-
We consider the general spherically symmetric background as
$ \begin{array}{*{20}{l}} {\rm d} s^{2}=\mathcal{A}(r) {\rm d} t^{2}-\mathcal{B}(r){\rm d}r^{2}-\mathcal{C}(r)r^{2}({\rm d}\theta^{2}+\sin^{2}\theta {\rm d}\varphi^{2}). \end{array} $
(1) By choosing appropriate radial coordinate r, we can set
$ \mathcal{C}(r)=1 $ , which corresponds to the standard coordinate. We define$ \mathcal{D}(r)=\sqrt{\mathcal{A}(r)\mathcal{B}(r)} $ , and then background metric (1) becomes$ {\rm d}s^{2}=\mathcal{A}(r){\rm d}t^{2}-\frac{\mathcal{D}(r)^{2}}{\mathcal{A}(r)}{\rm d}r^{2}-r^{2}({\rm d}\theta^{2}+\sin^{2}\theta {\rm d}\varphi^{2}). $
(2) The null tetrads corresponding to metric (2) are taken as
$ \begin{split} & l=l_{\mu}^{A}{\rm d}x^{\mu}={\rm d}t-\frac{\mathcal{D}(r)}{\mathcal{A}(r)}{\rm d}r, \\ & n=n_{\mu}^{A}{\rm d}x^{\mu}=\frac{\mathcal{A}(r)}{2}{\rm d}t+\frac{\mathcal{D}(r)}{2}{\rm d}r, \\ & m=m_{\mu}^{A}{\rm d}x^{\mu}=-\frac{r}{\sqrt{2}}({\rm d}\theta+ {\rm i}\sin\theta {\rm d}\varphi), \\ & \bar{m}=\bar{m}_{\mu}^{A}{\rm d}x^{\mu}=-\frac{r}{\sqrt{2}}({\rm d}\theta-{\rm i}\sin\theta {\rm d}\varphi), \end{split} $
(3) which satisfy
$ \begin{array}{*{20}{l}} {\rm d}s^{2}=2\ln-2m\bar{m}, \end{array} $
(4) where the bar denotes the complex conjugate. Superscript (or subscript) A is used as the symbol of the background quantities [10]. Conversely, for the perturbation quantities of the gravitational field, we use superscipt B, which will appear later.
From the tetrad basis (3), we can compute spin coefficients and the components of the Ricci tensor and Weyl scalars as
$ \begin{array}{*{20}{l}} \kappa^{A}=\nu^{A}=\sigma^{A}=\lambda^{A}=\pi^{A}=\tau^{A}=\epsilon^{A}=0, \end{array} $
(5) $ \begin{aligned}[b] \;& \rho^{A}=-\frac{1}{r\mathcal{D}}, \quad \mu^{A}=-\frac{\mathcal{A}}{2r\mathcal{D}}, \quad \gamma^{A}=\frac{\mathcal{A}'}{4\mathcal{D}}, \\ & \alpha^{A}=-\beta^{A}=-\frac{\cot\theta}{2\sqrt{2}r}, \end{aligned} $
(6) $ \begin{array}{*{20}{l}} \Phi_{01}^{A}=\Phi_{10}^{A}=\Phi_{02}^{A}=\Phi_{20}^{A}=\Phi_{12}^{A}=\Phi_{21}^{A}=0, \end{array} $
(7) $ \Phi_{00}^{A}=\frac{\mathcal{D}'}{r\mathcal{D}^{3}}, \quad \Phi_{22}^{A}=\frac{\mathcal{A}^{2}\mathcal{D}'}{4rD^{3}}, $
(8) $ \Phi_{11}^{A}=\frac{1}{8r^{2}\mathcal{D}^{3}}\Bigl[2\mathcal{D}^{3}-2\mathcal{A}\mathcal{D} -r^{2}(\mathcal{A}'\mathcal{D}'-\mathcal{A}''\mathcal{D})\Bigr], $
(9) $ \begin{aligned}[b] \Lambda^{A}=\,& -\frac{1}{24r^{2}\mathcal{D}^{3}}\Bigl[-2\mathcal{D}^{3}-r^{2}\mathcal{A}'\mathcal{D}' +2\mathcal{A}(\mathcal{D}-2r\mathcal{D}') \\ & +r\mathcal{D}(4\mathcal{A}'+r\mathcal{A}'')\Bigr], \end{aligned} $
(10) $ \Psi_{0}^{A}=\Psi_{1}^{A}=\Psi_{3}^{A}=\Psi_{4}^{A}=0, $
(11) $ \begin{aligned}[b] \Psi_{2}^{A}=\,& \frac{1}{12r^{2}\mathcal{D}^{3}}\Bigl[2(\mathcal{A}\mathcal{D}+r\mathcal{A}\mathcal{D}'-\mathcal{D}^{3})\\ & -r\mathcal{A}'(2\mathcal{D}+r\mathcal{D}')+r^{2}\mathcal{A}''\mathcal{D}\Bigr], \end{aligned} $
(12) where we follow the notations of Newman-Penrose [9] and Pirani [15]. The same notation is also used for Teukolsky [10]. We also list the definitions of the above quantities in the appendix. The prime symbol denotes the derivative with respect to r. Equation (11) implies that the background belongs to Petrov type D, which is important to derive the wave equation on this background. As a special case, for
$ \mathcal{D}(r)=1 $ , we have$ \begin{array}{*{20}{l}} \Phi^{A}_{00}=\Phi^{A}_{22}=0, \end{array} $
(13) and the nonvanishing quantities in the background are simplified as
$ \begin{aligned}[b] & \rho^{A}=-\frac{1}{r}, \quad \mu^{A}=-\frac{\mathcal{A}}{2r}, \quad \gamma^{A}=\frac{\mathcal{A}'}{4}, \\ & \alpha^{A}=-\beta^{A}=-\frac{\cot\theta}{2\sqrt{2}r}, \end{aligned} $
(14) $ \Phi_{11}^{A}=\frac{1}{8r^{2}}(2-2\mathcal{A}+r^{2}\mathcal{A}''), $
(15) $ \Lambda^{A}=-\frac{1}{24r^{2}}(-2+2\mathcal{A}+4r\mathcal{A}'+r^{2}\mathcal{A}''), $
(16) $ \Psi_{2}^{A}=\frac{1}{12r^{2}}(-2+2\mathcal{A}-2r\mathcal{A}'+r^{2}\mathcal{A}''), $
(17) We also note that when choosing
$ \mathcal{A}=1-2M/r $ and$ \mathcal{D}=1 $ , the background reduces to the Schwarzschild spacetime, where M is the mass of the Schwarzschild black hole. -
Here, we consider the wave equation with various spins s on the background specified by (5)–(12) in the previous section, namely, the Klein-Gordon (
$ s=0 $ ), Weyl ($ s=\pm 1/2 $ ), and Maxwell equations ($ s=\pm 1 $ ) and the equation from the Newman-Penrose formalism ($ s=\pm 2 $ ) under the probe (test field) approximation; therefore, the back reactions from matter and electromagnetic fields to the gravitational background are assumed to be negligible. For simplicity, we also assume that the fields are massless and minimally coupled to the background of the gravitational field, unless otherwise specified. -
The massless Klein-Gordon equation in the gravitational background is
$ \Box\phi=\nabla_{\mu}(g^{\mu\nu}\partial_{\nu}\phi)=\frac{1}{\sqrt{-g}}\partial_{\mu}(\sqrt{-g}g^{\mu\nu}\partial_{\nu}\phi)=T, $
(18) where T is the source.
