-
The
$ 2p $ radioactivity half-life$ {T}_{1/2} $ is defined as [75]$ {T}_{1/2} = \frac{\hbar{\rm{ln2}}}{\Gamma}, $
(1) where
$ \hbar $ represents the reduced Plank constant. The$ 2p $ radioactivity width Γ can be expressed as follows:$ \Gamma={{S}_{2p}}{F}\frac{\hbar^{2}}{4\mu}{{\rm exp}{(-2P)}}, $
(2) where
$ \mu={m}_{d}{m}_{2p}/({m}_{d}+{m}_{2p})\approx 938.3\times 2\times{A}_{d}/A $ MeV$ /c^{2} $ is the reduced mass with$ {m}_{d} $ and$ {m}_{2p} $ as the masses of the daughter nucleus and the emitted two protons, respectively, and$ {A}_{d} $ and A are the mass numbers of the daughter nucleus and parent nucleus, respectively [67].$ {S}_{ 2p} $ represents the preformation factor for$ 2p $ radioactivity. It can be obtained by using the cluster overlap approximation [76], which can be expressed as$ {S}_{ 2p}=G_1^2[ A /(A -2)]^{2n}\chi^2, $
(3) where
$ G_1^2=(2n)!/[2^{2n}(n!)^2] $ [77], with$ n\approx (3Z)^{1/3}-1 $ [78] being the average principal proton oscillator quantum number, where Z is the proton number of the parent nucleus. The parameter$ \chi^2=0.0143 $ was determined by fitting the experimental half-lives [66]. The normalization factor F [75] and action integral P can be expressed as$ F=\frac{1}{\int_{0}^{r_1}{\rm d}r\dfrac{1}{2k(r)}}, $
(4) $ P=\int_{r_1}^{r_2}{\rm d}r{k(r)}, $
(5) where
$ k(r)=\sqrt{\dfrac{2\mu}{\hbar^2}(V_{2p}(r)-Q_{2p})} $ is the wave number in the barrier region of the total interaction potential. r represents the distance between the centers of the emitted two protons and daughter nucleus.$ {Q_{2p}} $ is the released energy of$ 2p $ radioactivity. The classical turning points$ r_1 $ and$ r_2 $ satisfy the conditions$ V_{2p}(r_1)=V_{2p}(r_2)=Q_{2p} $ .The total interaction potential
$ V_{2p}(r) $ between the emitted two protons and daughter nucleus, including nuclear potential$ V_{N}(r) $ , Coulomb potential$ V_{C}(r) $ , and centrifugal potential$ V_{l}(r) $ , is written as [79]$ V_{2p}(r)=V_{N}(r)+V_{C}(r)+V_{l}(r). $
(6) In this study, we chose
$ V_{N}(r) $ as the modified harmonic oscillator form [72]. This can be expressed as follows:$ V_{N}(r)=-V_{0}+V_{1}r^{2}, $
(7) where
$ V_{0} $ and$ V_{1} $ are the depth and diffusivity of the nuclear potential, respectively.For the Coulomb potential
$ V_{C}(r) $ in$ 2p $ radioactivity, we choose the potential as a uniformly charged sphere with radius R, denoted as$ \ V_{C}(r)=\left\{\begin{array}{ll} \dfrac{\ Z_{2p}Z_{d}e^{2}}{2R}\left(3-\dfrac{r^{2}}{{R}^2}\right) ,&r\le r_{1},\\ \ \dfrac{Z_{2p}Z_{d}e^{2}}{r} ,&r>r_{1}, \end{array}\right. $
(8) where
