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Abstract: The determination of non-linear corrections to the nuclear distribution functions due to the HIJING para-
meterization within the framework of perturbative QCD, specifically the GLR-MQ equations, is discussed. We ana-
lyze the possibility of constraining the non-linear corrections present in the distribution functions using the inclusive
observables that will be measured in future electron-ion colliders. The results show that non-linear corrections play
an important role in heavy nuclear reduced cross sections at low x and low  values. We find that the non-linear
corrections provide the correct behavior of the extracted nuclear cross sections and that our results align with data
from the nCETQ15 parameterization group. We discuss a satisfactory description of the non-linear corrections to the
shadowing effect at small x.
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I.  INTRODUCTION

x,Q2

x≲0.1 0.1≲x≲0.3
0.3≲x≲0.7 x→1

The  nuclear  structure  can  be  determined  through
Deep  Inelastic  Scattering  (DIS)  of  leptons  off  nuclei
across  a  wide  range  of  ( ). Nuclear  structure  func-
tions  differ  from  proton  structure  functions  due  to  the
shadowing effect at ,  anti-shadowing at ,
the EMC effect at  and Fermi motion as .
The proton structure  function of  the nucleus in  the lead-
ing  order  in  the  QCD-improved parton  model  is  defined
by its parton distributions as [1] 

F p/A
2 (x,Q2) =

∑
q=u,d,s,...

e2
q

ï
x f p/A

q (x,Q2)+ x f p/A
q (x,Q2)

ò
. (1)

The  difference  between  the  nuclear  parton  distribution
functions (nPDFs) and the parton distribution in the free
proton is determined by using the following ratio: 

RA
i (x,Q2)≡ f p/A

i (x,Q2)
f p
i (x,Q2)

. (2)

The nuclear  shadowing effect  demonstrates  that  at  small
values of x, the gluon distribution in a nucleus is less than
the gluon  distribution  in  a  nucleon.  It  is  essential  to  de-

xgA(x,Q2)

18 GeV 110 GeV
√

s = 89 GeV

termine the gluon distribution of nucleons within a nucle-
us,  especially  at  small x values.  Nuclear  effects  play  a
significant  role  in , and  utilizing  inclusive  ob-
servables  can  help  constrain  future  electron-nucleus col-
liders  at  Brookhaven  National  Laboratory  (eRHIC)  [2]
and Electron Ion Colliders (EICs) [3, 4]. The behavior of
the  nuclear  gluon  distribution  can  be  determined  using
the  momentum sum rule.  Nuclear  physics  with  electron-
nucleus (eA) collisions can be explored at the Large Had-
ron electron Collider (LHeC) [5, 6] and the Future Circu-
lar electron-hadron Collider (FCC-eh) [7, 8]] as proposed
in  Ref.  [9]. The  maximum  energy  envisioned  for  elec-
tron-heavy  ion  runs  would  be  achieved  by  colliding

 electrons  with  ions  for  a 
in the EIC Conceptual Design Report [10].

Q2≫Λ2
QCD

ln(1/x)

The standard  evolution  based  on  the  Dokshitzer-Gri-
bov-Lipatov-Altarelli-Parisi  (DGLAP)  linear  equations
provides  an  accurate  description  of  QCD  dynamics  at
moderate to large values of the momentum fractions x of
the  probed  parton  and  virtualities  but  needs
modification to include the effects of the resummation of
large .  Gluon  recombination  processes  tame  the
growth  of  parton  densities  towards  small x and  lead  to
gluon  saturation.  Non-linear evolution  becomes  import-
ant when the mass number A is increased or by either de-
creasing x or  some  combination  of  the  two  [9, 11, 12].
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Non-linear modifications to DGLAP evolution equations
were  first  proposed  in  Refs.  [13−16],  where  two  gluon
ladders merge into a gluon or a quark-antiquark pair. The
study of non-linear corrections is indeed useful for a com-
prehensive  understanding  of  gluon  recombination  and
saturation  [17].  The  correlative  interactions  between
gluons  become  important  at  extremely  small x at  fixed

, where the probability of recombining two gluons in-
to one, in the leading twist approximation, is taken as the
product  of  two  conventional  one-gluon distributions  us-
ing the following equation: 

G(2)(x,Q2) =
9

8πR2
N

[G(x,Q2)]2. (3)

RN RN

RN ≃5 GeV−1

≃2 GeV−1

The  region  of  a  nucleon  where  gluons  are  distributed  is
characterized  by .  The  correlation  length  determ-
ines the magnitude of the non-linear terms. This value is
influenced  by  how  the  gluon  ladders  interact  with  the
nucleon or how the gluons are dispersed within the nucle-
on.  is approximately equal to  if the gluons
are spread throughout the proton, and equal to 
if the gluons exhibit a hotspot-like structure [18, 19].