$ \nabla_{\mu} $ is the covariant derivative with respect to the curved spacetime (not for the local Lorentz transformation), of which the projection by the null tetrads gives$ D^{A}=l_{A}^{\mu}\nabla_{\mu}, \quad \Delta^{A}=n_{A}^{\mu}\nabla_{\mu}, \quad \delta^{A}=m_{A}^{\mu}\nabla_{\mu}, \quad \bar{\delta}^{A}=\bar{m}_{A}^{\mu}\nabla_{\mu}. $
(19) By decomposing
$ g^{\mu\nu} $ in terms of the null tetrads, (18) can be rewritten as$ \left[(\Delta-2\gamma+2\mu)D+(D-2\rho)\Delta-(\bar{\delta}-2\alpha)\delta-(\delta-2\alpha)\bar{\delta}\right]^{A}\phi=T, $
(20) where the superscript A outside the parentheses denotes that all the quantities and operators inside the parentheses are background ones, and we use the relation for the spin coefficients,
$ \begin{split} & \nabla_{\mu}l_{A}^{\mu}=-2\rho^{A}, \quad \nabla_{\mu}n_{A}^{\mu}=-2\gamma^{A}+2\mu^{A}, \\ & \nabla_{\mu}m_{A}^{\mu}=\nabla_{\mu}\bar{m}_{A}^{\mu}=-2\alpha^{A}. \end{split} $
(21) For later convenience, we rewrite (20) such that the order of the differential operators is rearranged, satisfying the commutation relations
$ \begin{array}{*{20}{l}} \Delta^{A} D^{A}-D^{A} \Delta^{A}=2\gamma^{A} D^{A}, \quad \bar{\delta}^{A}\delta^{A}-\delta^{A}\bar{\delta}^{A}=2\alpha^{A}(\delta-\bar{\delta})^{A}. \end{array} $
(22) We also use
$ \begin{array}{*{20}{l}} \Delta^{A}\rho^{A}=(2\gamma-\mu)^{A}\rho^{A}-\Psi_{2}^{A}-2\Lambda^{A}, \end{array} $
(23) which is from the background part of that of the Newman-Penrose equation. Then, (20) can be rewritten as
$ \left[(\Delta-2\gamma+\mu)(D-\rho)-(\bar{\delta}-2\alpha)\delta-\Psi_{2}-2\Lambda\right]^{A}\phi=\frac{1}{2}T. $
(24) Note that the last term
$ -2\Lambda^{A}\phi $ on the right hand side is responsible for the minimal coupling. If we consider curvature coupling, there is a contribution proportional to$ {\mathcal{R}}\phi=24\Lambda^{A}\phi $ , where$ \mathcal{R} $ is the Ricci scalar (see the appendix). -
The massless Dirac equation can be decomposed into two Weyl equations. For the positive chirality part, the Weyl equation in the gravitational background is
$ \begin{array}{*{20}{l}} (\bar{\delta}-\alpha)^{A}\chi_{0}-(D-\rho)^{A}\chi_{1}=0, \end{array} $
(25) $ \begin{array}{*{20}{l}} (\Delta-\gamma+\mu)^{A}\chi_{0}-(\delta-\alpha)^{A}\chi_{1}=0, \end{array} $
(26) where
$ \chi_{0} $ and$ \chi_{1} $ are the components of the Weyl spinor. We can eliminate$ \chi_{0} $ using the following commutation relation:$ \begin{aligned}[b] &\left[\Delta+p\gamma-(q-1)\mu\right]^{A}(\bar{\delta}+p\alpha)^{A} \\ & \quad -\left(\bar{\delta}+p\alpha\right)^{A}(\Delta+p\gamma-q\mu)^{A} \\ &=\nu^{A}D^{A}-\lambda^{A}\delta^{A}+p\left(\alpha\lambda+\rho\nu-\Psi_{3}\right)^{A} \\ & \quad +q\left(-D\nu+\delta\lambda-4\alpha\lambda+2\Psi_{3}\right)^{A} \\ &=0, \end{aligned} $
(27) where p and q are arbitrary constants, and we just use
$ \nu^{A}=\lambda^{A}=\Psi_{3}^{A}=0 $ for the last equality. Hence, (27) holds not only in the vacuum, but also for the background specified by (5)–(12). We obtain the wave equation for$ \chi_{1} $ in a similar way via the method used to derive the Teukolsky equation [10]. We operate$ (\Delta-\gamma+2\mu)^{A} $ on (25) and$ (\bar{\delta}-\alpha)^{A} $ on (26) and then obtain the difference of them. The terms with$ \chi_{0} $ are canceled from (27) with$ p=q=-1 $ , and the remaining part is$ \begin{array}{*{20}{l}} \bigl[(\Delta-\gamma+2\mu)(D-\rho)-(\bar{\delta}-\alpha)(\delta-\alpha)\bigr]^{A}\chi_{1}=0, \end{array} $
(28) which gives the wave equation for
$ s=-1/2 $ . In a similar way, the wave equation for$ \chi_{0} $ (for$ s=1/2 $ ) is obtained as$ \begin{array}{*{20}{l}} \bigl[(D-2\rho)(\Delta-\gamma+\mu)-(\delta-\alpha)(\bar{\delta}-\alpha)\bigr]^{A}\chi_{0}=0. \end{array} $
(29) We note that (28) and (29) take the same forms as in the vacuum case [10]. For later convenience, we rewrite (29) as in the previous subsection. We use (22), (23), and
$ \begin{array}{*{20}{l}} D^{A}\gamma^{A}&=\Psi_{2}^{A}+\Phi_{11}^{A}-\Lambda^{A}, \end{array} $
(30) $ (\delta+\bar{\delta})^{A}\alpha^{A} =\mu^{A}\rho^{A}+4(\alpha^{A})^{2}-\Psi_{2}^{A}+\Phi_{11}^{A}+\Lambda^{A}, $
(31) $ D^{A}\mu^{A} =\mu^{A}\rho^{A}+\Psi_{2}^{A}+2\Lambda^{A}. $
(32) Then, (29) can be rewritten as
$ \begin{array}{*{20}{l}} \bigl[(\Delta-3\gamma+\mu)(D-2\rho)-(\bar{\delta}-3\alpha)(\delta+\alpha)-3\Psi_{2}\bigr]^{A}\chi_{0}=0, \end{array} $
(33) -
The Maxwell equation in the gravitational background is
$ (D-2\rho)^{A}\phi_{1}-(\bar{\delta}-2\alpha)^{A}\phi_{0} =J_{l}, $
(34) $ \delta^{A}\phi_{1}-(\Delta+\mu-2\gamma)^{A}\phi_{0} =J_{m}, $
(35) $ (D-\rho)^{A}\phi_{2}-\bar{\delta}^{A}\phi_{1} =J_{\bar{m}}, $