$ e^{2}=1.4399652 $ $ {\rm{MeV\cdot}}{\rm{fm}}$ is the square of the electronic elementary charge and$ R=r_{0}(A_{2p}^{1/3}+A_{d}^{1/3}) $ . Here,$ r_0 $ ,$ A_{2p} $ ,$ Z_{2p} $ , and$ Z_{d} $ are the effective nuclear radius parameter, mass number of the emitted two protons, and proton numbers of the emitted two protons and daughter nucleus, respectively. In this study,$ r_0=1.28 $ fm was taken from Ref. [80].The centrifugal potential
$ V_{l}(r) $ can be written as$ V_{l}(r)=\frac{\hbar^{2} l( l+1)}{2\mu r^{2}}, $
(9) where l is the orbital angular momentum taken away by the emitted two protons. In this work, considering all known
$ 2p $ radioactivity nuclei in the experiment having$ l=0 $ , then$ V_{l}(r)=0 $ . Therefore, the total interaction potential$ V_{2p}(r) $ can be expressed as$ V_{2p}(r)=\left\{\begin{array}{*{20}{l}} { C_{0}-V_{0}+(V_{1}-C_{1})r^{2} ,}&{r\le r_{1},}\\ {\dfrac{C_{2}}{r} ,}&{r>r_{1}, }\end{array}\right. $
(10) where
$ C_{0}=\dfrac{3Z_{2p}Z_{d}e^{2}}{2R} $ ,$ C_{1}=\dfrac{Z_{2p}Z_{d}e^{2}}{2R^{3}} $ , and$ C_{2}=Z_{2p}Z_{d}e^{2} $ . Using the condition$ V_{2p}(r_1)=V_{2p}(r_2)=Q_{2p} $ , we can obtain$r_1=\sqrt{({Q_{2p}+V_{0}-C_{0}})/({V_{1}-C_{1}})}$ and$ r_2=\dfrac{C_{2}}{Q_{2p}} $ [72]. The turning points explicitly depend on the effective potential parameters$ V_0 $ and$ 2p $ radioactivity energy$ {Q_{2p}} $ . Taking$ ^{67}{\rm{Kr}}$ as an example, we plot total interaction potential$ V_{2p}(r) $ given by Eq. (10) as a function of the distance r between the centers of the emitted two protons and daughter nucleus in Fig. 1.Figure 1. (color online) Total interaction potential
$V_{2p}(r)$ in terms of the different potential depths shown as a function of the distance r between the centers of the emitted two protons and daughter nucleus for the$^{67}{\rm{Kr}}\rightarrow ^{65}{\rm Se}+2p+Q_{2p}$ system with$Q_{2p}=1.69\, {\rm{ MeV}}$ .The Bohr-Sommerfeld quantization condition can reduce the freedom of the system, which is also a vital application of the WKB approximation [81, 82]. In this work, we use this condition to reduce the degrees of freedom of the total potential describing the interaction between emitted two protons and daughter nucleus. The formula for this condition can be expressed as
$ \int_{0}^{r_1}{\rm d}r{k(r)}=(G-l+1)\frac{\pi}{2}. $
(11) Here, the global quantum number
$ G=2n_r+l $ in Eq. (11) is dependent on the Wildermuth quantum rule, with$ n_r $ and l representing the radial and angular momentum quantum numbers, respectively [83]. We chose$G=2, 3, \;4,\; 5$ corresponding to the$ 2\hbar\omega $ ,$ 3\hbar\omega $ ,$ 4\hbar\omega $ , and$ 5\hbar\omega $ oscillator shell depending on the individual nuclei for$ 2p $ radioactivity [84]. The relationship between$ V_0 $ and$ V_1 $ can be expressed as$ V_1=C_1+\frac{\mu}{2\hbar^2}\left(\frac{Q_{2p}+V_0-C_0}{1+G}\right)^2, $
(12) with the integral conditions
