{array} $ (23) Clearly,
$ P_\xi^{} $ is already a mass eigenstate and its mass square is just$ \begin{array}{*{20}{l}} m_{P_\xi}^2= -9\sqrt{2} \rho_\xi^{} v_\xi^{} -\epsilon_3^{} v_{\phi_1}^{} v_{\phi_2}^{} \,. \end{array} $
(24) For
$ a_\phi^{} $ and$ a_\xi^{} $ , they mix with each other, and their mass eigenstates are as follows:$ \begin{aligned}[b] a_1^{}=& a_\phi^{} \cos\alpha - a_\xi^{} \sin\alpha\; \; {\rm{with}}\\ m_{a_1}^2=&\frac{m_{a_\phi}^2 + m_{a_\xi}^2 + \sqrt{\left(m_{a_\phi}^2 - m_{a_\xi}^2 \right)^2_{}+4\Delta^4 }}{2}\,, \end{aligned} $
(25) $ \begin{aligned}[b] a_2^{}=& a_\phi^{} \sin\alpha + a_\xi^{} \cos\alpha\; \; {\rm{with}}\\ m_{a_2}^2=&\frac{m_{a_\phi}^2 + m_{a_\xi}^2 - \sqrt{\left(m_{a_\phi}^2 - m_{a_\xi}^2 \right)^2_{}+4\Delta^4 }}{2}\,, \end{aligned} $
(26) Here,
$ m_{a_\phi}^2 $ ,$ m_{a_\xi}^2 $ , and$ \Delta^2_{} $ are defined by$ \begin{aligned}[b] m_{a_\phi}^2 =& -\frac{1}{2}\epsilon_3^{}v_\xi^2\left(\frac{v_{\phi_1}^{}}{v_{\phi_2}^{}} + \frac{v_{\phi_2}^{}}{v_{\phi_1}^{}}\right) \,,\\ m_{a_\xi}^2 =&-9\sqrt{2} \rho_\xi^{} v_\xi^{} -\epsilon_3^{} v_{\phi_1}^{} v_{\phi_2}^{}\,, \end{aligned} $
$ \begin{aligned}[b]\Delta^2=& -\frac{1}{4} \epsilon_3^{} v_\xi^{}\sqrt{v_{\phi_1}^2+v_{\phi_2}^2}\,, \end{aligned} $
(27) while α is the mixing angle and is determined by
$ \tan 2\alpha = \frac{2\Delta^2_{}}{m_{A_\phi}^2 - m_{A_\xi}^2} \,. $
(28) The pseudo scalars
$ a_{1,2}^{} $ couple to the axial currents of the SM quarks, and thus, they act as heavy axions [24].
Solving the strong CP problem via a ${ \bar{\boldsymbol\theta} }$ -characterized mirror symmetry
- Received Date: 2023-10-18
- Available Online: 2024-03-15
Abstract: In the standard model QCD Lagrangian, a term of CP violating gluon density is theoretically expected to have a physical coefficient