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Abstract: The Schrodinger equation with Woods-Saxon type potentials is solved using the Green's function (GF)
method. Taking nucleus *°Ca as an example, we show that the GF results for both bound and resonant single-neut-
ron states are consistent with those obtained using the shooting and scattering matrix methods, respectively. Expli-
citly, three different recipes (GFI, GFII, and GFIII) are used to determine the energies and widths of resonant states.
The GFI method directly extracts the resonant energy and width from the calculated density of states after removing
the contributions of free particles. The GFII method identifies the resonant states by examining the flip of the dens-
ity of states, whereas the GFIII method searches for the resonant states as poles of the modulus of GF on the com-
plex energy plane. We find that the GFI method is effective for resonant states with narrow widths. For resonant
states with broad widths, the GFII and GFIII methods are more accurate and effective. We also verify that the ener-
gies, widths, and density distributions of resonant states obtained using the GF method exhibit a rather weak depend-

ence on the box size.
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I. INTRODUCTION

Resonant states are commonly observed in atomic,
nuclear, and particle physics. Among all types of reson-
ances, one-particle shape resonance is the simplest case
that results in potential scattering of a particle by an un-
excited target or simply in a potential field with a confin-
ing potential barrier [1]. In nuclear physics, since Tani-
hata et al. discovered the neutron halo in ''Li in 1985 [2],
scholars observed that the continuum spectrum, particu-
larly the low-lying resonant states with a small angular
momentum / therein, plays an important role in nuclei far
from the p-stability line [3—5]. In addition, the single-
particle resonances provide the main contribution to
many collective excitations such as giant resonances [6,
71.

Many theoretical methods have been developed to
study the single-particle resonant states in a given poten-
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tial. Some of these methods are based on traditional scat-
tering techniques, such as the R-matrix method [8, 9],
scattering matrix (SM) method [7, 10—13], K-matrix
method [14], Jost function method [15—17], and scatter-
ing phase shift method [18—20]. Moreover, some meth-
ods originally used for studying bound states have been
extended to study single-particle resonant states, includ-
ing the complex scaling method (CSM) [21-25], analytic
continuation in the coupling constant (ACCC) method
[26—30], real stabilization method (RSM) [31, 32], com-
plex momentum representation (CMR) method [33—-37],
and complex-scaled Green's function (CGF) method
[38—40].

Green's function (GF) [41—46], a useful mathematic-
al tool, can provide another option for solving single-
particle resonant states. It can simultaneously provide the
information for both bound and continuum states, de-
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pending on the boundary conditions. In the non-relativist-
ic mean-field model, GF was initially used in the Hartree-
Fock-Bogoliubov (HFB) theory to treat the continuum
quasiparticle states in the presence of pairing [42, 47].
Subsequently, GF was used to calculate densities re-
quired in the self-consistent density functionals [48—50],
where the quasiparticle resonances can be identified from
the occupation and pair number densities [48, 51]. In the
relativistic counterpart, the relativistic mean-field theory
formulated using GF was first introduced in 2014 and
successfully applied to study single-neutron resonant
states [52]. The study was extended to single-proton and
single-hyperon resonant states, respectively [53, 54]. The
relativistic continuum Hartree-Bogoliubov (RCHB) the-
ory was combined with the GF method to investigate the
quasiparticle resonances and halo phenomena near the
drip line [55, 56]. Note that in these studies, the reson-
ance energy and width were obtained from the peak of
density of states (DOS) calculated using GF subtracting
the contribution from the free scattering states (denoted
as GFI). Subsequently, two additional recipes were pro-
posed to determine the resonant energies and widths of
broad resonances with higher precision. Refs. [57, 58]
proposed to scan the DOS in the fourth quadrant of the
complex energy plane and identify the resonance states as
the flip of the DOS when crossing the poles of GF (de-
noted as GFII), whereas Refs. [59, 60] proposed to search
the resonant states directly as the poles of GF in the
fourth quadrant of the complex energy plane (denoted as
GFIII).