(36) $ (\delta-2\alpha)^{A}\phi_{2}-(\Delta+2\mu)^{A}\phi_{1} =J_{n}, $
(37) where
$ \phi_{0} $ ,$ \phi_{1} $ , and$ \phi_{2} $ are complex and constructed from the field strength (the Faraday tensor)$ F_{\mu\nu} $ as1 $ \begin{array}{*{20}{l}} \phi_{0}=F_{\mu\nu}l^{\mu}_{A}m^{\nu}_{A}, \quad \phi_{1}=\frac{1}{2}F_{\mu\nu}(l^{\mu}_{A}n^{\nu}_{A} +\bar{m}^{\mu}_{A}m^{\nu}_{A}), \quad \phi_{2}=F_{\mu\nu}\bar{m}^{\mu}_{A}n^{\nu}_{A}. \end{array} $
(38) $ J_{l} $ ,$ J_{n} $ ,$ J_{m} $ , and$ J_{\bar{m}} $ are the projections of the current$ J^{\mu} $ by the null tetrads as$ J_{l}=J^{\mu}l_{\mu}^{A} $ , etc. From (36) and (37), we can construct the wave equation for$ \phi_{2} $ via a similar procedure to that used in the previous subsection. Using the commutation relation (27) with$ p=0 $ and$ q=-2 $ , we have$ \begin{array}{*{20}{l}} \bigl[(\Delta+3\mu)(D-\rho)-\bar{\delta}(\delta-2\alpha)\bigr]^{A}\phi_{2}=J_{2}, \end{array} $
(39) where
$ J_{2} $ is defined by$ \begin{array}{*{20}{l}} J_{2}=(\Delta+3\mu)^{A}J_{\bar{m}}-\bar{\delta}^{A}J_{n}. \end{array} $
(40) In a similar way, we can obtain the wave equation for
$ \phi_{0} $ from (34) and (35) as$ \begin{array}{*{20}{l}} \bigl[(D-3\rho)(\Delta-2\gamma+\mu)-\delta(\bar{\delta}-2\alpha)\bigr]^{A}\phi_{0}=J_{0}, \end{array} $
(41) where
$ J_{0} $ is defined by$ \begin{array}{*{20}{l}} J_{0}=\delta^{A} J_{l}-(D-3\rho)^{A}J_{m}. \end{array} $
(42) Note that (39) and (41) take the same forms as in the vacuum case [10]. For later convenience, we rewrite (41) using (22), (23), and (30)–(32) as
$ \begin{array}{*{20}{l}} \bigl[(\Delta-4\gamma+\mu)(D-3\rho)-(\bar{\delta}-4\alpha)(\delta+2\alpha)-6\Psi_{2}\bigr]^{A}\phi_{0}=J_{0}, \end{array} $
(43) -
The wave equations for the spin
$ \pm 2 $ are obtained from the perturbed Einstein equation or the perturbed Newman-Penrose equation. In a previous paper [8], we studied and obtained the wave equations, and in the next section, we revisit the derivation to discuss the gauge dependence. Then, we provide the result of the equations.Here, we take the gauge such that the following quantities vanish [8]:
$ \begin{array}{*{20}{l}} \lambda^{B}=\sigma^{B}=0, \end{array} $
(44) $ (\bar{\delta}-\bar{\tau}+2\alpha+2\bar{\beta})^{B}\Phi_{22}^{A}=0, $
(45) $ (\delta+\bar{\pi}-2\bar{\alpha}-2\beta)^{B}\Phi_{00}^{A}=0, $
(46) where the superscript B denotes the perturbation part. Under the above gauge, the wave equation for the perturbation part of the Weyl scalar
$ \Psi_{4}^{B} $ is$ \begin{aligned}[b] & \bigl[(\Delta+2\gamma+5\mu)(D-\rho)-(\bar{\delta}+2\alpha)(\delta-4\alpha)-3\Psi_{2}+2\Phi_{11}\bigr]^{A}\Psi_{4}^{B} \\ & =T_{4}, \end{aligned} $
(47) where the source
$ T_{4} $ is defined by$ \begin{aligned}[b] T_{4}=\,&(\Delta+2\gamma+5\mu)^{A}\bigl[(\bar{\delta}+2\alpha)^{A}\Phi_{21}^{B}-(\Delta+\mu)^{A}\Phi_{20}^{B}\bigr] \\ & {}-(\bar{\delta}+2\alpha)^{A}\bigl[\bar{\delta}^{A}\Phi_{22}^{B}-(\Delta+2\gamma+2\mu)^{A}\Phi_{21}^{B})\bigr]. \end{aligned} $
(48) In a similar way, we can also obtain the wave equation for
$ \Psi_{0}^{B} $ as$ \begin{aligned}[b] & \bigl[(D-5\rho)(\Delta-4\gamma+\mu)-(\delta+2\alpha)(\bar{\delta}-4\alpha)\\ & \quad -3\Psi_{2}+2\Phi_{11}\bigr]^{A}\Psi_{0}^{B} =T_{0}, \end{aligned} $
(49) where the source
$ T_{0} $ is defined by$ \begin{aligned}[b] T_{0}=\,&(\delta+2\alpha)^{A}\bigl[(D-2\rho)^{A}\Phi_{01}^{B}-\delta^{A}\Phi_{00}^{B}\bigr] \\ & -(D-5\rho)^{A}\bigl[(D-\rho)^{A}\Phi_{02}^{B}-(\delta+2\alpha)^{A}\Phi_{01}^{B}\bigr]. \end{aligned} $
(50) For later convenience, we rewrite (49) using (22), (23), and (30)–(32) as
$ \begin{aligned}[b] & \bigl[(\Delta-6\gamma+\mu)(D-5\rho)-(\bar{\delta}-6\alpha)(\delta+4\alpha)\\ & \quad-15\Psi_{2}+2\Phi_{11}\bigr]^{A}\Psi_{0}^{B} =T_{0}. \end{aligned} $
(51) -
We can unify the above wave equations (24), (28), (33), (39), (43), (47), and (51) and express the unified equation for general spin s as
$ \begin{aligned}[b] &\biggl\{\bigl[\Delta-2(1+s)\gamma+(1-s+|s|)\mu\bigr]\bigl[D-(1+s+|s|)\rho\bigr] -\bigl[\bar{\delta}-2(1+s)\alpha\bigr](\delta+2s\alpha) \\ & \quad-(1+3s+2s^{2})\Psi_{2} +\frac{1}{3}(|s|-3|s|^{2}+2|s|^{3})\Phi_{11}-2\delta_{s}\Lambda\}^{A}\tilde{\psi}_{(s)} =\tilde{T}_{(s)}, \end{aligned} $ (52) where we collectively denote the fields and sources as
$ \begin{array}{*{20}{l}} \tilde{\psi}_{(s)}= \begin{cases} \Psi_{4}^{B} & \text{for }\;\; s=-2 \\ \phi_{2} & \text{for }\;\; s=-1 \\ \chi_{1} & \text{for}\;\; s=-1/2 \\ \phi & \text{for}\;\; s=0 \\ \chi_{0} & \text{for}\;\; s=1/2 \\ \phi_{0} & \text{for }\;\; s=1 \\ \Psi_{0}^{B} & \text{for }\;\; s=2 \end{cases}, \qquad \tilde{T}_{(s)}= \begin{cases} T_{4} & \text{for }\;\; s=-2 \\ J_{2} & \text{for }\;\; s=-1 \\ 0 & \text{for}\;\; s=-1/2 \\ T/2 & \text{for}\;\; s=0 \\ 0 & \text{for}\;\; s=1/2 \\ J_{0} & \text{for }\;\; s=1 \\ T_{0} & \text{for }\;\; s=2 \end{cases}. \end{array} $
