Investigation of Self-Consistent Relativistic Microscopic Optical Potential

  • In Dirac-Brueckner calculations for nuclear matter,the average binding energy per nucleon versus density curve is not uniquely defined if coupling to anti-particle is neglected.According to the Hugenholtz-Van Hove theorem,a constraint requires that the nucleon separation energy equals to the fermi energy at saturation density.Choosing saturation energy as empirical value EB/A=-15.8MeV,the self-consistent calculation leads to the saturation density kf=1.41fm-1 and effective mass m*=0.52m,in compressive coefficient k=208MeV.Applying the first law of thermodynamics,self-consistent effective mass (real scalar potential) and the binding energy per nucleon as function of the nuclear density can be obtained.With the realistic nucleon-nucleon interaction (Bonn potential),the vector potential can be obtained from solving the RBBG equation,which weakly depends on the momentum.The cross section and spin observables of the nucleon-nucleus scattering are studied with this new self-consistent relativistic microscopic optical potential.
  • 加载中
  • [1] F. Coester, S. Cohen, B. D. Day and C. M. Vincent, Phys. Rev., 01(1970), 69[2]H. Q. Song, S. D. Yang and T. T. S. Kuo, Nucl. Phys., A462(1987), 491.M. F. Jiang, T. T. S. Kuo, and H. Miither, Phys. Rev., 038(1988), 2408.M. F. Jiang, R. Machleidt and T. T. S. Kuo, Phys. Rev., 041(1990), 2346.[3]J.A. Mcneil, J. R. Shepard and S. J. Wallace, Phys. Rev. Lett., 50(1983), 1439.J.R. Shepard, J. A. Mcneil and S. J. Wallace, Phys. Rev. Lett, 50(1983), 1443.[4]B.C. Clark, R. L. Mercer, D. G. Ravenhall and A. M. Saperstein, Phyr. Rev., 07(1973), 466[5]H.Elsenhans, H. Muther and R. Machleidt, Nucl.Phys., AS15(1990), 715.[6]M. R. Anastasio, L. S. Celenza, W. S. Pong and C. M. Shakin, Phys. Rep., 100(1983), 328.L. S. Celenza and C. M. Shakin, Relativirtic Nucl. Phys (World Scientific Publishing Co pte Ltd. 1986)[7]R. Brockmann and R. Machlcidt, Phys. Lett., 149B(1984), 283.[8]C. J. Horowitz and B. D. Serot, Nucl. Phys., A464(1987), 613.C. J. Horowitz and B. D. Serot, Phys. Lett., 137B(1984), 287.[9]B. ter Haar and R. Malfliet, Phys. Rep., 149(1987), 207.[10]C. Nuppenau, Y. J. Lee and A. D. Mackellar, Nucl. Phys., A504(1989), 839.[11]Y. J. Lee, C. Nuppenau and A. D. Mackellar, Nucl. Phys., A504(1989), 447.[12]Y. J. Lee, C. Nuppenau and A. D. Mackellar, Phys. Lett., 233B(1989), 263.[13]C. Nuppenau, A. D. Mackellar and Y. J. Lee, Nucl. Phys., A551(1990) 525.[14]A. D. Mackellar and B. Q. Chen Invited talk at the Intcrnational Workshop on Quark-Gluon Structure of Hadron and Nuclei, Shanehai 1990.[15]B. Q. Chen, A. D. Mackellar and C. Nuppenau Submited to Nucl. Phys.[16]S. Hama, B. C. Clark, E. D. Cooper, H. S. Sherit and R. L.Mercer, Phys, Rev., 041(1990), 2737.[17]陈宝秋、马中玉,高能物理与核物理,16(1992),123,[18]Ma Zhong Yu and r'hen L'ao Qiu, J. Phys., G: Nucl. and Part Phys., 18(1992), 1543.[19]N, M. Hugenholtz and L. Van Hove, Physics, 24(1958), 363.[20]Ma Zhong Yu, Zhu Ping, Gu Yingyi and Zhuo Yi Zhong, Nucl.Phys., A490(1988), 619.[21]E. D. cooper et al., Phys. Rev., 036(1987), 2170.[22]Y. Mivama, Phys. Lett., 215B(1989), 604[23]Zhu Ping, Ma Zhonyu, Gu Yingqi and Znuo Yizhong, Chinefe J. of Nucl. Phys., 11(1989) 39
  • 加载中

Get Citation
CHEN Bao-Qiu. Investigation of Self-Consistent Relativistic Microscopic Optical Potential[J]. Chinese Physics C, 1993, 17(4): 345-352.
CHEN Bao-Qiu. Investigation of Self-Consistent Relativistic Microscopic Optical Potential[J]. Chinese Physics C, 1993, 17(4): 345-352. shu
Milestone
Received: 1900-01-01
Revised: 1900-01-01
Article Metric

Article Views(2469)
PDF Downloads(476)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Investigation of Self-Consistent Relativistic Microscopic Optical Potential

    Corresponding author: CHEN Bao-Qiu,
  • Institute of Atomic Energy,Beijing 102413

Abstract: In Dirac-Brueckner calculations for nuclear matter,the average binding energy per nucleon versus density curve is not uniquely defined if coupling to anti-particle is neglected.According to the Hugenholtz-Van Hove theorem,a constraint requires that the nucleon separation energy equals to the fermi energy at saturation density.Choosing saturation energy as empirical value EB/A=-15.8MeV,the self-consistent calculation leads to the saturation density kf=1.41fm-1 and effective mass m*=0.52m,in compressive coefficient k=208MeV.Applying the first law of thermodynamics,self-consistent effective mass (real scalar potential) and the binding energy per nucleon as function of the nuclear density can be obtained.With the realistic nucleon-nucleon interaction (Bonn potential),the vector potential can be obtained from solving the RBBG equation,which weakly depends on the momentum.The cross section and spin observables of the nucleon-nucleus scattering are studied with this new self-consistent relativistic microscopic optical potential.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return