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40Ca
Abstract: The Schrödinger equation with Woods-Saxon type potentials is solved using the Green's function (GF)
method. Taking nucleus   as an example, we show that the GF results for both bound and resonant single-neut-
ron states are consistent with those obtained using the shooting and scattering matrix methods, respectively. Expli-
citly, three different recipes (GFI, GFII, and GFIII) are used to determine the energies and widths of resonant states.
The GFI method directly extracts the resonant energy and width from the calculated density of states after removing
the contributions of free particles. The GFII method identifies the resonant states by examining the flip of the dens-
ity of states, whereas the GFIII method searches for the resonant states as poles of the modulus of GF on the com-
plex  energy  plane.  We find  that  the  GFI  method  is  effective  for  resonant  states  with  narrow widths.  For  resonant
states with broad widths, the GFII and GFIII methods are more accurate and effective. We also verify that the ener-
gies, widths, and density distributions of resonant states obtained using the GF method exhibit a rather weak depend-
ence on the box size.
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I.  INTRODUCTION

11Li

Resonant  states  are  commonly  observed  in  atomic,
nuclear, and  particle  physics.  Among  all  types  of   reson-
ances,  one-particle  shape  resonance  is  the  simplest  case
that results  in potential  scattering of a particle by an un-
excited target or simply in a potential field with a confin-
ing  potential  barrier  [1]. In  nuclear  physics,  since   Tani-
hata et al. discovered the neutron halo in   in 1985 [2],
scholars observed  that  the  continuum  spectrum,   particu-
larly  the  low-lying  resonant  states  with  a  small  angular
momentum l therein, plays an important role in nuclei far
from  the  β-stability  line  [3−5].  In  addition,  the  single-
particle  resonances  provide  the  main  contribution  to
many  collective  excitations  such  as  giant  resonances  [6,
7].

Many  theoretical  methods  have  been  developed  to
study the single-particle resonant states in a given poten-

tial. Some of these methods are based on traditional scat-
tering  techniques,  such  as  the  R-matrix  method  [8,  9],
scattering  matrix  (SM)  method  [7,  10−13],  K-matrix
method  [14],  Jost  function  method  [15−17], and   scatter-
ing  phase  shift  method  [18−20]. Moreover,  some  meth-
ods  originally  used  for  studying  bound  states  have  been
extended  to  study  single-particle resonant  states,   includ-
ing the complex scaling method (CSM) [21−25], analytic
continuation  in  the  coupling  constant  (ACCC)  method
[26−30],  real  stabilization method (RSM) [31, 32], com-
plex  momentum  representation  (CMR)  method  [33−37],
and  complex-scaled  Green's  function  (CGF)  method
[38−40].

Green's  function (GF) [41−46], a  useful  mathematic-
al  tool,  can  provide  another  option  for  solving  single-
particle resonant states. It can simultaneously provide the
information for  both  bound  and  continuum  states,   de-
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pending on the boundary conditions. In the non-relativist-
ic mean-field model, GF was initially used in the Hartree-
Fock-Bogoliubov  (HFB)  theory  to  treat  the  continuum
quasiparticle  states  in  the  presence  of  pairing  [42,  47].
Subsequently, GF  was  used  to  calculate  densities   re-
quired in  the  self-consistent  density  functionals  [48−50],
where the quasiparticle resonances can be identified from
the occupation and pair number densities [48, 51]. In the
relativistic  counterpart,  the  relativistic  mean-field  theory
formulated  using  GF  was  first  introduced  in  2014  and
successfully  applied  to  study  single-neutron  resonant
states [52]. The study was extended to single-proton and
single-hyperon resonant states, respectively [53, 54]. The
relativistic  continuum  Hartree-Bogoliubov (RCHB)   the-
ory was combined with the GF method to investigate the
quasiparticle  resonances  and  halo  phenomena  near  the
drip  line  [55,  56]. Note  that  in  these  studies,  the   reson-
ance  energy  and  width  were  obtained  from  the  peak  of
density  of  states  (DOS)  calculated  using  GF  subtracting
the  contribution  from  the  free  scattering  states  (denoted
as GFI).  Subsequently,  two  additional  recipes  were   pro-
posed  to  determine  the  resonant  energies  and  widths  of
broad  resonances  with  higher  precision.  Refs.  [57,  58]
proposed  to  scan  the  DOS  in  the  fourth  quadrant  of  the
complex energy plane and identify the resonance states as
the  flip  of  the  DOS when  crossing  the  poles  of  GF (de-
noted as GFII), whereas Refs. [59, 60] proposed to search
the  resonant  states  directly  as  the  poles  of  GF  in  the
fourth quadrant of the complex energy plane (denoted as
GFIII).
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The  above  three  recipes  GFI,  GFII  and  GFIII  have
been  developed  to  determine  the  resonant  states  in  the
Dirac equation. In this paper,  we check the feasibility of
these recipes to identify the single-neutron resonances in
the  Schrödinger  equation.  By  taking  the  Woods-Saxon
type mean-field and spin-orbit potentials in   as an ex-
ample,  we  calculate  the  DOS  using  the  GF  method  for
both  bound  and  continuum  states.  Subsequently,  the
single-neutron resonant  energies  and  widths  are   determ-
ined using  the  GFI,  GFII,  and  GFIII  methods   respect-
ively, and  we  compare  their  results  in  detail.  The   re-
mainder  of  this  paper  is  organized  as  follows:  Sec.  II
presents  the  theoretical  framework  to  solve  the
Schrödinger equation using the GF method.  Sec.  III  dis-
cusses the  DOSs  for  the  bound  and  resonant  states   ob-
tained  using  the  GF  method  and  compares  in  detail  the
energies and widths of the resonant states obtained using
the three recipes. Finally, a summary is presented in Sec.
IV. 