The above three recipes GFI, GFII and GFIII have
been developed to determine the resonant states in the
Dirac equation. In this paper, we check the feasibility of
these recipes to identify the single-neutron resonances in
the Schrodinger equation. By taking the Woods-Saxon
type mean-field and spin-orbit potentials in “°Ca as an ex-
ample, we calculate the DOS using the GF method for
both bound and continuum states. Subsequently, the
single-neutron resonant energies and widths are determ-
ined using the GFI, GFII, and GFIIl methods respect-
ively, and we compare their results in detail. The re-
mainder of this paper is organized as follows: Sec. II
presents the theoretical framework to solve the
Schrédinger equation using the GF method. Sec. III dis-
cusses the DOSs for the bound and resonant states ob-
tained using the GF method and compares in detail the
energies and widths of the resonant states obtained using
the three recipes. Finally, a summary is presented in Sec.
IV.

II. THEORETICAL FRAMEWORK

The stationary Schrodinger equation is

He = €4, (1

where H is the single-particle Hamiltonian, ¢ is the
single-particle wave function, and e is the corresponding
energy. The Hamiltonian can be expressed as

hZ
H=-—V*+V(r), ()
2u

with u representing the mass of the neutron and V(r) the
single-particle potential. Here V(r) includes the Woods-
Saxon mean-field potential V,(r) and spin-orbit potential
Vis(r) with the spherical symmetry:

V(r) = Vy(r) + Vis(r), (3)
in which
Vo
Vq(") = m, (4)
and
1 14v,
= udr " ©)

The single-particle GF for the Schrodinger equation
(1) is defined as

le-HIG(ro,r'o’,€) = 6(r—r)so, (6)

with r representing the space coordinate and ¢ the spin of
the particle. This GF can be expressed by a complete set
of eigenstates ¢,(ro) and the corresponding eigenvalues
€, of the Hamiltonian H, i.e.,

€—¢,

Gror'c €)= Z w (7)

Obviously, the eigenstates of the Schrodinger equa-
tion are the poles of the GF. In the DOS [61]

n(e) = Y 6(e—e,), @®)

the bound states will appear as ¢ peaks at real ¢,. The res-
onant states locate in the fourth quadrant of the complex
energy plane with the energies €, = gg —il'/2, where &g
and I' are the resonance energy and width, respectively
[57, 62]. We can demonstrate that the DOS can be calcu-
lated using the integral of the GF in the coordinate r
space as
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n(e) = —% > / drim[G(ro, ro,€)]. )

In a spherical system, the DOS can be expressed as a
superposition of the partial wave DOSs:

n(e) =Y _nyj(e), (10)
lj

with / and j being the angular momenta of the partial
wave. On the other hand, the GF can also be expanded as

Gij(r,r',€)
r /

Gror'a’ =Y Yiu(to)

Ljm

Y}, (# o), (1)

where Y,;,(fo) is the spin spherical harmonic, and Gj;
represents the radial GF with the angular momenta / and
Jj. Therefore, for a partial wave state with fixed quantum
numbers / and j, the DOS is given by

2j+1

n(e) = e drim [Qlj(r, 7, 6)] . (12)

The radial GF G;;(r,7',€) can be calculated as
’ 1 N (D) g 2)
Gi(r,r',€) = %{Q(V—V)Ml_f (r )”E_,' (r)
+0(r = ruf, (ug; ()} (13)

where 6(r—r’) is the step function, and w(e) is the r-inde-
pendent Wronskian function defined by

duj} (r)

ar } . (14

(2)
du,j (r) B u(z-)(r)

h2
w(e)s{uﬁ?(r) )

2u

Wave functions MEJI-)(V) and M;f-)(r) satisfy the radial
Schrodinger equation,

2 {(a+1 2
e [ D 2y o =0, as)

and are obtained from the asymptotic behaviors at r — 0
and r — oo, respectively. At r — 0, the radial wave func-
tion u;})(r) is regular and can be expanded into powers of
7 as in the SM approach [13]. At r — oo, the radial wave
function Mﬁ)(f ) satisfies

uf? (r) = krhj" (kr), (16)

) _ 2ue . .

where k° = E and A" (kr) is the spherical Hankel func-
tion of the first kind. Note that, for the bound states with
the real negative energy e, the spherical Hankel function
of the first kind A{"(kr) with imaginary argument kr can
be reduced to an exponential decaying function of the co-
ordinate » in the asymptotic region. For the continuum
states with a positive real part of energy, A" (kr) can be
reduced to an oscillating function of » in the asymptotic
region. Therefore, the outside boundary condition in Eq.
(16) naturally considers the different asymptotic behavi-
ors for bound and continuum states according to their en-
ergies. Consequently, both the bound and continuum
states can be included in the GF (13) using the same form
of boundary conditions.