This saturation tamed the increase of gluons by rely-
ing  on  a  Froissart-Martin  bound  [20, 21].  The  evolution
equations  of  the  correction  terms  (without  the  Higher
Twist (HT) terms) are given by [13−15] 

∂

∂lnQ2
xqA

i (x,Q2) =
αs

2π

∫ 1

x

dy
y

ï
x
y

Pqq

Å
x
y

ã
yqA

i (y,Q2)

+
x
y

Pqg

Å
x
y

ã
ygA(y,Q2)

ò
− K
πR2

AQ2

2πα2
s

N(N2−1)

×
ï

4
15

N2− 3
5

ò
[xgA(x,Q2)]2, (4)

and 

∂

∂lnQ2
xgA(x,Q2) =

αs

2π

∫ 1

x

dy
y

ï
x
y

Pgq

Å
x
y

ã 2n f∑
i

yqA
i (y,Q2)

+
x
y

Pgg

Å
x
y

ã
ygA(y,Q2)

ò
− K
πR2

AQ2

4π3

(N2−1)

Å
αsCA

π

ã2

×
∫ 1

x

dy
y

[ygA(y,Q2)]2, (5)

CA = N = 3 K =
9
8where  and .  The  nuclear  target  with

RA

RA = 1.25A1/3 fm

1.25 fm

A4/3

mass  number  A  is  denoted  by ,  and  is  defined  as
. This  value  is  determined  by  the  hot-

spot-like structure of  the gluons within the nucleon.  The
specific value of  is dependent on the presence of
a hotspot-like structure of the gluons. The importance of
the  non-linear  corrections  for  a  nuclear  target1) (espe-
cially heavy nuclei)  is  visible,  as  the non-linear  terms in
Eqs. (4) and (5) scale as  [22].

Adding  these  contributions  to  the  DGLAP  equations
yields  the  non-linear  Gribov-Levin-Ryskin-Mueller-Qiu
(GLR-MQ) [13, 14] evolution equations for nuclei in the
following forms2) 

∂FA
2 (x,Q2)
∂lnQ2

∣∣∣
Non−Linear

=
∂FA

2 (x,Q2)
∂lnQ2

∣∣∣
DGLAP

−2n f
5
18

27α2
s

160R2
AQ2

[xgA(x,Q2)]2 (6)

and 

∂xgA(x,Q2)
∂lnQ2

∣∣∣
Non−Linear

=
∂xgA(x,Q2)
∂lnQ2

∣∣∣
DGLAP

− 81α2
s

16R2
AQ2

∫ 1

x

dy
y

[ygA(y,Q2)]2, (7)

xgA(x,Q2)
FA

2 (x,Q2) =
∑

e2
i [xqA

i (x,Q2)+ xqA
i (x,Q2)]

ei

qA
i (x,Q2)

where the non-linear term tames the growth of the distri-
bution functions at small x and leads to their suppression
[22−24].  Here,  is the  gluon  distribution  func-
tion of nuclei and 
where  is the electric charge of the i-quark or antiquark
and  is the number density of the i-quarks in the
nucleus.

ln Q2

In  this  study,  we  analyze  the  reduced  cross  sections
for  light  and heavy nuclei  at  the center-of -mass (COM)
energy of the EIC. We also investigate the recombination
of  the  derivative  of  the  reduced  cross  section  into 
for a wide range of light and heavy nuclei. 

II.  DEEP INELASTIC LEPTON-NUCLEUS
SCATTERING

The double differential cross section for deep inelast-
ic  scattering (DIS) of  an electron-nucleus from an unpo-
larized nucleus  in  the  one  photon  exchange  approxima-
tion has the following form 

d2σA

dxdQ2
=

2πα2

xQ2
Y+σA

r (x,Q2). (8)

Y+ = 1+ (1− y)2

σA
r

Here,  and y represents  the  inelasticity.
The nuclear reduced cross section  can be convention-
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1) The nuclear parton distribution functions (PDFs) scale approximately as A.
2) Only nuclear PDFs obtained within the same evolution framework would satisfy this requirement according to Eq. (6).

023104-2



FA
2 FA

Lally  defined  using  the  structure  functions  and  as
follows [9]: 

σA
r (x,Q2) = FA

2 (x,Q2)− y2

Y+
FA

L (x,Q2). (9)

The longitudinal  structure  function  in  nuclear  deep  in-
elastic scattering (nDIS) is an observable that can be used
to unfold the gluon distribution [25]. nQCD provides the
Altarelli-Martinelli equation [26] in the following form 

FA
L (x,Q2) =

αs(Q2)
2π

x2
∫ 1

x

dz
z3

ï
8
3

FA
2 (z,Q2)

+4
∑

e2
q(1− x

z
)zgA(z,Q2)

ò
. (10)

The  scheme-independent  coefficient  functions  for  the
longitudinal structure function can be found in Ref. [27].
The  nuclear  effects  for  the  eA scattering  can  be  defined
by the ratio of distribution functions as 

RA
F2

(x) =
FA

2 (x,Q2)
AF2(x,Q2)

, (11)

and 

RA
g (x) =

xgA(x,Q2)
Axg(x,Q2)

, (12)

xg(x,Q2) F2(x,Q2)where  and  are  respectively  the  gluon
distribution and the structure function of a free nucleon.