$ Q_{2p}+V_0>C_0 $ and$ V_1>C_1 $ . Based on the above, we can analytically obtain the normalization factor F and action integral P, which can be expressed as$ F=\frac{4}{\pi}\sqrt{\frac{2\mu}{\hbar^2}(V_1-C_1)}, $
(13) $ \begin{aligned}[b] P=\;& \sqrt{\frac{2\mu}{\hbar^2}}{\frac{C_2}{\sqrt{Q_{2p}}}} \Bigg(\arccos\sqrt{\frac{Q_{2p}r_1}{C_2}}\\ &-\sqrt{\frac{Q_{2p}r_1}{C_2}-\left({\frac{Q_{2p}r_1}{C_2}}\right)^2} \Bigg). \end{aligned} $
(14) Therefore, the logarithm of
$ 2p $ radioactivity half-lives can be obtained by$ {\rm{log}}_{10}{T_{1/2}}=A+B/\sqrt{Q_{2p}}, $
(15) where A and B can be expressed as
$ A={\rm log}_{10}\left(\frac{\pi\hbar ln2}{P}\frac{1+{G}}{Q_{2p}+{V_0}-{C_0}}\right), $
$ \begin{aligned}[b] B=\;&{2C_2{{\rm{log}}_{10}}(e)\sqrt{\frac{2\mu}{\hbar^2}}}\Bigg(\arccos\sqrt{\frac{Q_{2p}r_1}{C_2}} \\& -\sqrt{\frac{Q_{2p}r_1}{C_2}-\left({\frac{Q_{2p}r_1}{C_2}}\right)^2} \Bigg). \end{aligned} $
(16) Considering the substantial impact of deformation on nuclear structure, especially for two-proton emitters characterized by non-spherical shapes[23, 30] with the additional term
$ a_{\beta}\left| \beta_{2}\right| $ , the newly proposed model can calculate the$ 2p $ radioactivity half-lives [85]. The deformation values$ \beta_{2} $ are taken from Möller et al. [86]. This can be written as$ {\rm{log}}_{10}{T_{1/2}}=A+B/\sqrt{Q_{2p}}+a_{\beta}\left| \beta_{2}\right|. $
(17) -
In 2019, based on the effective liquid drop model (ELDM), Sreeja et al. proposed an empirical formula to calculate the half-lives of
$ 2p $ radioactivity [71]. This can be expressed as$ {\rm{log}}_{10}{T_{1/2}}=((a\times l)+b)Z_d^{0.8} Q_{2p}^{-1/2}+((c\times l)+d), $
(18) where
$ a=0.1578 $ ,$ b=1.9474 $ ,$ c=-1.8795 $ , and$ d= -24.847 $ denote the adjustable parameters, which are determined by fitting the calculated results of the ELDM [71]. -
In 2021, based on the Geiger-Nuttall law and experimental data, Liu et al. proposed a two-parameter empirical formula to study
$ 2p $ radioactivity half-lives [70]. This can be formulated as$ {\rm{log}}_{10}{T_{1/2}}=a(Z_d^{0.8}+l^{ 0.25}) Q_{2p}^{-1/2} +b, $
(19) where the adjustable parameters
$ a=2.032 $ and$ b= -26.832 $ , respectively [70]. -
Based on the Wentzel-Kramers-Brillouin approximation and Bohr-Sommerfeld quantization condition, we extend a simple phenomenological model proposed by Bayrak to systematically study the half-lives of favored