III. RESULTS AND DISCUSSION

In the following, we take the single-neutron potential
of “Ca as an example to examine the bound and reson-
ant states in the Schrodinger equation obtained using the
GF method. The corresponding parameters of the Woods-
Saxon potential (3) are taken as V,=-57.0MeV, a=
0.67 fm, R = 4.06945 fm, and 7#*/2u = 20.22671 MeV - fm?.
To identify the resonant states, we follow three different
methods using the GF obtained in Sec. I. To check the
stability of the results of the resonant states, we select the
coordinate space as Rpox = 10,20,30 fm with a mesh size
dr=0.1 fm.

A. GFI Method

In the first method, GFI [52], the partial wave DOS
nij(€) (12) can be calculated using the integral of GF in
the coordinate space with a complex energy e = e+ix,
where ¢ and x are both real numbers representing the real
and imaginary parts of the energy, respectively. In this
method, the imaginary part of energy x has a fixed small
positive value 1x 107> MeV to visualize the J peak for the
bound state (if any). We can plot the DOS n(e) as a
function of the real part of energy ¢ to search the bound
or resonant states. The energy step to plot n;(¢) is taken
as de = 1 x 107 MeV. With both the given mean-field and
spin-orbit potentials in Eq. (3), the calculated DOSs n,;(¢)
are shown in Fig. 1 for different partial waves obtained
with the box size Ry = 20 fm.

In the energy region <0, the bound state (if any)
will appear as a sharp peak with an artificial width 2«. As
shown in Fig. 1, we can extract the bound state energies
at the peaks in S1/2,pl/z,p3/2,d3/2,d5/2,f§/2, and f7/2 partial
waves. These energies are listed in Table 1, in comparis-
on with the results obtained using the shooting method
with the box boundary condition in the same coordinate
space. As shown, the single-neutron energies of bound
states obtained from the two methods correspond within a
precision of 107 MeV, which is determined by the en-
ergy step de.
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Fig. 1.

(color online) Neutron DOSs ny;(e) (€ = e+ix with k= 1x 1073 MeV) for different partial waves in “°Ca calculated using the GF

method, with Woods-Saxon type mean-field and spin-orbit potentials shown in the box Rmax =20 fm (solid line). The dashed vertical

line at & = 0 marks the continuum threshold.

Table 1.
in “°Ca obtained using the GFI and shooting methods. Box

Single-neutron energies (in MeV) of bound states

8iZ€ Ryox = 20fm and mesh size dr = 0.10 fm are adopted.

nlj GFI Shooting
Lsiy2 —41.961 —41.9607
2512 —16.587 —16.5870
1pi)2 -29.077 —29.0770
2pip —3.557 —3.5572
1p3)2 —31.508 —31.5080
2p3;2 —5.648 —5.6479
1d3)2 —15.466 —15.4658
1ds)» —20.349 —20.3493
1fs)2 -1.630 —1.6298
1f72 —8.838 —8.8379

Just above the continuum threshold =0, the DOS
exhibits sharp upward inclines with some peaks or oscil-
lations above. According to Ref. [52], this is primarily
contributed by the free particle scattering states. To re-
move their contributions, we can subtract the DOS n?j(e)
calculated using only the centrifugal barrier but no mean-
field potentials (V,(r) =0) from the total DOS n;;(e) and
obtain the residual DOS n] (€) = nyj(e) —n?j(e) that is con-
tributed only from the resonant states (if any). From the
residual DOS, we can identify the resonant states and ob-
tain the corresponding energy and width information.

