Calculation on U(1) Lattice Gauge Theory at Finite Temperature
- Received Date: 1900-01-01
- Accepted Date: 1900-01-01
- Available Online: 1993-02-05
Abstract: The order parameter
[1] |
B. Svetitsky, Phys. Rep., 132(1936), 1.[2]X. T. Zheng and C.-1 Tan, Chinese Phys. Lett., 5(1988), 457. C.-I Tan and X. T. Zheng, Phys. Rev. D39(1989), 623.[3]郑希特,刘备书,高能物理与核物理.14(1990),892,[4]X. T. Zheng, C.-I Tan and T. L. Chen, Phys. Rev., D26(1982), 2843.[5]W. Kerler, Phys. Rev. Get:., 60(1988), 1906. W. Kerler and L. Schulke, Phys. Lett., B201(1988), 123.[6]王杰、谭祖国、郑希特,高能物理与核物理,12(1938),329,[7]N. Bilic, H. Gansterer and S. Sanielevici, Phys,Lett.,B193(1987), 35. |
[1] | JIANG Jun-Qin . Third Order Result of the 0++ Glueball Wave Function for U(1) Improved Lattice Gauge Theory in Three-Dimensions. Chinese Physics C, 2005, 29(5): 447-450. |
[2] | HUI Ping . Higher Order RPA Calculation of the Glueball Wave Function in 2+1-D SU(2) LGT. Chinese Physics C, 2005, 29(4): 345-349. |
[3] | JIANG Jun-Qin . Mass Gap and Glueball Wave Function for U(1) Improved Lattice Gauge Theory in Three-Dimensions. Chinese Physics C, 2005, 29(2): 115-118. |
[4] | HUI Ping , ZHENG Tai-Yu , WANG Zhou-Fei . Approximated Calculation of the Glueball Mass in the 2+1-D SU(2) LGT with the RPA Method. Chinese Physics C, 2004, 28(6): 580-583. |
[5] | HU Lian , HUI Ping , CHEN Qi-Zhou . Glueball Masses of the 0++ and 0-- in 3+1-D SU(3) LGT. Chinese Physics C, 2002, 26(8): 773-778. |
[6] | LI JieMing , JIANG JunQin . Calculation of the Glueball Mass for 2+1 Dimensional SU(2) Lattice Gauge Field Theory by Using the Improved Hamiltonian. Chinese Physics C, 2000, 24(12): 1094-1097. |
[7] | Jiang Junqin , Luo Xiangqian . Study of the Vacuum State in (2+1)-Dimensional U(1) Lattice Gauge Theory. Chinese Physics C, 1999, 23(8): 774-783. |
[8] | Jiang Junqin , Luo Xiangqian , Guo Shuohong , Liu Jinming . Calculation of the Vacuum Wave Function in 2+1 Dimensional U(1) Gauge Theory by Using the Improved Lattice Hamiltonian. Chinese Physics C, 1999, 23(12): 1152-1157. |
[9] | Ren Xuezao , Chen Ying , Zhu Yunlun . Analytical Study of Lattice U(1) Gauge-Higgs ModelsWith Fixed Modulus. Chinese Physics C, 1998, 22(4): 315-321. |
[10] | Ren Xuezao , Zhu Yunlun , Chen Ying . Analytical study of Lattice U(1) and U(1)-Higgs Models at Finite Temperature With Symanzik Action. Chinese Physics C, 1998, 22(6): 492-498. |
[11] | Zhao Peiying , Wu Jimin . Phase Structure of U(1) Lattice Gauge Theory by Variational Study with Independent Plaquette Effective Action. Chinese Physics C, 1996, 20(2): 124-130. |
[12] | Hui Ping , Cai Pengfei , Chen Qizhou . Analytic calculation of Glueball Mass In (2+1)-D SU(2)Lattice Gauge Theory. Chinese Physics C, 1996, 20(1): 55-60. |
[13] | Chen Qizhou , Fang Xiyan , Guo Shouhong . Calculation of Vacuum State for 2+1-Dimensional SU(3) Lattice Gauge Theory. Chinese Physics C, 1995, 19(5): 398-404. |
[14] | Liu Wensheng , Cui Jianying , Yang Jinmin , Wan Lingde . The Phase Tansitions in Abelian Lattice Gauge Theories at Finite Temperature:An Analytical Analysis. Chinese Physics C, 1994, 18(11): 996-1002. |
[15] | ZHENG Xite , LEI Chunhong , LI Yuliang , CHEN Hong . Study of Higher Order Cumulant Expansion of U(1) Lattice Gauge Model at Finite Temperature. Chinese Physics C, 1993, 17(12): 1076-1080. |
[16] | ZHENG Bo , GUO Shuo-Hong . A SOLVABLE (1+1)-DIMENSIONAL LATTICE U(1) GAUGE MODEL. Chinese Physics C, 1990, 14(3): 282-285. |
[17] | ZHENG Wei-Hong , GUO Shuo-Hong . THE VARIATIONAL CALCULATION OF MASS GAP IN 2+1 DIMENSIONAL U(1) LGT. Chinese Physics C, 1989, 13(2): 184-187. |
[18] | LUO Xiang-Qian , CHEN Qi-Zhou , GUO Shuo-Hong . VACUUM OF 2+1 DIMENSIONAL SU(2) LGT WITH FERMIONS AND SPONTANEOUS CHIRAL SYMMETRY BREAKING. Chinese Physics C, 1989, 13(4): 328-333. |
[19] | LUO Xiang-Qian , HE Bao-Peng , CHEN Qi-Zhou , LI Zhi-Bing , GUO Shuo-Hong . ΔI=1/2 RULE IN LATTICE GAUGE THEORIES. Chinese Physics C, 1988, 12(4): 477-483. |
[20] | GUO Shuo-Hong , CHEN Hao . EXACT RESULTS FOR THE TOPOLOGICAL CHARGE OF 1+1D LATTICE GAUGE THEORY. Chinese Physics C, 1987, 11(6): 844-848. |
Abstract: The order parameter