(53) $ \delta_{s} $ is defined by$ \begin{array}{*{20}{l}} \delta_{s}= \begin{cases} 1\quad\text{for}\;\; s=0 \\ 0\quad\text{otherwise}. \end{cases} \end{array} $
(54) We rewrite (52) in a slightly simpler form using the following redefinitions:
$ \begin{array}{*{20}{l}} \psi_{(s)}=\exp\bigl[(|s|-s)f\bigr]\tilde{\psi}_{(s)}, \quad T_{(s)}=\exp\bigl[(|s|-s)f\bigr]\tilde{T}_{(s)}, \end{array} $
(55) where f is a function of r, which will be determined soon. By substituting (55) into (52), we have
$ \begin{aligned}[b] &\biggl\{\bigl[\Delta-2(1+s)\gamma+\mu+(|s|-s)(\mu-\Delta f)\bigr] \bigl[D-(1+2s)\rho-(|s|-s)(\rho+Df)\bigr] \\ &\quad -\bigl[\bar{\delta}-2(1+s)\alpha\bigr](\delta+2s\alpha)-(1+3s+2s^{2})\Psi_{2} \\ &\quad +\frac{1}{3}(|s|-3|s|^{2}+2|s|^{3})\Phi_{11}-2\delta_{s}\Lambda\}^{A}\psi_{(s)}=T_{(s)}. \end{aligned} $
(56) We find that
$ \mu^{A}-\Delta^{A} f $ and$ \rho^{A}+D^{A}f $ can simultaneously vanish by choosing$ f=\ln r $ , namely,2 $ \begin{array}{*{20}{l}} \psi_{(s)}= r^{|s|-s}\tilde{\psi}_{(s)},\quad T_{(s)}= r^{|s|-s}\tilde{T}_{(s)}. \end{array} $ (57) Then, (56) is simplified as
$ \begin{aligned}[b] &\biggl\{\bigl[\Delta-2(1+s)\gamma+\mu\bigr]\bigl[D-(1+2s)\rho\bigr] \\ & -\bigl[\bar{\delta}-2(1+s)\alpha\bigr](\delta+2s\alpha) -(1+3s+2s^{2})\Psi_{2}\\ & +\frac{1}{3}(|s|-3|s|^{2}+2|s|^{3})\Phi_{11}-2\delta_{s}\Lambda\}^{A}\psi_{(s)}=T_{(s)}. \end{aligned} $
(58) The advantage of the above form is that in the vacuum
$ \Phi_{11}^{A}=\Lambda^{A}=0 $ , the equation (58) depends on s but not$ |s| $ . The same transformation (57) has been performed in the vacuum case [10]. Similar equations to (52) and (58) were studied in [11−14]; however, these were considered for positive and negative s separately, or restricted to positive s. Here, we obtain the completely unified expression for both positive and negative s. Moreover, we find the contributions of$ \Phi_{11}^{A} $ and$ \Lambda^{A} $ to the wave equation.By substituting the background, the explicit form of the unified wave equation (58) is
$ \begin{aligned}[b] &\frac{r^{2}}{\mathcal{A}}\frac{\partial^{2}\psi_{(s)}}{\partial t^{2}}-\frac{1}{\mathcal{D}(r^{2}\mathcal{A})^{s}}\frac{\partial}{\partial r} \left[\frac{(r^{2}\mathcal{A})^{s+1}}{\mathcal{D}}\frac{\partial\psi_{(s)}}{\partial r}\right] -\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\psi_{(s)}}{\partial\theta}\right) -\frac{1}{\sin^{2}\theta}\frac{\partial^{2}\psi_{(s)}}{\partial\varphi^{2}} \\ & \quad+\left(\frac{2sr}{\mathcal{D}}-\frac{sr^{2}\mathcal{A}'}{\mathcal{A}\mathcal{D}}\right)\frac{\partial\psi_{(s)}}{\partial t} -\frac{2 {\rm i} s\cot\theta}{\sin\theta}\frac{\partial\psi_{(s)}}{\partial\varphi} +\biggl[s^{2}\cot^{2}\theta-s-\frac{s(2s+1)r\mathcal{A}\mathcal{D}'}{\mathcal{D}^{3}} \\ & \quad {}+\frac{1}{3}(1-\delta_{s}+3s+2s^{2}) \left(1-\frac{\mathcal{A}}{\mathcal{D}^{2}}-\frac{2r\mathcal{A}'}{\mathcal{D}^{2}} +\frac{2r\mathcal{A}\mathcal{D}'}{\mathcal{D}^{3}}+\frac{r^{2}\mathcal{A'}\mathcal{D}'}{2\mathcal{D}^{3}} -\frac{r^{2}\mathcal{A}''}{2\mathcal{D}^{2}} \right) \\ &\quad {}+\frac{1}{6}(|s|-3|s|^{2}+2|s|^{3}) \left( 1-\frac{\mathcal{A}}{\mathcal{D}^{2}}-\frac{r^{2}\mathcal{A}'\mathcal{D}'}{2\mathcal{D}^{3}}+\frac{r^{2}\mathcal{A}''}{2\mathcal{D}^{2}} \right) ]\psi_{(s)}=2r^{2}T_{(s)}. \end{aligned} $
(59) Note that (59) with
$ s=\pm 2 $ is different from the equation obtained in our previous study [8]. However, this is simply because of the difference in the transformation (57), and they are equivalent. We also note that in the case of$ \mathcal{A}=1-2M/r $ and$ \mathcal{D}=1 $ , (59) reduces to the Teukolsky master equation with spin s on the background of the Schwarzschild spacetime. In the case of$ \mathcal{D}=1 $ , the above is simplified as$ \begin{aligned}[b] &\frac{r^{2}}{\mathcal{A}}\frac{\partial^{2}\psi_{(s)}}{\partial t^{2}} -\frac{1}{(r^{2}\mathcal{A})^{s}}\frac{\partial}{\partial r} \left[(r^{2}\mathcal{A})^{s+1}\frac{\partial\psi_{(s)}}{\partial r}\right] -\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\psi_{(s)}}{\partial\theta}\right)\\ &\quad-\frac{1}{\sin^{2}\theta}\frac{\partial^{2}\psi_{(s)}}{\partial\varphi^{2}} +\left(2sr-\frac{sr^{2}\mathcal{A}'}{\mathcal{A}}\right)\frac{\partial\psi_{(s)}}{\partial t} -\frac{2{\rm i} s\cot\theta}{\sin\theta}\frac{\partial\psi_{(s)}}{\partial\varphi} \\ &\quad +\biggl[s^{2}\cot^{2}\theta-s +\frac{1}{3}(1-\delta_{s}+3s+2s^{2})\left(1-\mathcal{A}-2r\mathcal{A}'-\frac{1}{2}r^{2}\mathcal{A}'' \right) \\ &\quad +\frac{1}{6}(|s|-3|s|^{2}+2|s|^{3}) \left(1-\mathcal{A}+\frac{1}{2}r^{2}\mathcal{A}'' \right) ]\psi_{(s)}=2r^{2}T_{(s)}. \end{aligned} $