σA
r

FA
2 (x,Q2)

xgA(x,Q2)

The expression for  can be rewritten as a function
of the structure function  and the gluon distribu-
tion  of nuclei in the following form: 

σA
r (x,Q2) = FA

2 (x,Q2)− y2αs(Q2)
2πY+

x2
∫ 1

x

dz
z3

×
ï

8
3

FA
2 (z,Q2)+4

∑
e2

q(1− x
z

)zgA(z,Q2)
ò
.

(13)

Nuclear  effects  are  shown  in  the  ratio  of  distribution
functions. Parameterizations  of  the  nuclear  parton  distri-
bution functions have been proposed by various groups in
Refs.  [28−32]  and  further  developed  in  recent  years  in
Refs. [11, 33−37]. The HIJING2.0 [33−35] parameteriza-

tion  combines  the  information  on  the  impact  parameter
and the target nuclear mass number in a single collision.
This  parameterization,  which  is  in  good  agreement  with
the ALICE experiment at LHC energies, provides a more
stringent constraint  on  gluon  shadowing  due  to  the  im-
pact  parameter  dependence  on  shadowing  as  reported  in
Refs. [36, 37] for both light and heavy nuclei
 

RA
F2

(x) = 1+1.19(ln A)1/6(x3−1.2x2+0.21x)

− sq
5
3

(1−b2/R2
A)(A1/3−1)0.6(1−3.5

√
x)

× exp(−x2/0.01), (14)

and
 

RA
g (x) = 1+1.19(ln A)1/6(x3−1.2x2+0.21x)

− sg
5
3

(1−b2/R2
A)(A1/3−1)0.6(1−1.5x0.35)

× exp(−x2/0.004), (15)

sq = 0.1 sg = 0.22−0.23

b = 0
b = 5 fm

where , .  To  accurately  model  the
eA collision discussed in this study, the HIJING2.0 para-
meterization needs to be integrated over the entire impact
parameter space. In this case, according to Refs. [36, 37],
the  impact  parameter b is  chosen  as  central  at  for
light nuclei and peripheral at  for heavy nuclei.

The non-linear correction to the derivative of the nuc-
lear structure function divided by A (according to Eq.(6))
is defined as follows:
 

1
A
∂∆FA

2 (x,Q2)
∂lnQ2

= 2n f
5

18
27α2

s(Q
2)

160R2
AQ2

A[RA
g (x)xg(x,Q2)]2. (16)

This  equation  defines  the  magnitude  of  the  non-linear
corrections as:
 

∆FA
2 (x,Q2) = FA

2 (x,Q2)|DGLAP−FA
2 (x,Q2)|Non−Linear.

Q2
Non-linear corrections can be determined from the inclus-
ive nuclear cross section in the low x and  region. This
behavior can be utilized in a derivative method in an EIC
based  on  the  cross  section  derivative.  The  derivative  of
the reduced cross section for nuclei is expressed as1)
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lny

∂σr
∂ lny =

∂F2
∂ lny −

y2

Y+

∂FL

(
x,Q2

)
∂ lny −FL

∂
∂ lny

Ä
y2

Y+

ä
y = cte

∂σr
∂ lny |y=cte =

∂F2
∂ lny −

y2

Y+
∂FL(x,Q2)
∂ lny .

1) The derivative of the reduced cross section with respect to  is given by

where, at a fixed inelasticity (i.e., ), it is defined by the following form
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∂σA
r (x,Q2)
∂ ln Q2

∣∣∣
y=cte
=
∂FA

2 (x,Q2)
∂ ln Q2

− y2αs(Q2)
2πY+

x2
∫ 1

x

dz
z3

×
ï

8
3

ß
∂FA

2 (z,Q2)
∂ ln Q2

+
∂lnαs(Q2)
∂ ln Q2

FA
2 (z,Q2)

™
+4

∑
e2

q(1− x
z

)
ß
∂zgA(z,Q2)
∂ ln Q2

+
∂lnαs(Q2)
∂ ln Q2

zgA(z,Q2)
™ò
.