The neutron DOSs n,j(e),n?j(e), and ny(€) above the
continuum threshold for different partial waves in “’Ca
calculated by GF are shown in Fig. 2. From the residual
DOSs nj;(e), we observe some apparent peaks in ds,
8712, 892> P12 and ij3p partial waves, which clearly cor-
respond to the resonant states. We can take the peak en-
ergy as the resonant energy and the full width at half
maximum (FWHM) to calculate the resonant width I':

FWHM=2(K+g). (17)

Among these partial waves, gy, has a typical sharp
resonant state at the energy &z = 2.478 MeV with a con-
siderably small width of I'=0.023 MeV. Since the en-
ergy step is taken as de = 1 x 10~ MeV, the extracted en-
ergy and width are also truncated to the third decimal
place (10~ MeV). In contrast, the residual DOS nj;(e) in
the ds, partial wave has some small peaks within a wide
energy region 2 ~ 8 MeV. The energy and width of reson-
ant state here are difficult to identify. Taking go,, and ds,
as two distinct examples, their DOSs nj;(e) are magnified
and compared in Fig. 3. To check the dependence of the
DOSs on the box sizes, we also show the results calcu-
lated with box sizes Ry.x = 10 and 30 fm. For the narrow
resonance in the go,, partial wave in Fig. 3 (a), the peak
structures calculated using different Ry.x values are al-
most the same. Thus, the resonant energy and width ob-
tained from the peaks calculated using different box sizes
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(color online) Neutron DOSs nj(e) (e = &+ix with x = 1x 1073 MeV) for different angular momentum partial waves in “°Ca cal-

culated using the GF method with Woods-Saxon type mean-field and its spin-orbit potentials (solid line), with only centrifugal barrier
n?j(e) (dashed line) and their differences n,r (6= nlj(e)—n?j(e) (dotted line) in the box Ryox =20 fm. The dashed vertical line at £=0

marks the continuum threshold.
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Fig. 3.  (color online) The residual DOSs nj(e) (e=e+ix

with k=1x1072MeV) calculated with different box sizes

Ryox = 10,20,30 fm are shown for (a) go» and (b) dz/, partial
waves. The same mesh size dr = 0.1 fm is adopted.

are identical, as shown in Table 2 (GFI). In contrast, for
the broad resonance in the d;,, partial wave in Fig. 3 (b),

the DOS nj,(e) changes significantly with different box
sizes. We can still take the center energy of the highest
peak as the resonant energy and the corresponding
FWHM for the resonant width. The results thus obtained
are also listed in Table 2 (GFI). We easily observe that
the obtained energy and width for the broad d;,, reson-
ance sensitively depend on the adopted box size.

As shown in Fig. 2, except for the narrow resonant
state in the gq/, partial wave, other partial waves d»,ds),,
g72hn1 2, and iy3), have peaks in the residual DOSs nj;(e)
with large widths. We list their resonant energies and
widths determined using GFI with different box sizes in
Table 2 (GFI). Their resonant energies and widths are
mostly all dependent on the box size. Therefore, the GFI
method is reliable for determining the resonant energies
and widths for the narrow resonant states, but obtaining
this information with high accuracy is difficult for the
broad resonant states.

B. GFII Method

Resonant states manifest as poles situated within the
fourth quadrant of the single-particle complex energy
plane. Consequently, the DOS exhibits a ¢ peak at the
pole position. The DOS in the complex energy plane
n;j(e), where € =g, +ig; can be calculated using the GF
with scanning the real and imaginary parts of energies &,
and g; in the fourth quadrant. It can be demonstrated that
[58], near the energy of resonant states e = eg —il'/2,
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Table 2. Resonant energies ¢ and widths I of single-neutron resonant states n/j in “°Ca obtained using three different methods (GFI,
GFII, GFIII) and the SM with box sizes Ryox = 10,20,30 fm and the same mesh size 0.10 fm. All in MeV.