(60) First, we consider the homogeneous case. The equation allows the separation of the variables, and we assume the product form of the solution to be
$ \begin{array}{*{20}{l}} \psi_{(s)}={\rm e}^{-{\rm i}\omega t}{\rm e}^{{\rm i} m\varphi}R(r)S(\theta), \end{array} $
(61) where ω is the frequency of the waves, and m is constant. Then, the separated equations are
$ \begin{aligned}[b] &\frac{1}{\mathcal{D}(r^{2}\mathcal{A})^{s}}\frac{\rm d}{{\rm d} r}\left[\frac{(r^{2}\mathcal{A})^{s+1}}{\mathcal{D}}\frac{{\rm d}R}{{\rm d}r}\right] +\biggl[\frac{r^{2}\omega^{2}}{\mathcal{A}}+{\rm i}\omega\left(\frac{2sr}{\mathcal{D}}-\frac{sr^{2}\mathcal{A}'}{\mathcal{A}\mathcal{D}}\right) +\frac{s(2s+1)r\mathcal{A}\mathcal{D}'}{\mathcal{D}^{3}} {}\\ & \quad -\frac{1}{3}(1-\delta_{s}+3s+2s^{2}) \left(1-\frac{\mathcal{A}}{\mathcal{D}^{2}}-\frac{2r\mathcal{A}'}{\mathcal{D}^{2}} +\frac{2r\mathcal{A}\mathcal{D}'}{\mathcal{D}^{3}}+\frac{r^{2}\mathcal{A'}\mathcal{D}'}{2\mathcal{D}^{3}} -\frac{r^{2}\mathcal{A}''}{2\mathcal{D}^{2}} \right) \\ &\quad {}-\frac{1}{6}(|s|-3|s|^{2}+2|s|^{3}) \left( 1-\frac{\mathcal{A}}{\mathcal{D}^{2}}-\frac{r^{2}\mathcal{A}'\mathcal{D}'}{2\mathcal{D}^{3}}+\frac{r^{2}\mathcal{A}''}{2\mathcal{D}^{2}} \right) -\boldsymbol{\lambda}_{(s)}]R=0, \end{aligned} $
(62) $ \frac{1}{\sin\theta}\frac{{\rm d}}{{\rm d}\theta}\left(\sin\theta\frac{{\rm d}S}{{\rm d}\theta}\right) +\Biggr( -\frac{m^{2}}{\sin^{2}\theta}-\frac{2sm\cot\theta}{\sin\theta} -s^{2}\cot^{2}+s+\boldsymbol{\lambda}_{(s)} \Biggr)S=0, $
(63) where
$ \boldsymbol{\lambda}_{(s)} $ is the separation constant. From (63), we can find that$S(\theta) {\rm e}^{{\rm i}m\varphi}$ coincides with the spin-weighted spherical harmonics$ {}_{s}Y_{lm}(\theta,\varphi) $ with spin s, where l and m take the values of$ \begin{array}{*{20}{l}} l=|s|,\ |s|+1,\ |s|+2,\ \ldots, \quad m= -l,\ -l+1,\ \ldots,\ l-1,\ l, \end{array} $
(64) respectively.
$ \boldsymbol{\lambda}_{(s)} $ becomes the eigenvalue of$ {}_{s}Y_{lm}(\theta,\varphi) $ , which is given by$ \begin{array}{*{20}{l}} \boldsymbol{\lambda}_{(s)}=(l-s)(l+s+1). \end{array} $
(65) For the nonhomogeneous case, we expand
$ \psi_{(s)} $ and$ T_{(s)} $ in terms of$ {}_{s}Y_{lm}(\theta,\varphi) $ as$ \psi_{(s)}=\int {\rm d}\omega \displaystyle\sum\limits_{l,m}R^{(s)}_{lm\omega}(r){}_{s}Y_{lm}(\theta,\varphi){\rm e}^{-{\rm i}\omega t}, $
(66) $ -2r^{2}T_{(s)}=\int {\rm d}\omega \sum\limits_{l,m}G^{(s)}_{lm\omega}(r){}_{s}Y_{lm}(\theta,\varphi){\rm e}^{-{\rm i}\omega t}. $
(67) Then,
$ R^{(s)}_{lm\omega}(r) $ satisfies$ \begin{aligned}[b] &\frac{1}{\mathcal{D}(r^{2}\mathcal{A})^{s}}\frac{\rm d}{{\rm d}r}\left[\frac{(r^{2}\mathcal{A})^{s+1}}{\mathcal{D}} \frac{{\rm d}R^{(s)}_{lm\omega}}{{\rm d}r}\right] +\biggl[\frac{r^{2}\omega^{2}}{\mathcal{A}}+{\rm i}\omega\left(\frac{2sr}{\mathcal{D}}-\frac{sr^{2}\mathcal{A}'}{\mathcal{A}\mathcal{D}}\right) +\frac{s(2s+1)r\mathcal{A}\mathcal{D}'}{\mathcal{D}^{3}} \\ &\qquad {}-\frac{1}{3}(1-\delta_{s}+3s+2s^{2})\left(1-\frac{\mathcal{A}}{\mathcal{D}^{2}}-\frac{2r\mathcal{A}'}{\mathcal{D}^{2}} +\frac{2r\mathcal{A}\mathcal{D}'}{\mathcal{D}^{3}}+\frac{r^{2}\mathcal{A'}\mathcal{D}'}{2\mathcal{D}^{3}} -\frac{r^{2}\mathcal{A}''}{2\mathcal{D}^{2}} \right) \\ &\qquad {}-\frac{1}{6}(|s|-3|s|^{2}+2|s|^{3})\left( 1-\frac{\mathcal{A}}{\mathcal{D}^{2}}-\frac{r^{2}\mathcal{A}'\mathcal{D}'}{2\mathcal{D}^{3}}+\frac{r^{2}\mathcal{A}''}{2\mathcal{D}^{2}} \right) -\boldsymbol{\lambda}_{(s)}]R^{(s)}_{lm\omega}=G^{(s)}_{lm\omega}. \end{aligned} $
(68) We again note that in the case of
$ \mathcal{A}=1-2M/r $ and$ \mathcal{D}=1 $ , (68) reduces to the Teukolsky radial equation with spin s on the background of the Schwarzschild spacetime. In the case of$ \mathcal{D}=1 $ , (68) reduces to$ \begin{aligned}[b] &\frac{1}{(r^{2}\mathcal{A})^{s}}\frac{\rm d}{{\rm d}r}\left[(r^{2}\mathcal{A})^{s+1} \frac{{\rm d}R^{(s)}_{lm\omega}}{{\rm d}r}\right] +\biggl[\frac{r^{2}\omega^{2}}{\mathcal{A}}+{\rm i}\omega\left(2sr-\frac{sr^{2}\mathcal{A}'}{\mathcal{A}}\right) \\ &\quad {}-\frac{1}{3}(1-\delta_{s}+3s+2s^{2})\left(1-\mathcal{A}-2r\mathcal{A}'-\frac{1}{2}r^{2}\mathcal{A}'' \right) \\ &\quad {}-\frac{1}{6}(|s|-3|s|^{2}+2|s|^{3})\left( 1-\mathcal{A}+\frac{1}{2}r^{2}\mathcal{A}'' \right) -\boldsymbol{\lambda}_{(s)}]R^{(s)}_{lm\omega}=G^{(s)}_{lm\omega}, \end{aligned} $
(69) which reduces to [11] for positive s.