(17)

Gluon  recombination  alters  the  behavior  of  the  parton
densities and introduces non-linear effects. Consequently,
the derivative of the nuclear reduced cross section is ad-
justed due to these non-linear effects: 

1
A
∂σA

r (x,Q2)
∂ ln Q2

∣∣∣
Non−Linear

=
1
A
∂σA

r (x,Q2)
∂ ln Q2

∣∣∣
Eq.17

−2n f
5
18

27α2
s(Q

2)
160R2

AQ2
A

× [RA
g (x)xg(x,Q2)]2−O(α3

s), (18)

O(α3
s)where,  represents  the  non-linear effects  to  the  de-

rivative of the longitudinal structure function of nuclei as: 

O(α3
s) = A

y2α3
s(Q

2)
2πY+

x2

R2
AQ2

∫ 1

x

dz
z3

ï
2n f

8
[RA

g (z)zg(z,Q2)]2

+
81
4

∑
e2

q(1− x
z

)
∫ 1

z

dξ
ξ

[RA
g (ξ)ξg(ξ,Q2)]2

ò
,

(19)

O(α3
s)

where  at  moderate  inelasticity  we  observe  that  the  term
 is very small across a wide range of x, therefore 

O(α3
s)∼0. (20)

In conclusion, we can safely ignore this term and simpli-
fy Eq. (18) for the derivative of the reduced cross section
of nuclei to the following form: 

1
A
∂σA

r (x,Q2)
∂ ln Q2

∣∣∣
Non−Linear

≃ 1
A
∂σA

r (x,Q2)
∂ ln Q2

∣∣∣
Eq.17

−2n f
5

18
27α2

s(Q
2)

160R2
AQ2

A[RA
g (x)xg(x,Q2)]2, (21)

which is similar to the GLR-MQ evolution equations. In-
deed, the effect of the non-linear corrections to the deriv-

ative of the reduced cross section of nuclei divided by A
is defined as: 

1
A
∂∆σA

r (x,Q2)
∂ ln Q2

= 2n f
5

18
27α2

s(Q
2)

160R2
AQ2

A[RA
g (x)xg(x,Q2)]2.

(22)

This is similar to the derivative of the structure functions
of nuclei divided by A as: 

1
A
∂∆σA

r (x,Q2)
∂ ln Q2

∣∣∣
y=cte
≃ 1

A
∂∆FA

2 (x,Q2)
∂lnQ2

. (23)

Q2
0

x < x0≡10−2

In the following, we consider the non-linear effects on the
reduced  cross  section  of  nuclei  divided  by A,  based  on
shadowing  effects.  The  non-linear corrections  at  the  ini-
tial scale  are adjusted by applying shadowing correc-
tions [18] for  through the nuclear parton dis-
tribution functions as: 

xgA(x,Q2
0)→xgA(x,Q2

0)ζA(x, x0,Q2
0)

and

xqA
s (x,Q2

0)→xqA
s (x,Q2

0)ζA(x, x0,Q2
0), (24)

where, 

ζA(x, x0,Q2
0) =
¶

1+ θ(x0− x)
î
xgA(x,Q2

0)− xgA(x0,Q2
0)
ó

/
xgA

sat(x,Q2
0)
©−1
, (25)

with 

xgA
sat(x,Q2) =

16R2
AQ2

27παs(Q2)
, (26)

gA
satwhere  is the value of the gluon that would saturate the

unitarity limit in the leading shadowing approximation in
nuclei (for future discussion, please refer to Appendix A).
The  non-linear  corrections  to  the  reduced  cross  sections
of nuclei are defined by the following form 

σA
r (x,Q2)|Non−Linear = FA

2 (x,Q2)|Non−Linear−
y2αs(Q2)

2πY+
x2
∫ 1

x

dz
z3ï

8
3

FA
2 (z,Q2)|Non−Linear

+4
∑

e2
q(1− x

z
)zgA(z,Q2)|Non−Linear

ò
,

(27)

where,

 

FA
2 (x,Q2)|Non−Linear = FA

2 (x,Q2)+FA
2 (x,Q2

0)(ζA(x, x0,Q2
0)−1)−2n f

5
18

27
160R2

A

∫ Q2

Q2
0

α2
s(q

2)
q2

[xgA(x,q2)]2dlnq2, (28)
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and
 

xgA(x,Q2)|Non−Linear = xgA(x,Q2)+ xgA(x,Q2
0)(ζA(x, x0,Q2

0)−1)− 81
16R2

A

∫ Q2

Q2
0

α2
s(q

2)
q2

∫ 1

x

dy
y

[ygA(y,Q2)]2dlnq2. (29)

Therefore,  we find  that  the  derivative  of  the  reduced cross  section  divided by A,  due  to  the  non-linear  corrections,  is
defined by the following form:
 

1
A
∆σA

r = 2n f
5

18
27

160R2
A

A
∫ Q2

Q2
0

α2
s(q

2)
q2

[RA
g (x)xg(x,q2)]2dlnq2−RA

F2
(x)F2(x,Q2

0)(ζA(x, x0,Q2
0)−1)

+
y2αs(Q2)

2πY+
x2
∫ 1

x

dz
z3

(ζA(z, x0,Q2
0)−1)

ï
8
3

RA
F2

(z)F2(z,Q2
0)+4

∑
e2

q(1− x
z

)RA
g (z)zg(z,Q2

0)
ò

− A
8R2

A

y2αs(Q2)
πY+

x2
∫ 1

x

dz
z3

ß
n f

∫ Q2

Q2
0

α2
s(q

2)
q2

[RA
g (z)zg(z,q2)]2dlnq2

+81
∑

e2
q(1− x

z
)
∫ Q2

Q2
0

α2
s(q

2)
q2

∫ 1

z

dξ
ξ

[RA
g (ξ)ξg(ξ,q2)]2dlnq2

™
. (30)