$ 2p $ radioactivity for nuclei with$ 4<Z<36 $ . In this model, there are two adjustbale parameters$ V_0 $ and$ a_{\beta} $ : the depth of nuclear potential and coefficient of effect for deformation, respectively. Based on the experimental data of the true$ 2p $ radioactivity nuclei using the genetic algorithm, we obtain the optimal adjustable parameters$ V_0=61.597 $ $ {\rm{MeV}}$ and$ a_{\beta}=-1.250 $ . Due to the formula$ V_0 = 25A_{2p} $ $ {\rm{MeV}}$ based on Ref. [87], we can judge that the value of$ V_0 $ is reasonable. Using this model, we systematically calculate the favored$ 2p $ radioactivity half-lives. The detailed calculations are presented in Table 1. In this table, the first three columns represent the$ 2p $ radioactive parent nuclei,$ 2p $ radioactivity released energy$ Q_{2p} $ , and the experimental data of the$ 2p $ radioactivity half-lives$ \log_{10}T_{1/2}^{\rm{exp}} $ , respectively. The fourth to fourteenth columns are calculated data of the$ 2p $ radioactivity half-lives by using our model with Eqs. (15) and (17), Gamow-like model (GLM), generalized liquid drop model (GLDM), four-parameter empirical formula by Sreeja et al., two-parameter empirical formula by Liu et al., ELDM, TPASHF, SEB, UFM, and CPPMDN, respectively. The last column gives the logarithm of errors between the experimental half-lives of$ 2p $ radioactivity and the calculated ones with our model$(\log_{10}{HF}={\log_{10}T_{1/2}^{\rm{exp}}} -{\log_{10}T_{1/2}^{\rm{Cal}}})$ . From this table, it can be seen that for the true$ 2p $ radioactivity nuclei$ ^{19}{\rm{Mg}}$ ,$ ^{45}{\rm{Fe}}$ ,$ ^{48}{\rm{Ni}}$ ,$ ^{54}{\rm{Zn}}$ , and$ ^{67}{\rm{Kr}}$ , most of the$ \log_{10}{HF} $ values are between –1 and 1. This means that our calculated half-lives differs by approximately one order of magnitude from the experimental value. In particular, for$ ^{45}{\rm{Fe}}$ ($ Q_{2p}=1.15{{\rm{MeV}}} $ ) and$ ^{48}{\rm{Ni}}$ ($ Q_{2p}=1.31{{\rm{MeV}}} $ ), the values of$ \log_{10}{HF} $ are –0.06 and –0.09, respectively. For the not true$ 2p $ radioactivity nuclei$ ^{6}{\rm{Be}}$ ,$ ^{12}{\rm{O}}$ , and$ ^{16}{\rm{Ne}}$ , the values of$ \log_{10}{HF} $ are relatively large. Clearly, the calculated half-lives of 16Ne and 67Kr nuclei show significant improvement when the effects of deformation are considered, compared to calculations without deformation. This shows that our improved formula is effective.Nuclei $ Q_{2p} $ /MeV$ \log_{10}T_{1/2}^{\rm{exp}} $ $ \log_{10}T_{1/2} $ (s)$ \log_{10}{\textit{HF}} $ Cal1 Cal2 GLM GLDM Sreeja Liu ELDM TPASHF SEB UFM CPPMDN 6Be 1.37 [40] −20.30 [40] −20.24 −20.24 −19.70 −19.37 −21.95 −23.81 −19.97 − −19.86 −19.41 −21.91 −0.06 12O $ 1.64 $ [41]$-20.20 $ [41]$ -18.50 $ $ -18.50 $ $ -18.04 $ $ -19.71 $ $ -18.47 $ $ -20.17 $ $ -18.27 $ − $ -17.70 $ $ -18.45 $ $ -20.90 $ $ -1.70 $ 1.82 [38] −20.94 [38] −18.74 −18.74 −18.30 −19.46 −18.79 −20.52 − − −18.03 −18.69 −21.22 −2.20 $ 1.79 $ [43]$ -20.10 $ [43]$ -18.70 $ $ -18.70 $ $ -18.26 $ $ -19.43 $ $ -18.74 $ $ -20.46 $ − − $ -17.98 $ $ -18.65 $ $ -21.17 $ $ -1.40 $ 1.80 [44] −20.12 [44] −18.71 −18.71 −18.73 −19.44 −18.76 −20.48 − − −18.00 −18.66 −21.19 −1.41 16Ne 1.33 [38] −20.64 [38] −16.52 −17.07 −16.23 −16.45 −15.94 −17.53 − − −15.47 −16.49 −18.01 −3.57 $ 1.40 $ [45]$ -20.38 $ [45]$ -16.71 $ $ -17.26 $ $ -16.43 $ $ -16.63 $ $ -16.16 $ $ -17.77 $ $ -16.60 $ − $ -15.71 $ $ -16.68 $ $ -18.25 $ $ -3.12 $ 19Mg $ 0.75 $ [48]$ -11.40 $ [48]$ -11.77 $ $ -12.07 $ $ -11.46 $ $ -11.79 $ $ -10.66 $ $ -12.03 $ $ -11.72 $ $ -11.00 $ $ -10.58 $ $ -11.77 $ $ -11.96 $ $ 0.67 $ 45Fe $ 1.10 $ [46]$ -2.40 $ [46]$ -1.85 $ $ -1.85 $ $ -2.09 $ $ -2.23 $ $ -1.25 $ $ -2.21 $ − $ -2.1 $ $ -2.32 $ $ -1.94 $ $ -2.76 $ $ -0.55 $ 1.14 [47] −2.07 [47] −2.33 −2.33 −2.58 −2.71 −1.66 −2.64 − −2.43 −2.67 −2.43 −2.36 0.26 $ 1.15 $ [49]$ -2.55 $ [49]$ -2.49 $ $ -2.49 $ $ -2.74 $ $ -2.87 $ $ -1.80 $ $ -2.79 $ $ -2.43 $ $ -2.53 $ $ -2.78 $ $ -2.6 $ $ -2.53 $ $ -0.06 $ 1.21[88] −2.42 [88] −3.11 −3.11 −3.37 −3.50 −2.34 −3.35 − −3.15 −3.24 −3.23 −3.15 0.69 48Ni 1.29 [89] −2.52 [89] −2.22 −2.22 −2.59 −2.62 −1.61 −2.59 − −2.17 −2.55 −2.29 −2.17 −0.30 $ 1.35 $ [49]$ -2.08 $ [49]$ -2.83 $ $ -2.83 $ $ -3.21 $ $ -3.24 $ $ -2.13 $ $ -3.13 $ − $ -2.79 $ $ -3.00 $ $ -2.91 $ $ -2.79 $ $ 0.75 $ $ 1.31 $ [90]$ -2.52 $ [90]$ -2.43 $ $ -2.43 $ $ -2.80 $ $ -2.83 $ $ -1.80 $ $ -2.77 $ $ -2.36 $ $ -2.38 $ − $ -2.5 $ $ -2.38 $ $ -0.09 $ 54Zn $ 1.28 $ [91]$ -2.76 $ [91]$ -1.25 $ $ -1.59 $ $ -0.93 $ $ -0.87 $ $ -0.10 $ $ -1.01 $ − $ -1.45 $ $ -1.31 $ $ -0.52 $ $ -1.45 $ $ -1.17 $ $ 1.48 $ [50]$ -2.43 $ [50]$ -3.28 $ $ -3.62 $ $ -3.01 $ $ -2.95 $ $ -1.83 $ $ -2.81 $ $ -2.52 $ $ -2.59 $ $ -2.81 $ $ -2.61 $ $ -2.59 $ $ 1.19 $ 67Kr $ 1.69 $ [92]$ -1.70 $ [92]$ -0.75 $ $ -1.08 $ $ -0.76 $ $ -1.25 $ $ 0.31 $ $ -0.58 $ $ -0.06 $ $ -1.06 $ $ -0.95 $ $ -0.54 $ $ -1.06 $ $ -0.62 $ Table 1. Comparisons between the experimental
$ 2p $ radioactivity half-lives and calculated ones using eleven different theoretical models and/or empirical formulas. The experimental$ 2p $ radioactivity half-lives in logarithmic form$ \log_{10}T_{1/2}^{\rm{exp}} $ and experimental$ 2p $ released energy$ Q_{2p} $ were extracted from the corresponding references. The deformation values$ \beta_{2} $ were taken from Möller et al. [87].To intuitively compare these results, Fig. 2 plots the differences between the experimental and calculated data by using different theoretical models and/or empirical formulas, i.e., our model with Eq. (17), GLM, GLDM, ELDM, TPASHF, SEB, UFM, CPPMDN, and empirical formulas proposed by Sreeja et al. and Liu et al.. It is evident from this figure that the values of