-
In previous studies, two types of the gravitational-wave equations have appeared. One can be found in [6, 8], and the other in [7]. Because these equations are obtained from the same set of coupled equations in the Newman-Penrose formalism but with different gauges, both equations should describe the gravitational wave correctly. Here, one question can be raised: although the unknown variables
$ \Psi_{4}^{B} $ and$ \Psi_{0}^{B} $ are gauge-invariant quantities, why can we have two (or more, in principle) forms of the wave equations for each variable? To answer this question, we revisit the derivation of the gravitational-wave equation on the background, with emphasis on the gauge dependence.We focus on the wave equation for
$ \Psi_{4}^{B} $ and consider the case of$ \mathcal{D}=1 $ because in [7], only this case is considered. Here, our gauge conditions (44) and (45) reduce to$ \lambda^{B}=0 $ [8]. We begin with the following three equations in the Newman-Penrose formalism:$ \begin{aligned}[b] &(\delta+4\beta-\tau)\Psi_{4}-(\Delta+4\mu+2\gamma)\Psi_{3}+3\nu\Psi_{2} \\ &\quad =(\bar{\delta}-\bar{\tau}+2\bar{\beta}+2\alpha)\Phi_{22}-(\Delta+2\gamma+2\bar{\mu})\Phi_{21} \\ &\qquad -2\lambda\Phi_{12}+2\nu\Phi_{11}+\bar{\nu}\Phi_{20}, \end{aligned} $
(70) $ \begin{aligned}[b] &(D+4\epsilon-\rho)\Psi_{4}-(\bar{\delta}+4\pi+2\alpha)\Psi_{3}+3\lambda\Psi_{2} \\ &\quad =(\bar{\delta}-2\bar{\tau}+2\alpha)\Phi_{21}-(\Delta+2\gamma-2\bar{\gamma}+\bar{\mu})\Phi_{20}\\ &\qquad +\bar{\sigma}\Phi_{22}-2\lambda\Phi_{11}+2\nu\Phi_{10}, \end{aligned} $
(71) $ (\Delta+\mu+\bar{\mu}+3\gamma-\bar{\gamma})\lambda-(\bar{\delta}+\pi-\bar{\tau}+\bar{\beta}+3\alpha)\nu+\Psi_{4}=0. $
(72) We split all the quantities in the above into the background
$ (A) $ and perturbation parts$ (B) $ ; for instance,$ \Psi_{4}=\Psi_{4}^{A}+\Psi_{4}^{B} $ , etc. We keep the first order of the perturbation only. The background part of the above equations is satisfied, and the perturbation part becomes$ \begin{aligned}[b] &(\delta-4\alpha)^{A}\Psi_{4}^{B}-(\Delta+2\gamma+4\mu)^{A}\Psi_{3}^{B}+3\nu^{B}\Psi_{2}^{A} \\ &\quad = \bar{\delta}^{A}\Phi_{22}^{B}-(\Delta+2\gamma+2\mu)^{A}\Phi_{21}^{B}+2\nu^{B}\Phi_{11}^{A}, \end{aligned} $
(73) $ \begin{aligned}[b] &(D-\rho)^{A}\Psi_{4}^{B}-(\bar{\delta}+2\alpha)^{A}\Psi_{3}^{B}+3\lambda^{B}\Psi_{2}^{A} \\ &\qquad =(\bar{\delta}+2\alpha)^{A}\Phi_{21}^{B}-(\Delta+\mu)^{A}\Phi_{20}^{B} -2\lambda^{B}\Phi_{11}^{A}, \end{aligned} $
(74) $ (\Delta+2\gamma+2\mu)^{A}\lambda^{B}-(\bar{\delta}+2\alpha)^{A}\nu^{B}+\Psi_{4}^{B}=0. $
(75) Now, we obtain the wave equation for
$ \Psi_{4}^{B} $ using the same procedure as in the previous section. We operate$ (\Delta+2\gamma+5\mu)^{A} $ to (74) and$ (\bar{\delta}+2\alpha)^{A} $ to (73) and then find the difference of them. The terms with$ \Psi_{3}^{B} $ are canceled by (27) with$ p=2 $ ,$ q=-4 $ , and the remainder becomes$ \begin{aligned}[b] &\left[(\Delta+2\gamma+5\mu)(D-\rho)-(\bar{\delta}+2\alpha)(\delta-4\alpha)\right]^{A}\Psi_{4}^{B} \\ &\qquad {}+(3\Psi_{2}+2\Phi_{11})^{A}(\Delta+2\gamma+5\mu)^{A}\lambda^{B}\\ & \qquad -(3\Psi_{2}-2\Phi_{11})^{A}(\bar{\delta}+2\alpha)^{A}\nu^{B} \\ & \quad=T_{4} -\lambda^{B}\Delta^{A}(3\Psi_{2}+2\Phi_{11})^{A}+\nu^{B}\bar{\delta}^{A}(3\Psi_{2}-2\Phi_{11})^{A}, \end{aligned} $
(76) where
$ T_{4} $ is defined by$ \begin{aligned}[b] T_{4}&=(\Delta+2\gamma+5\mu)^{A} \left[(\bar{\delta}+2\alpha)^{A}\Phi_{21}^{B}-(\Delta+\mu)^{A}\Phi_{20}^{B}\right] \\ &\quad {}-(\bar{\delta}+2\alpha)^{A} \left[\bar{\delta}^{A}\Phi_{22}^{B}-(\Delta+2\gamma+2\mu)^{A}\Phi_{21}^{B}\right]. \end{aligned} $
(77) For the third line in (76), we have
$ \Delta^{A}(3\Psi_{2}-2\Phi_{11})^{A} =-3\mu^{A}(3\Psi_{2}+2\Phi_{11})^{A}+8\mu^{A}\Phi_{11}^{A}, $
(78) $ \bar{\delta}^{A}(3\Psi_{2}+2\Phi_{11})^{A} =-3\pi^{A}(3\Psi_{2}-2\Phi_{11})^{A}, $
(79) and then substituting the above into (76), we obtain
$ \begin{aligned}[b] &\left[(\Delta+2\gamma+5\mu)(D-\rho) -(\bar{\delta}+2\alpha)(\delta-4\alpha)-3\Psi_{2}\right]^{A}\Psi_{4}^{B} \\ &\qquad {}+2\Phi_{11}^{A}\left[(\Delta+2\gamma+2\mu)^{A}\lambda^{B} +(\bar{\delta}+2\alpha)^{A}\nu^{B}\right] \\ & \quad =T_{4} -4\lambda^{B}[(\Delta+2\mu)\Phi_{11}]^{A}, \end{aligned} $
(80) where we use (75) and
$ \bar{\delta}^{A}\Phi_{11}^{A}=0 $ from the spherical symmetry. By eliminating the terms with$ \nu^{B} $ using (75) again, we have$ \begin{aligned}[b] &\left[(\Delta+2\gamma+5\mu)(D-\rho) -(\bar{\delta}+2\alpha)(\delta-4\alpha)-3\Psi_{2}+2\Phi_{11}\right]^{A}\Psi_{4}^{B} \\ & \quad =T_{4} -4(\Delta+2\gamma+4\mu)^{A}(\Phi_{11}^{A}\lambda^{B}). \end{aligned} $
(81) Moreover, using (78) and (79), the above can be rewritten as
$ \begin{aligned}[b] &\bigl[(\Delta+2\gamma+5\mu)(D-\rho) -(\bar{\delta}+2\alpha)(\delta-4\alpha)\\ & \qquad -3\Psi_{2}+2\Phi_{11}\bigr]^{A} \Psi_{4}^{B} \\ & \quad =T_{4}+(3\Psi_{2}-2\Phi_{11})^{A}(\Delta+2\gamma+2\mu)^{A}\lambda^{B} \\ & \qquad -(\Delta+2\gamma+5\mu)^{A}\left[(3\Psi_{2}+2\Phi_{11})^{A}\lambda^{B}\right], \end{aligned} $