F2(x,Q2)
G(x,Q2)

Q2

Q2

Instead of starting with a theoretically motivated form of
the non-linear corrections in deep inelastic scattering, we
begin with a parameterization of the deep inelastic distri-
bution functions using the parameterizations of 
and  by  Donnachie-Landshoff  (DL)  [38−41].
This parameterization is defined for the full range of ,
although it  has  a  limited range of  applicability  in  its  de-
scribing  experimental  data.  Additionally,  we  utilize  the
methods of Block et al., [42, 43] which apply to large and
small  and  small x.  In  the  subsequent  analysis,  the
gluon  distribution  and  proton  structure  functions  are
defined using the Donnachie-Landshoff and Block et al.,
methods (refer to Appendix B for details).

The EMC [44, 45] effect demonstrates that the distri-
bution  functions  measured  between  nucleons  and  nuclei
differ, particularly in the lower x region, where the shad-
owing effects are significant due to the behavior of gluon
density [46]. This effect, resulting from non-linear correc-
tions,  is  observed  in  relation  to  the  magnitude  of  these
corrections.  Therefore,  the  non-linear  correction  to  the
nuclear shadowing  effect,  which  is  linked  to  the  altera-
tion of target gluon recombination, is defined as follows: 

∂∆σA
r (x,Q2)

A∂∆σr(x,Q2)

∣∣∣
y=cte
≃ ∂∆FA

2 (x,Q2)
A∂∆F2(x,Q2)

=
Eq.(16) for nuclei

Eq.(16) for nucleon

= A(RA
g (x))2 πR

2
p

πR2
A
,

(31)

πR2
p = 1.55±0.02 fm2

RA = 1.12A1/3−0.86A−1/3 fm
where  [47] and the parameterization
of  the  nuclear  radius1) is .
This  equation  (i.e., Eq.  (31))  predicts  that  the  modifica-
tion of magnitude appears to be solely due to the nuclear
shadowing  factor  resulting  from  gluon  recombination  in
nucleons  and  nuclei.  This  new  phenomenon  could  be  a
key factor in the Color Glass Condensate (CGC) [48−51]
theory, which is one of the main topics in hadron physics
in the new accelerators at small x limit [52]. Future elec-
tron-nucleus colliders are the best candidates for discrim-
inating  between  saturation  models  and  CGC  physics  [6,
53, 54]. The CGC forms the initial state, which is import-
ant in itself  as a new state of matter that  depends on the
unintegrated gluon distribution (UGD). Recently, the im-
portance of  including  a  finite  size  for  the  target  on  ob-
servables sensitive to small-x evolution within the CGC is
discussed in Ref. [55].

The non-linear correction to shadowing in nuclei (i.e.,
Eq. (31)) is explored by comparing the non-linear correc-
tions  to  the  structure  functions  per  nucleon  for  different
nuclei2). 

III.  RESULTS AND CONCLUSIONS

αs(Q2) ΛQCD = 0.12 GeV
αs(M2

z ) = 0.118
n f = 4

The QCD  parameter  Λ  is  determined  from  the  run-
ning  coupling ,  where  yields

 for  the one-loop coupling,  with the num-
ber of active flavors being . The behavior of the re-
duced cross section and the non-linear corrections to the

Non-linear corrections to the derivative of nuclear reduced cross-section at... Chin. Phys. C 50, 023104 (2026)

1) The nuclear radius not only depends on A, but also on the nuclear structure. This is because nuclear radii are measured through spectroscopy and scattering experi-
ments.

2) The nuclear ratio in the presence of saturation, considering geometric scaling, is discussed in Ref. [56] with a simple parameterization for the unintegrated gluon
distribution based on the asymptotic solutions of the Balitsky-Kovchegov (BK) equation [57−61].
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RA = 1.25A1/3 fm

√
s = 89 GeV

0.65×10−3 y≃0.97 Q2 = 5
GeV2 x = Q2/ys 0.13×10−2 Q2 = 10 GeV2

derivative of  the  nuclear  reduced  cross  section  are  de-
termined for the light nucleus of C-12 and the heavy nuc-
leus  of  Pb-208  at  the  hot-spot  point  in
Figs.  1−6.  The  results  are  presented  for  the  kinematic
range relevant for the EIC (  and y less than
approximately  1),  as  indicated  by  the  fact  that x values
are  shown  down  to  (or )  for 

 ( ) and  for .