nl; 10 fm 20 fm 30 fm
£R r ER r £R r
GFI 2.902 2.356 2.732 1.674 2.556 3.196
GFII 2.7143 4.8350 2.7133 4.8498 2.7133 4.8496
22 GFIIl 2.7143 4.8350 2.7133 4.8496 2.7133 4.8496
SM 2.7140 4.8362 2.7133 4.8500 2.7133 4.8500
GFI 1.860 1.096 1.946 1.325 2,018 1.401
GFII 1.7610 1.3296 1.7603 1.3310 1.7603 1.3312
22 GFIIl 1.7610 1.3296 1.7603 1.3310 1.7603 1.3310
SM 1.7610 1.3298 1.7603 1.3312 1.7603 1.3312
GFI 10.040 3.643 10.025 4.016 10.582 3.546
GFII 10.2206 3.5296 10.2208 3.5278 10.2207 3.5276
7 GFIIl 10.2206 3.5296 10.2208 3.5276 10.2208 3.5276
SM 10.2206 3.5294 10.2208 3.5276 10.2208 3.5276
GFI 2.478 0.023 2.478 0.022 2.478 0.022
GFII 2.4780 0.0240 2.4780 0.0238 2.4780 0.0238
fgor GFIIl 2.4780 0.0238 2.4781 0.0238 2.4781 0.0238
SM 2.4780 0.0238 2.4780 0.0238 2.4780 0.0238
GFI 12.799 2.678 12.940 2.899 12.880 2312
GFII 12.8877 2.6938 12.8880 2.6924 12.8880 2.6924
sz GFIIl 12.8877 2.6938 12.8880 2.6924 12.8880 2.6924
SM 12.8878 2.6936 12.8880 2.6924 12.8880 2.6924
GFI 24.685 8.662 24.250 7.610 23211 8.661
. GFII 23.8506 9.4758 23.8470 9.4806 23.8469 9.4804
i GFIIl 23.8489 9.4764 23.8470 9.4804 23.8470 9.4804
SM 23.8502 9.4754 23.8470 9.4804 23.8470 9.4804
nj(e) =0d(e—er) method can be employed to progressively narrow the &,
_2j+1 [ drim[Gy(r.r.o) scanning range based on the two peak structures d.is—
T SR cussed above. In practice, the rough resonant state in-
ife; > -T2, (18) formation given by the GFI method can be used as a ref-
2j+1 erence for the ¢, and &; scanning.
n Jarim[G(r.r.€)]. Taking partial waves go, and ds, as examples, Fig. 4
ifg; < -T'/2. shows the scanned DOS n,;(e) as a function of the real

In other words, when the imaginary part &; crosses
before and after —I'/2 at the resonant state, the value of
DOS ny;(e) will change the sign. When the real part of the
energy, &,, approaches the resonance energy &g, two dis-
tinct positive and negative peak structures emerge sym-
metrically before and after the imaginary part of the en-
ergy &; scanning across the value —I'/2, serving as a sig-
nature of resonant states. To obtain the resonance energy
and width with high accuracy, we must first determine
the range for the energy scan. In principle, the bisection

part energy &, with different imaginary part energies ¢;.
As clearly shown in Fig. 4 (a), with different &; values,
the peaks of n;;(¢) in the gy, partial wave all appear at the
same real part energy &, =2.4780 MeV with different
heights. This center energy of the peaks corresponds to
the resonant energy &z =2.4780 MeV. Furthermore, with
g; increasing from —0.0120 MeV to & =-0.0119 MeV,
the DOS inverses its negative values to positive values.
We select the value &, =—-0.0119 MeV that provides the
largest absolute value n;(¢) to calculate the resonant
width as T’ = —2¢; = 0.0238 MeV. For partial wave d;), in
Fig. 4 (b), the peaks of DOS appear not to be symmetric
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Fig. 4. (color online) Neutron DOSs nyj(e) calculated with
different real and imaginary parts of energy &, and ¢; in the
coordinate space with Ryox = 20fm for (a) goj2 and (b) ds, par-
tial waves.

as those in partial wave go,. As g increases from
—2.4249 MeV to g = -2.4248 MeV, the DOS flips from
the valley structure to the peak structure. Similarly, we
take the DOS that provides the largest absolute value
n;(e) (& = —2.4249 MeV) to identify the resonant energy
and width, that is, g =&, =2.7133 MeV and I' = -2¢; =
4.8498 MeV. In this calculation, the step for the energy
scanning is taken as 10™* MeV, which determines our
precision in identifying the resonant energies and widths.