${\log_{10}T_{1/2}^{\rm{exp}}}- {\log_{10}T_{1/2}^{\rm{cal}}}$ for the true$ 2p $ radioactivity nuclei ($ ^{19}{\rm{Mg}}$ ,$ ^{45}{\rm{Fe}}$ ,$ ^{48}{\rm{Ni}}$ ,$ ^{54}{\rm{Zn}}$ , and$ ^{67}{\rm{Kr}}$ ) are basically within$ \pm 1 $ , which means that our model can reproduce the experimental half-lives accurately. Nevertheless, regarding the not true radioactivity nuclei ($ ^{6}{\rm{Be}}$ ,$ ^{12}{\rm{O}}$ , and$ ^{16}{\rm{Ne}}$ ), the experimental data cannot be reproduced properly, especially for$ ^{16}{\rm{Ne}}$ , with a reported$Q_{2p}=1.33 ~ {{\rm{MeV}}}$ and$Q_{2p}=1.40 $ MeV. We can observe that there is a difference of more than two orders of magnitude between the experimental and calculated half-lives in several nuclei. This may account for the imperfection of early detection technologies and radioactive beam equipment. Meanwhile, we plot the logarithm$ 2p $ radiactivity half-lives of$ ^{12}{\rm{O}}$ ,$ ^{45}{\rm{Fe}}$ , and$ ^{48}{\rm{Ni}}$ nuclei as a function of$ Q_{2p} $ using the$ 2p $ radioactivity formula with Eq. (17) in Fig. 3. There is clearly a linear correlation between the logarithm half-lives and the releasd energy$ Q_{2p} $ . In addition, it is worth noting that some studies suggested that nuclear deformation effects or collective mechanisms will influence the$ 2p $ radioactive half-life to some extent [55]. At the same time, because the original model is a two-body model for calculating the half-lives of α decay, it only considers two-body problems. When we treat the emitted two protons as a 2He cluster, it may lead to some loss of detailed structural information, such as the core and valence protons of$ 2p $ radioactivity [64]. We will consider addressing this issue in future work.Figure 2. (color online) Deviations between the experimental
$2p$ radioactivity half-lives and calculated ones with different theoretical models and/or empirical formulas.Figure 3. (color online) Linear relation between the calculated logarithmic
$2p$ radioactivity half-lives and released energy$Q_{2p}$ .The standard deviation σ, quantifying the difference between the experimental data and the calculated ones, can be defined as
$ \sigma = \sqrt{\sum{({\rm{log}}_{10}{T_{1/2}^{\rm{cal}}}-{\rm{log}}_{10}{T_{1/2}^{\rm{exp}}})^2}/n} \; , $
(20) where
$ {\rm{log}}_{10}{T_{1/2}^{\rm{exp}}} $ and$ {\rm{log}}_{10}{T_{1/2}^{\rm{cal}}} $ are the logarithmic forms of the experimental and calculated$ 2p $ radioactivity half-lives, respectively. n is the number of nuclei involved in$ 2p $ radioactivity cases. In the following, we calculate the standard deviation σ values between the experimental data and calculated ones by using our model with Eq. (15), Eq. (17), GLM, GLDM, ELDM, TPASHF, SEB, UFM, CPPMDN, four-parameter empirical formula by Sreeja, and two-parameter empirical formula by Liu. All of the calculated