1
A
∂
∂lnQ2∆FA

2 (x,Q2)

1
A
∂
∂lnQ2∆FA

2 (x,Q2)

Q2 = 5 GeV2 RA = 1.25A1/3

RA = 6.335A1/3 GeV−1

Q2

RA = 2 GeV−1

RA = 5 GeV−1

RA = 1.25A1/3 fm
RA = 1.25A1/3 fm

Q2

For  comparison  with  the  nCTEQ15  nPDFs  [62] res-
ults, we calculate the expression , which
quantifies  the  effect  of  non-linear  corrections.  In Fig.  1,
the  non-linear  corrections  to  for  the
heavy nucleus of Pb-208 are plotted as a function of the
momentum  fraction x at  and 
fm  (or )). The  results  are  determ-
ined with respect  to the DL (square-purple)  [38−41] and
Block  et  al  (circle-brown)  [42, 43]  methods.  They  are
also compared to the nCTEQ15 parameterization with un-
certainties  at  corresponding  values  of  represented  by
the  solid  curve  (red, ),  the  dashed  curve
(blue, )  and  the  dashed-dot  curve  (black,

. These results are comparable to the nC-
TEQ15  parameterization  at . The  nC-
TEQ15 parameterization results  in a wide range of x are
flat, while our results increase as x decreases. This differ-
ence  is  due  to  the  behavior  of  the  DL  and  Block  et  al
gluon distribution functions. With an increase in  val-
ues,  the  nCTEQ15 parameterization results  increase  as x
decreases. In Fig. 2, we show this behavior for the heavy

Q2 = 10 GeV2

RA = 1.25A1/3 fm

RA

1/R2
A Q2

[xg(x,Q2)]2

nucleus of Pb-208 at . Our results are com-
parable to the nCTEQ15 parameterization results accom-
panied by uncertainties at  small x values.  The difference
between  the  results  with  the  nCTEQ15  parameterization
results at  at moderate x values is due to
the gluon dominance solely in our results. In Figs. 1 and
2, we observe that the non-linear corrections to the deriv-
ative of the nuclear structure function (i.e., Eq. (16)) de-
crease with increasing correlation radius  of the gluon
hot  spots  (Indeed,  the  non-linear  terms  in  the  GLR-MQ
equations are suppressed as ). The x and  depend-
ence  in  these  figures  (i.e., Figs.  1 and 2) is  also  influ-
enced  by  the  behavior  of  the  gluon  distribution  function
in  Eq.  (16).  As  expected,  the  recombination  of  low-x
gluons  can  be  seen  as  a  consequence  of  gluon-gluon re-
combination in Eq. (16) as .

lnQ2 1
A
∂
∂lnQ2∆σ

A
r (x,Q2)

y = 0.2 y = 0.6

Q2

Q2

In  the  following,  we  present  the  non-linear correc-
tions to  the  derivative  of  the  nuclear  reduced  cross  sec-
tion  into  divided  by A,  (i.e.,  Eq.
(22)), for the light nucleus of C-12 and the heavy nucleus
of Pb-208 according to the EIC COM energy at the fixed
value  of  the  inelasticity y (for  and ).  In
Figs.  3 and 4,  these  results  are  obtained  with  respect  to
the DL [38−41] and the Block et al., methods [42, 43] are
presented  respectively.  We observe  that  these  non-linear
corrections  are  visible  at  high  inelasticity  and  small 
values for the light nucleus of C-12 and the heavy nucle-
us  of  Pb-208.  We observe  that  the  non-linear effects  in-
crease  as  the  values decrease  and  the  inelasticity  in-
creases.

1
A∆σ

A
r (x,Q2)

Q2 Q2 = 5 10 GeV2

In Fig. 5, we present the results of our numerical stud-
ies  on  the  non-linear  corrections  of  the  nuclear  reduced
cross  section  divided  by  A,  (i.e.,  Eq.  (30)),
for the light nucleus of C-12 and the heavy nucleus of Pb-
208 according to the EIC COM energy at the fixed value
of  (for  and ). These results are shown
with respect  to  the gluon distribution of  the DL [38−41]

 

1
A

∂
∂lnQ2 ∆FA

2 (x,Q2)

Q2 = 5 GeV2

RA = 1.25A1/3 fm

RA = 2 GeV−1

RA = 5 GeV−1 RA = 6.335A1/3

GeV−1

Fig.  1.    (color online) The  non-linear  corrections  to
 for  the  heavy  nucleus  of  Pb-208  are  shown

as  a  function  of  the  momentum  fraction x at  at
.  These  results  are  determined  by  the  DL

(square-purple)  [38−41]  and  Block et  al. (circle-brown)  [42,
43]  gluon  distributions  and  compared  with  the  nCETQ15
parameterization  [62]  results  at  (solid  curve-
red),  (dashed  curve- blue)  and 

 (dashed- dot curve- black) with uncertainties.

 

Q2 =

10 GeV2

Fig. 2.    (color online) The same as Fig. 1 for Pb-208 at 
.
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Q2

method. We observe that these non-linear corrections are
visible at low x values for both the light nucleus of C-12
and the heavy nucleus of Pb-208. Additionally, we notice
that  the  non-linear  effects  increase  as  the  values  of 
and x decrease.