(82) So far, we have not used a gauge condition. If we take the gauge condition as
$ \lambda^{B}=0 $ , Eqs. (80) and (82) are reduced to the wave equation (47) in [6, 8] as$ \begin{aligned}[b] & \bigl[(\Delta+2\gamma+5\mu)(D-\rho) -(\bar{\delta}+2\alpha)(\delta-4\alpha)-3\Psi_{2}+2\Phi_{11}\bigr]^{A} \Psi_{4}^{B} \\ & \quad=T_{4}, \end{aligned} $
(83) which has a similar form to the vacuum case
$ \Phi_{11}^{A}=\Lambda^{A}=0 $ . However, from (74),$ \lambda^{B} $ can be expressed in terms of$ \Psi_{3}^{B} $ as$ \begin{aligned}[b] \lambda^{B}=\,& \frac{1}{(3\Psi_{2}+2\Phi_{11})^{A}} \left[-(D-\rho)^{A}\Psi_{4}^{B}+(\bar{\delta}+2\alpha)^{A}(\Psi_{3}+\Phi_{21})^{B}\right. \\ & \left. -(\Delta+\mu)^{A}\Phi_{20}^{B}\right]. \end{aligned} $
(84) Substituting the above into (82) gives
$ \begin{aligned}[b] &\left[F_{2}^{-1}(\Delta+2\gamma+2\mu-F_{1})(D-\rho)\right.\\ & \qquad \left.-(\bar{\delta}+2\alpha)(\delta-4\alpha)-3\Psi_{2}+2\Phi_{11}\right]^{A}\Psi_{4}^{B} \\ & \quad =F_{2}^{-1}(\Delta+2\gamma+2\mu-F_{1})^{A}\\ &\qquad\times \left[(\bar{\delta}+2\alpha)^{A}(\Psi_{3}+\Phi_{21})^{B}-(\Delta+\mu)^{A}\Phi_{20}^{B}\right] \\ &\qquad{}-(\bar{\delta}+2\alpha)^{A}\left[\bar{\delta}^{A}\Phi_{22}^{B}-(\Delta+2\gamma+2\mu)^{A}\Phi_{21}^{B}\right], \end{aligned} $
(85) or
$ \begin{aligned}[b] &\left[(\Delta+2\gamma+2\mu-F_{1})(D-\rho)-F_{2}(\bar{\delta}+2\alpha) (\delta-4\alpha)-3\Psi_{2}\right.\\ & \left.\qquad -2\Phi_{11}\right]^{A}\Psi_{4}^{B} \\ & \quad =(\Delta+2\gamma + 2\mu - F_{1})^{A}\left[(\bar{\delta}+2\alpha)^{A}(\Psi_{3}+\Phi_{21})^{B}-(\Delta+\mu)^{A}\Phi_{20}^{B}\right] \\ &\qquad{}-F_{2}(\bar{\delta}+2\alpha)^{A}\left[\bar{\delta}^{A}\Phi_{22}^{B}-(\Delta+2\gamma+2\mu)^{A}\Phi_{21}^{B}\right], \end{aligned} $
(86) where
$ F_{1} $ and$ F_{2} $ are defined by$ F_{1}=\Delta\left[\ln(3\Psi_{2}+2\Phi_{11})^{A}\right], \quad F_{2}=\left(\frac{3\Psi_{2}+2\Phi_{11}}{3\Psi_{2}-2\Phi_{11}}\right)^{A}. $
(87) Thus, if we take the gauge condition as
$ \Psi_{3}^{B}=0 $ , (86) is reduced to the wave equation in [7] as$ \begin{aligned}[b] & \left[(\Delta+2\gamma+2\mu-F_{1})(D-\rho)-F_{2}(\bar{\delta}+2\alpha)(\delta-4\alpha) \right.\\ & \left.\quad -3\Psi_{2}-2\Phi_{11}\right]^{A}\Psi_{4}^{B} =\tilde{T}_{4}, \end{aligned} $
(88) where
$ \tilde{T}_{4} $ is defined by$ \begin{aligned}[b] \tilde{T}_{4} =\,&(\Delta+2\gamma+2\mu-F_{1})^{A}\left[(\bar{\delta}+2\alpha)^{A}\Phi_{21}^{B}-(\Delta+\mu)^{A}\Phi_{20}^{B}\right] \\ & -F_{2}(\bar{\delta}+2\alpha)^{A}\left[\bar{\delta}^{A}\Phi_{22}^{B}-(\Delta+2\gamma+2\mu)^{A}\Phi_{21}^{B}\right]. \end{aligned} $
(89) Next, we consider the gauge transformation in the wave equation, for which we take the following tetrad rotations
3 [16]:$ \begin{aligned}[b] & l^{\mu}\to l^{\mu},\quad m^{\mu}\to m^{\mu}+al^{\mu}, \quad \bar{m}^{\mu}\to \bar{m}^{\mu}+\bar{a}l^{\mu}, \\ & n^{\mu}\to n^{\mu}+\bar{a}m^{\mu}+a\bar{m}^{\mu}+a\bar{a}l^{\mu}, \end{aligned} $
(90) $ \begin{aligned}[b] & n^{\mu}\to n^{\mu},\quad m^{\mu}\to m^{\mu}+bn^{\mu}, \quad \bar{m}^{\mu}\to \bar{m}^{\mu}+\bar{b}n^{\mu}, \\ & l^{\mu}\to l^{\mu}+\bar{b}m^{\mu}+b\bar{m}^{\mu}+b\bar{b}n^{\mu}, \end{aligned} $
(91) $ \begin{aligned}[b] & l^{\mu}\to e^{-c}l^{\mu},\quad n^{\mu}\to e^{c}n^{\mu},\quad m^{\mu}\to {\rm e}^{{\rm i}\vartheta}m^{\mu},\quad \bar{m}^{\mu}\to {\rm e}^{-{\rm i} \vartheta}\bar{m}^{\mu}. \end{aligned} $
(92) To avoid changing the background, we assume that parameters a, b, c, and ϑ are in the first order of the perturbation, and hence for the perturbation quantities, the transformation of the first order is sufficient. In the wave equation (80), the left hand side is gauge-invariant because
$ \Psi_{4}^{B} $ is so, which imples that the right hand side must also be invariant. Using$ \begin{aligned}[b] & \lambda^{B}\to\lambda^{B}+(\bar{\delta}+2\alpha)^{A}\bar{a}, \quad \Phi_{21}^{B}\to\Phi_{21}^{B}+2\Phi_{11}^{A}\bar{a}, \\ & \Phi_{20}^{B}\to\Phi_{20}^{B}, \quad \Phi_{22}^{B}\to\Phi_{22}^{B}, \end{aligned} $
(93) source term
$ T_{4} $ transforms as$ \begin{array}{*{20}{l}} T_{4}\to T_{4}+4\left[(\bar{\delta}+2\alpha)(\Delta+2\gamma+3\mu)\right]^{A}(\Phi_{11}^{A}\bar{a}). \end{array} $
(94) We can find that this transformation is cancelled by that of other terms on the right hand side of (80), where we use (27) and
$ \bar\delta^{A}\Phi_{11}^{A}=0 $ . We can also show that$ \tilde{T}_{4} $ , defined by (89), has a nontrivial gauge transformation under (90)–(92), which is cancelled by that of$ \Psi_{3}^{B} $ as$ \begin{array}{*{20}{l}} \Psi_{3}^{B}\to\Psi_{3}^{B}+3\Psi_{2}^{A}\bar{a}. \end{array} $
(95) Thus, the origin of the gauge dependence of the gravitational-wave equation is due to that of the source term, particularly
$ \Phi_{21}^{B} $ . Note that in the vacuum case, this dependence does not appear because$ \Phi_{11}^{A}=0 $ . We can also show that the two gravitational-wave equations (83) and (88) coincide in the vacuum background because of$ \begin{array}{*{20}{l}} F_{1}=-3\mu^{A}, \quad F_{2}=1, \end{array} $
(96) in the vacuum.