results are listed in Table 2. From this table, we can clearly see that the standard deviation of our improved model is 0.683, which is better than those of GLM, GLDM, ELDM, SEB, UFM, Sreeja's empirical formula, and Liu's empirical formula results (0.809, 0.818, 1.166, 0.815, 0.754, 0.736, and 0.867, respectively). In particular, the σ values for the true$ 2p $ radioactivity nuclei within our model decreased by$({0.809-0.683})/{0.809}$ =15.7% relative to the Gamow-like model. This indicates that the half-lives calculated by our model can reproduce the experimental data well.Model Cal1 Cal2 GLM GLDM Sreeja Liu ELDM TPASHF SEB UFM CPPMDN σ $ 0.710 $ $ 0.683 $ $ 0.809 $ $ 0.818 $ $ 1.166 $ $ 0.815 $ $ 0.754 $ $ 0.581 $ $ 0.736 $ $ 0.867 $ $ 0.592 $ Table 2. Standard deviations σ between the experimental data and calculated ones using different theoretical models and empirical formulas for the true
$ 2p $ radioactivity.Encouraged by the good agreement between the experimental
$ 2p $ radioactivity half-lives and the calculated ones in our model, this model is used to predict the half-lives of some possible$ 2p $ radioactivity candidates. For some potential$ 2p $ radioactivity candidates, the deformation value$ \beta_{2} $ remained undetermined within the study of Möller et al. [86]. Thus, we provisionally assign the deformation value$ \beta_{2}=0 $ . The predicted results are listed in Table 3. In this table, the first and second columns show the predicted$ 2p $ radioactivity parent nuclei and$ 2p $ radioactivity released energy$ Q_{2p} $ , with values taken from the latest evaluated atomic mass table of NUBASE2020 [74]. The third and fourth columns show the predicted half-lives of$ 2p $ radioactivity candidates using our model with Eqs. (15) and (17). The fifth to thirteenth columns represent the predicted half-lives values calculated by Liu, Sreeja, GLM, GLDM, ELDM, TPASHF, SEB, UFM, and CPPMDN, respectively. Taking$ ^{22}{\rm{Si}}$ as an example, our predicted value is –14.50, which is also consistent with the predictions of other models and/or empirical formulas. It is evident that our calculated values are all within the same order of magnitude. To intuitively compare these results, we plot the differences of each predicted value in Fig. 4. In this figure, the black square, red circle, blue upward triangle, green downward triangle, purple diamond, yellow star, pink hexagon, gray right triangle, orange left triangle, and violet pentagon represent the logarithmic form of predicted half-life values of our work, Liu, Sreeja, GLM, GLDM, ELDM, TPASHF, SEB, UFM, and CPPMDN, respectively. From this figure, it is evident that the predicted 2p radioactivity half-lives by our model show consistency