∂∆σA
r (x,Q2)

A∂∆σr(x,Q2) |y=cte
∂∆FA

2 (x,Q2)
A∂∆F2(x,Q2) = A(RA

g )2 πR2
p

πR2
A

x≲10−2

A(RA
g )2 πR2

p

πR2
A

In Fig.  6,  the  ratio  is  shown,  which  is
approximately  equal  to  (i.e.,  Eq.
(31)). This comparison is made for the light nucleus of C-
12  and  the  heavy  nucleus  Pb-208  as  a  function  of
Bjorken-x to  determine  the  non-linear  correction  to  the
saturation effect  in  nuclei.  It  is  evident  that  the  mag-
nitude  of  shadowing  due  to  the  non-linear  corrections  is
well-defined. This indicates that shadowing effects result-
ing  from  the  non-linear corrections  can  be  readily  con-
strained  at  the  EIC  for ,  which  strongly  depends
on  the  proton  hot-spot  point  and  the  mass  number A.
Therefore,  by  measuring , it  is  possible  to  de-
termine  the  existence  and  magnitude  of  the  non-linear

correction to the shadowing effect in the GLR-MQ evolu-
tion equation, which is a crucial quantity for probing nuc-
lear effects and QCD dynamics at small-x. Indeed, Fig. 6
shows that the shadowing effects due to the difference in
non-linear terms between nucleons and nuclei are visible
at  small x and  depend on  the  mass  number A.  The  error
bounds  in Fig.  6 are  a  result  of  the  uncertainties  in  the
proton target.

In  conclusion,  we have examined the non-linear cor-
rections for  various values of x and found that  the shad-
owing  effect  in  the  GLR-MQ  equations  increases  for
heavy nuclei. We have analyzed the behavior of the log-
arithmic  slopes  of  the  nuclear  structure  function  and  the
nuclear  reduced  cross  section  in  the  kinematic  region  of
future  electron-ion  colliders  (LHeC,  FCC-eh  and  EIC).

 

1
A

∂
∂lnQ2 ∆σ

A
r (x,Q2)

Q2 y = 0.2 y = 0.6

Fig. 3.    (color online) Results of  are shown
as  a  function  of  at  (left)  and  (right)  for  the
light nucleus of C-12 (black-solid curve) and the heavy nucle-
us  of  Pb-208  (red-dashed  curve)  due  to  the  DL  method
[38−41].

 

Fig. 4.    (color online) The same as Fig. 3 due to the Block et
al., method [42, 43].

 

1
A∆σ

A
r (x,Q2)

Q2 Q2 = 5 GeV2 Q2 = 5 GeV2

Fig. 5.    (color online) Results of  are shown as a
function of  at  (left) and  (right) for
the light nucleus of C-12 (black-square points) and the heavy
nucleus  of  Pb-208  (red-circle  points)  due  to  the  DL  method
[38−41].

 

∂∆σA
r (x,Q2)

A∂∆σr (x,Q2)
|y=cte≃

∂∆FA
2 (x,Q2)

A∂∆F2(x,Q2)
=

A(RA
g )2 πR

2
p

πR2
A

πR2
p = 1.55±0.02 fm2 RA = 1.12A1/3 −0.86A−1/3

RA
g

Fig.  6.    (color online) Ratio 

 as a function of Bjorken-x for  the light  nucleus of
C-12  (green  curves)  and  the  heavy  nucleus  Pb-208  (blue
curves)  with  and 
fm.  is predicted by the HIJING parameterization.
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Q2 RA = 1.25A1/3 fm

1
A
∂
∂lnQ2∆σ

A
r (x,Q2)

1
A∆σ

A
r (x,Q2)

1
A
∂
∂lnQ2∆FA

2 (x,Q2)

Q2 = 5 10 GeV2

x∼10−3

These results,  using  the  HIJING  parameterization,  sug-
gest a decrease in the nuclear cross section in future elec-
tron-ion colliders.  The  growth  of  the  reduced  cross  sec-
tion  divided  by A for  the  heavy  nucleus  Pb-208  and  the
light  nucleus  C-12 at  small x is  controlled  at  low values
of  at the hot spot point . This gluonic
hot spot structure in the nucleus is significant for EIC col-
lisions.  The  magnitude  of  and

 increases as x decreases and the atomic num-
ber A increases. The behavior of  for the
heavy  nucleus  Pb-208  is  compared  to  the  results  of  the
nCTEQ15  parameterization  at  and .  Our
analysis indicates that the non-linear corrections are quite
significant  at  and  high  inelasticity  according  to
the EIC COM. These results demonstrate that the inclus-
ive observables are sensitive to the non-linear corrections.
Drawing firm conclusions about the QCD dynamics from
the nuclear reduced cross sections in the kinematic range
of future electron-ion experiments is possible. 
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APPENDIX A

xg(x,Q2
0)|Non−Linear xqs(x,Q2

0)|Non−Linear

x≥x0 = 10−2

Q2
0

To  study  the  possible  importance  of  non-linear cor-
rections, we  base  our  initial  gluon  and  singlet  distribu-
tion  and  by impos-
ing non-linear corrections on the linear distribution func-
tions. We note that at , the non-linear correc-
tions  are  negligible  [63−65].  At  the  initial  scale ,  the
low-x behavior of the non-linear distribution functions are
assumed to be [18] 

xgA(x,Q2
0)|Non−Linear = xgA(x,Q2

0)
¶

1+ θ(x0− x)