-
In this paper, we follow the notations and conventions of Newman-Penrose [9] and Pirani [15]. Here, we list some of the definitions for convenience. The metric has the sign
$ (+---) $ , and the Riemann curvature is decomposed as$ \begin{aligned}[b] R_{\mu\nu\alpha\beta}&=C_{\mu\nu\alpha\beta}-\frac{1}{2}\left(g_{\mu\alpha}R_{\nu\beta} -g_{\mu\beta}R_{\nu\alpha}+g_{\nu\beta}R_{\mu\alpha}-g_{\nu\alpha}R_{\mu\beta}\right) \\ &\quad {}+\frac{1}{6}\mathcal{R}(g_{\mu\alpha}g_{\nu\beta}-g_{\mu\beta}g_{\nu\alpha}), \end{aligned} $
(A1) where
$ C_{\mu\nu\alpha\beta} $ is the Weyl tensor. Ricci tensor$ R_{\mu\nu} $ and Ricci scalar$ \mathcal{R} $ are defined by$ \begin{array}{*{20}{l}} R_{\mu\nu}=R^{\rho}{}_{\mu\nu\rho}, \quad \mathcal{R}=g^{\mu\nu}R_{\mu\nu}. \end{array} $
(A2) The twelve spin coefficients are defined by
$ \begin{aligned}[b] & \kappa=m^\mu l^\nu\nabla_{\nu}l_{\mu},\quad \tau=m^\mu n^\nu\nabla_{\nu}l_{\mu},\\ &\epsilon=\frac{1}{2}(n^{\mu}l^{\nu}\nabla_{\nu}l_{\mu}-\bar{m}^{\mu}l^{\nu}\nabla_{\nu}m_{\mu}), \\ &\sigma=m^\mu m^\nu\nabla_{\nu}l_{\mu},\quad \rho=m^\mu \bar{m}^\nu\nabla_{\nu}l_{\mu},\\ &\gamma=\frac{1}{2}(n^{\mu} n^{\nu}\nabla_{\nu}l_{\mu}-\bar{m}^{\mu}n^{\nu}\nabla_{\nu}m_{\mu}), \\ &\nu=-\bar{m}^\mu n^\nu\nabla_{\nu}n_{\mu},\quad \mu=-\bar{m}^\mu m^\nu\nabla_{\nu}n_{\mu},\\ &\beta=\frac{1}{2}(n^{\mu} m^{\nu}\nabla_{\nu}l_{\mu}-\bar{m}^{\mu} m^{\nu}\nabla_{\nu}m_{\mu}), \\ &\lambda=-\bar{m}^\mu \bar{m}^\nu\nabla_{\nu}n_{\mu},\quad \pi=-\bar{m}^\mu l^\nu\nabla_{\nu}n_{\mu},\\ & \alpha=\frac{1}{2}(n^{\mu} \bar{m}^{\nu}\nabla_{\nu}l_{\mu}-\bar{m}^{\mu}\bar{m}^{\nu}\nabla_{\nu}m_{\mu}), \end{aligned} $
(A3) where
$ \nabla_{\mu} $ is the covariant derivative with respect to the curved spacetime. The Ricci tensor is decomposed into the following components:$ \begin{aligned}[b] &\Phi_{00}=-\frac{1}{2}R_{\mu\nu}l^{\mu}l^{\nu},\quad \Phi_{01}=-\frac{1}{2}R_{\mu\nu}l^{\mu}m^{\nu},\\ &\Phi_{02}=-\frac{1}{2}R_{\mu\nu}m^{\mu}m^{\nu}, \quad \Phi_{10}=-\frac{1}{2}R_{\mu\nu}l^{\mu}\bar{m}^{\nu},\\ &\Phi_{11}=-\frac{1}{4}R_{\mu\nu}(l^{\mu}n^{\nu}+m^{\mu}\bar{m}^{\nu}),\quad \Phi_{12}=-\frac{1}{2}R_{\mu\nu}n^{\mu}m^{\nu},\notag \\ &\Phi_{20}=-\frac{1}{2}R_{\mu\nu}\bar{m}^{\mu}\bar{m}^{\nu},\quad \Phi_{21}=-\frac{1}{2}R_{\mu\nu}n^{\mu}\bar{m}^{\nu},\\ & \Phi_{22}=-\frac{1}{2}R_{\mu\nu}n^{\mu}n^{\nu}, \end{aligned} $
$ \Lambda=\frac{1}{24}\mathcal{R}=\frac{1}{12}R_{\mu\nu}\left ( l^{\mu}n^{\nu }- m^{\mu}\bar{m}^{\nu} \right ). $
(A4) Finally, the Weyl scalars are defined by
$ \begin{aligned}[b] \Psi_{0}&=-C_{\mu\nu\lambda\rho}l^{\mu}m^{\nu}l^{\lambda}m^{\rho}, \\ \Psi_{1}&=-C_{\mu\nu\lambda\rho}l^{\mu}n^{\nu}l^{\lambda}m^{\rho}, \\ \Psi_{2}&=-\frac{1}{2}C_{\mu\nu\lambda\rho}(l^{\mu}n^{\nu}l^{\lambda}n^{\rho}-l^{\mu}n^{\nu}m^{\lambda}\bar{m}^{\rho}), \\ \Psi_{3}&=-C_{\mu\nu\lambda\rho}l^{\mu}n^{\nu}\bar{m}^{\lambda}n^{\rho}, \\ \Psi_{4}&=-C_{\mu\nu\lambda\rho}n^{\mu}\bar{m}^{\nu}n^{\lambda}\bar{m}^{\rho}. \end{aligned} $
(A5)
Teukolsky-like equations with various spins in spherically symmetric spacetime
- Received Date: 2024-01-15
- Available Online: 2024-08-15
Abstract: We study wave equations with various spins on the background of a general spherically symmetric spacetime. We obtain the unified expression of the Teukolsky-like master equations and the corresponding radial equations with the general spins. We also discuss the gauge dependence in the gravitational-wave equations, which have appeared in previous studies.