Following the same procedures, we can obtain the
resonant energies and widths for all the other partial
waves. In Table 2, the resonant energies and widths de-
termined using the GFII method with different box sizes
are listed for comparison. Compared with those obtained
using GFI, the results are less sensitive to the adopted box
size. In particular, the GFII method with the box sizes
Rpox =20 fm and 30 fm provides consistent results within
an accuracy of 10 MeV for both narrow and broad res-
onances.

C. GFIII Method

Inspired by the idea of the GFII method that the res-
onant states are identified by searching the extremes of
DOSs, a more straightforward method was proposed in
Refs. [59, 60] by probing the poles or extremes of the GF.
To be more intuitive, we can integrate the modulus of GF

Gj(r,r,€) over coordinate

Gii(e) = fd”|§1j(r,r,€) , (19)

and search its extremes by scanning the real and imagin-
ary parts (&,, &;) in the fourth quadrant of the complex en-
ergy plane. The resonant states will manifest themselves
as peak structures at the resonant energy ez =&, with a
width T = 2¢;.

Taking partial waves gq, and ds/, as examples, Fig. 5
shows the three-dimensional plot of the integral G,;(¢e) as
a function of the real and imaginary parts of energies &,
and g; calculated with a box size of R,.x =20 fm. In both
panels, the peak structure representing the pole is appar-
ent for the narrow resonance in go,, and the broad reson-
ance in ds,. From the peak structures, we can easily
identify the resonant energies and widths at the center of
the peak, which are & =¢,=24780 MeV and I'=
—2¢;=0.0238 MeV for the gy, partial wave and
gr=¢&,=2.7133 MeV and I = —2¢; = 4.8496 MeV for the
ds, partial wave.

The GFIII method has been applied for all the partial
waves calculated with different box sizes, and the ob-
tained resonant energies and widths are also listed in Ta-
ble 2. As the results show, the GFIII method is as effect-
ive as the GFII method, and both methods are less sensit-

992
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Fig. 5. (color online) Three-dimensional modulus G;;(e) cal-
culated with different real and imaginary parts of energy e,
and &;, in the coordinate space with Ryox =20 fm for (a) go)»
and (b) ds), partial waves.
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ive to the adopted box size than the GFI method.

D. Discussion

In Table 2, we have listed the single-neutron resonant
energies g and widths I' for different partial waves in
40Ca obtained using the three methods GFI, GFII, and
GFIII. To check the dependence on the box sizes, we per-
form the calculations using different box sizes Ryox = 10,
20, and 30 fm and the same mesh size dr =0.1 fm. For
comparison, the corresponding results obtained using the
SM method [13] are also included.

For the resonant state in partial wave go,, with a small
width, the GFI, GFII, and GFIII methods provide almost
the same results as the SM, which are also not very de-
pendent on the box sizes. For other partial waves that
have relatively broad resonances, with the same box size,
the results given by GFI are not very consistent with oth-
er methods. However, the results given by GFII and
GFIII for these broad resonances are consistent with
those obtained using the SM. Furthermore, the results of
GFII, GFIII, and the SM are not sensitive to the box sizes
for these broad resonances.

To further check the results' dependence on the box
sizes, we can plot the partial wave density distribution at
the resonant energy &g:

2j+D1
o M [Gutren]. (20)

pij(r,eg) = —

Taking the narrow and broad resonances in partial
waves go» and ds, as examples, Fig. 6 shows their dens-
ity distributions at the corresponding resonant energies &g
calculated with box sizes Ry.x = 10,20,30 fm. As shown
in Table 2, the resonant energies obtained using GFI,
GFII, and GFIII are the same &; =2.478 MeV for the
lgo» resonant state. For 2d;,,, the resonant energy ob-
tained using GFI is different from those of GFII and
GFIII. The resonant energies obtained using GFII and
GFIII are consistent, i.e., g = 2.7143 MeV with Ry, = 10
fm, and &z =2.7133 MeV with Ry, = 20,30 fm. We use
these two resonant energies to plot the density distribu-
tions for 2d;,, obtained with different box sizes corres-
pondingly. From Fig. 6 (a), we observe that the density
distribution of narrow resonant state in the go, partial
wave behaves as a bound state. Its density distribution de-
creases quickly to be zero after r ~ 8 fm. In contrast, the
broad resonance state in the d;;, partial wave in Fig. 6 (b)
has obvious oscillating density distributions. However,
for both narrow and broad resonances, the density distri-
butions calculated using the GF method at their resonant
energies are not sensitive to the box size. In particular, for
the broad resonant state in the ds;, partial wave with the
rapid oscillations in the density distribution, even with the
small box size Ry, = 10 fm, it can still provide consistent
density distributions with those obtained by the larger

‘_"_‘2 -I LENLEL I LI I I ) I LI I ) I rrra I LI B | I LENLEL I-
: C ]
- — 10 fm] ]
E - 99/2 =20 fm ]
= ——30 fm| ]
:L 1F -
£ ]
= F ]
wo L ]
;50: (@) ]
S T
103 r [fm]
‘_"_‘2 _I LI I LI ] I rrrT I LI L] I LI I LI I_
: C ]
= F d ]
= 3/2 ]
- F ]
?L 1F 4
E= ]
= C ]
wo r ]
Sl Vo N —
i IS I PP I I P
0 5 10 15 20 25 30
r [fm]
Fig. 6.  (color online) Density distributions p;;(r,eg) at the

resonant energies eg for single-neutron resonant state (a) 1g9/2
and (b) 2ds, calculated in the coordinate space with box sizes
Rpox = 10,20,30 fm and the same mesh size dr = 0.1 fm.

boxes up to =10 fm. The larger box sizes only display
the density distribution in further region. This is attrib-
uted to the proper description of the wave functions for
the continuum states given by the GF method. This can
also explain why the resonant energies and widths are not
sensitive to the box sizes given by the GFII and GFIII
methods. We expect that the density distributions calcu-
lated using GF can properly include the contributions
from the continuum states in the density functional the-
ory.
Comparing the GFI, GFII, and GFIII methods to
provide the resonant energies and widths, the GFI meth-
od reading from the DOSs calculated using a fixed small
imaginary part energy is only reliable for the narrow res-
onant states. In contrast, the GFII and GFIII methods,
which scan the poles of the DOSs and the GF with differ-
ent real and imaginary part of energies, are reliable for
both the narrow and broad resonant states. In practice, we
can use GFI in the first step to locate the resonant states
roughly and then use GFII or GFIII to scan the poles
around this location with a higher precision.

IV. SUMMARY
In this paper, the Schrodinger equation with Woods-
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Saxon type potentials for neutrons in “°Ca is solved us-
ing the GF method. The bound and resonant states are ob-
tained with the GF constructed using the wave functions
with proper boundary conditions corresponding to their
energies. The GF results for both bound and resonant
single-neutron states are consistent with those obtained
by the shooting and SM methods. Explicitly, three differ-
ent recipes (GFI, GFII, and GFIII) are used to determine
the energies and widths of resonant states. With the GFI
method, by subtracting the contributions of free particle
from the total DOS, we can identify the resonant states
and obtain the corresponding energy and width informa-
tion. In the GFII method, the resonant states are identi-
fied using the flip of DOS as the imaginary part of en-

ergy changes. More straightforwardly, in the GFIII meth-
od, the resonant states are identified as poles of the modu-
lus of GF scanned in the fourth quadrant of the complex
energy plane. Compared with the results given by the
SM, we find that GFI is only reliable for the narrow res-
onant states, whereas GFII and GFIII are effective for
both the narrow and broad ones. Additionally, we ob-
serve that the energies, widths, and density distributions
of resonant states obtained using the GF method exhibit a
rather weak dependence on the box size. We expect that
the GF can provide the proper density distributions with
the contributions from the continuum states in the dens-
ity functional theory.
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