×
î
xgA(x,Q2

0)− xgA(x0,Q2
0)
ó
/xgA

sat(x,Q2
0)
©−1
, (A1)

xgA
sat(x,Q2)where  is  defined  in  Eq.  (26).  The  non-linear

corrections  to  the  gluon  distribution  are  reflected  in  the
seq-quark  distributions  which  the  seq-quark starting  dis-
tribution in the region in proportion to the non-linear cor-
rection to the gluon by the following form: 

xqA
s (x,Q2

0)|Non−Linear = xqA
s (x,Q2

0)
xgA(x,Q2

0)|Non−Linear

xgA(x,Q2
0)

. (A2)

Therefore, we find the following: 

xqA
s (x,Q2

0)|Non−Linear

xqA
s (x,Q2

0)
=

xgA(x,Q2
0)|Non−Linear

xgA(x,Q2
0)

≡ζA(x, x0,Q2
0).

(A3)
 

APPENDIX B

Q2

F2(x,Q2)
W =

√
s

For the reduced cross-section of nuclei, as mentioned
above, we require the nucleon distribution functions to be
in terms of the variables x and . The gluon distribution
function  and  the  proton  structure  function  are  initially
parameterized  by  Donnachie-Landshoff  [38−41]  for  the
deep inelastic  structure  function  in  electromagnetic  scat-
tering with protons. The structure function  para-
meterized  by  Donnachie-Landshoff,  at  large ,  is
expressed as follows: 

F2(x,Q2)∼ f0(Q2)x−ϵ0 , (B1)

where, 

f0(Q2) = X0(Q2)1+ϵ0 (1+Q2/Q2
0)−1− 1

2 ϵ0 . (B2)

1+ ϵ0

x < 0.001 0.045≤Q2≤35 GeV2

The  proton  structure  function  data  indicate  the  presence
of a hard pomeron, with an intercept of  at small x.
The  fitted  results  to  the  ZEUS and H1 data  in  the  range

 and  are provided  as  fol-
lows [38−41]: 

X0 = 0.00146, Q2
0 = 9.11 GeV2, ϵ0 = 0.437

Fc
2 F2The  charmed  quark  component  of  is predomin-

antly  influenced  by  hard  pomeron  exchange  at  small x.
Therefore,  a  numerical  fit  to  the solution of  the DGLAP
evolution for  the  gluon distribution at  small x is  defined
as [38−41]: 

xg(x,Q2)∼0.95(Q2)1+ϵ0 (1+Q2/0.5)−1− 1
2 ϵ0 x−ϵ0 . (B3)

F2 Q2

Q2

The Donnachie-Landshoff parameterization of  the  distri-
bution  functions  has  a  limited  range  of  applicability.  In
Ref.  [42],  the  authors  have  presented  a  parameterization
of  that  applies  to  large  and  small  using the  pro-
posed Froissart-bound. This parameterization provides an
excellent  fit  to  all  available  ZEUS and H1 data  across  a
wide  range  of x and .  The  explicit  expression  for  the
Block et al., parameterization [43] is as follows:

 

F2(x,Q2) = (1− x)
ï

FP

1− xp
+ (a0+

2∑
m=1

am lnm(Q2)) ln
ï

xP(1− x)
x(1− xP)

ò
+ (b0+

2∑
m=1

bm lnm(Q2)) ln2
ï

xP(1− x)
x(1− xP)

òò
,
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FP = 0.41 xP = 0.09with  and  (The  other  coefficients  are
shown  in Table  B1).  In  Ref.  [42], the  authors  have  de-
rived  a  second-order  linear  differential  equation  for  the

0 < x≲xP

leading-order  gluon  distribution  function  directly  from
the proton  structure  function  parameterization.  The  ana-
lytical  solution  of  the  gluon  distribution  for  is
defined as follows: 

xg(x,Q2) = − 1
ω

∫ x dz
z

(
z
x

)k sin
Å
ωln(

z
x

)
ã
G(z,Q2), (B4)

k = −3/2 ω =
√

7/2 G(υ,Q2)
υ = ln(1/x)

where  and ,  the  function 
parameterized in  reads as follows: 

G(υ,Q2) = α(Q2)+β(Q2)υ+γ(Q2)υ2. (B5)

ln Q2
The coefficients  of  the  function  are  quadratic  polynomi-
als in  [42].
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