with those calculated by GLM, GLDM, and UFM. These predicted results of possible$ 2p $ radioactivity candidates will be helpful in the search for new candidates in future experiments.Nuclei $ Q_{2p} $ (MeV)$ \log_{10}T_{1/2} $ (s)Cal1 Cal2 GLM GLDM Sreeja Liu ELDM TPASHF SEB UFM CPPMDN 13F $ 3.09 $ $ -19.39 $ $ -19.39 $ $ -20.13 $ $ -18.42 $ $ -19.10 $ − $ -18.89 $ − − $ -19.33 $ − 15Ne $ 2.52 $ $ -18.58 $ $ -18.58 $ $ -18.76 $ $ -17.11 $ $ -18.32 $ $ -18.48 $ $ -18.08 $ − − $ -18.57 $ − 17Na $ 3.57 $ $ -19.01 $ $ -19.01 $ $ -19.51 $ $ -17.83 $ $ -18.87 $ − $ -18.63 $ − − $ -18.95 $ − 22Si $ 1.58 $ $ -14.50 $ $ -14.50 $ $ -13.48 $ $ -12.05 $ $ -14.50 $ $ -18.87 $ $ -13.32 $ $ -11.78 $ $ -12.17 $ $ -14.61 $ $ -13.70 $ 30Ar $ 3.42 $ $ -16.67 $ $ -17.02 $ $ -15.74 $ $ -14.22 $ $ -16.67 $ $ -19.66 $ $ -9.91 $ − − − $ -14.99 $ 33Ca $ 5.13 $ $ -17.72 $ $ -17.76 $ $ -16.98 $ $ -15.40 $ $ -17.85 $ $ -18.48 $ $ -17.35 $ − − $ -18.11 $ − 34Ca $ 2.51 $ $ -14.09 $ $ -14.09 $ $ -12.74 $ $ -11.35 $ $ -14.18 $ $ -14.78 $ $ -13.56 $ $ -9.51 $ $ -8.99 $ $ -14.46 $ $ -10.44 $ 37Ti $ 5.40 $ $ -17.38 $ $ -17.52 $ $ -16.46 $ $ -14.91 $ $ -17.59 $ $ -17.96 $ $ -17.07 $ − − $ -17.81 $ − 38Ti $ 3.24 $ $ -14.73 $ $ -14.88 $ $ -13.45 $ $ -12.02 $ $ -14.95 $ $ -15.38 $ $ -14.30 $ $ -11.77 $ $ -12.70 $ $ -15.18 $ $ -14.35 $ 39Ti $ 1.06 $ $ -5.19 $ $ -5.32 $ $ -3.43 $ $ -2.43 $ $ -5.24 $ $ -5.55 $ $ -0.81 $ $ -1.62 $ $ -1.91 $ $ -5.41 $ $ -1.23 $ 39V $ 4.21 $ $ -15.85 $ $ -16.12 $ $ -14.67 $ $ -13.19 $ $ -16.13 $ $ -16.54 $ $ -15.49 $ − − $ -16.34 $ − 40V $ 2.14 $ $ -11.26 $ $ -11.49 $ $ -9.77 $ $ -8.50 $ $ -11.50 $ $ -11.80 $ $ -10.80 $ $ -9.34 $ $ -8.97 $ $ -11.66 $ − 41Cr $ 3.33 $ $ -14.04 $ $ -14.28 $ $ -12.68 $ $ -11.29 $ $ -14.37 $ $ -14.72 $ $ -13.66 $ − − $ -14.53 $ − 42Cr $ 1.48 $ $ -7.14 $ $ -7.29 $ $ -5.60 $ $ -4.50 $ $ -7.37 $ $ -7.56 $ $ -2.43 $ $ -2.83 $ $ -2.87 $ $ -7.40 $ $ -2.86 $ 44Cr $ 0.50 $ $ 9.70 $ $ 9.70 $ $ 10.91 $ $ 11.31 $ $ 9.73 $ − − − − − − 56Ga $ 2.82 $ $ -10.16 $ $ -10.40 $ $ -7.96 $ $ -6.76 $ $ -10.11 $ $ -10.83 $ $ -9.14 $ $ -7.51 $ $ -7.41 $ $ -10.30 $ − 58Ge $ 3.23 $ $ -10.99 $ $ -11.21 $ $ -8.74 $ $ -7.51 $ $ -11.01 $ $ -11.73 $ $ -10.02 $ $ -11.06 $ $ -11.10 $ $ -11.19 $ $ -12.73 $ 59Ge $ 1.60 $ $ -2.88 $ $ -3.07 $ $ -1.13 $ $ -0.22 $ $ -2.77 $ $ -3.37 $ − $ -5.88 $ $ -5.41 $ $ -2.73 $ − 61Ge $ 1.98 $ $ -5.04 $ $ -5.21 $ $ -3.15 $ $ -2.16 $ $ -5.02 $ $ -5.61 $ $ -4.95 $ $ -6.07 $ − $ -3.97 $ − 66Se $ 1.39 $ $ 1.58 $ $ 1.30 $ $ 2.79 $ $ 3.54 $ $ 1.59 $ $ 1.12 $ − − − − −
A simple model for two-proton radioactivity
- Received Date: 2024-04-22
- Available Online: 2024-10-15
Abstract: In this work, considering the preformation factor of the emitted two protons in parent nucleus