II.  THEORETICAL FRAMEWORK

The stationary Schrödinger equation is 

Hϕ = ϵϕ, (1)

ϵ

where  H  is  the  single-particle  Hamiltonian,  ϕ  is  the
single-particle wave function, and   is the corresponding
energy. The Hamiltonian can be expressed as 

H = − h̄2

2µ
∇2+V(r), (2)

V(r)
V(r)

Vq(r)
Vls(r)

with μ representing the mass of the neutron and   the
single-particle  potential.  Here    includes  the  Woods-
Saxon mean-field potential   and spin-orbit  potential

 with the spherical symmetry: 

V(r) = Vq(r)+Vls(r), (3)

in which 

Vq(r) =
V0

1+ e(r−R)/a
, (4)

and 

Vls =
1

2µc2

1
r

dVq

dr
l · s. (5)

The  single-particle  GF  for  the  Schrödinger  equation
(1) is defined as 

[ϵ −H]G(rσ, r′σ′, ϵ) = δ(r− r′)δσσ′ , (6)

r

ϕn(rσ)
ϵn

with   representing the space coordinate and σ the spin of
the particle. This GF can be expressed by a complete set
of  eigenstates    and  the  corresponding  eigenvalues
 of the Hamiltonian H, i.e., 

G(rσ, r′σ′, ϵ) =
∑

n

ϕn(rσ)ϕ∗n(r′σ′)
ϵ − ϵn

. (7)

Obviously, the  eigenstates  of  the  Schrödinger   equa-
tion are the poles of the GF. In the DOS [61] 

n(ϵ) =
∑

n
δ(ϵ − ϵn), (8)

ϵn

ϵn = εR− iΓ/2 εR

r

the bound states will appear as δ peaks at real  . The res-
onant states locate in the fourth quadrant of the complex
energy  plane  with  the  energies  ,  where 
and  Γ  are  the  resonance  energy  and  width,  respectively
[57, 62]. We can demonstrate that the DOS can be calcu-
lated  using  the  integral  of  the  GF  in  the  coordinate 
space as 
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n(ϵ) = −1
π

∑
σ

∫
dr Im[G(rσ, rσ,ϵ)]. (9)

In a spherical system, the DOS can be expressed as a
superposition of the partial wave DOSs: 

n(ϵ) =
∑

l j

nl j(ϵ), (10)

with  l  and  j  being  the  angular  momenta  of  the  partial
wave. On the other hand, the GF can also be expanded as 

G(rσ, r′σ′, ϵ) =
∑
l jm

Yl jm(r̂σ)
Gl j(r,r′, ϵ)

rr′
Y∗l jm(r̂′σ′), (11)

Yl jm(r̂σ) Gl jwhere    is  the  spin  spherical  harmonic,  and 
represents the radial GF with the angular momenta l and
j.  Therefore,  for  a partial  wave state with fixed quantum
numbers l and j, the DOS is given by 

nl j(ϵ) = −
2 j+1
π

∫
dr Im

[
Gl j(r,r, ϵ)

]
. (12)

Gl j (r,r′, ϵ)The radial GF   can be calculated as 

Gl j(r,r′, ϵ) =
1

w(ϵ)
{
θ(r− r′)u(1)

l j (r′)u(2)
l j (r)

+ θ(r′− r)u(1)
l j (r)u(2)

l j (r′)
}
, (13)

θ(r− r′) w(ϵ)where   is the step function, and   is the r-inde-
pendent Wronskian function defined by 

w(ϵ) ≡ h̄2

2µ

ñ
u(1)

l j (r)
du(2)

l j (r)
dr

−u(2)
l j (r)

du(1)
l j (r)
dr

ô
. (14)

u(1)
l j (r) u(2)

l j (r)Wave  functions    and    satisfy  the  radial
Schrödinger equation, 

u′′(r, ϵ)+
ï

2µϵ
h̄2 −

l(l+1)
r2
− 2µ

h̄2 V(r)
ò

u(r, ϵ) = 0, (15)

r→ 0
r→∞ r→ 0
u(1)

l j (r)
r→∞

u(2)
l j (r)

and are obtained from the asymptotic behaviors at 
and  , respectively. At  , the radial wave func-
tion   is regular and can be expanded into powers of
r as in the SM approach [13]. At  , the radial wave
function   satisfies
 

u(2)
l j (r) = krh(1)

l (kr), (16)

k2 =
2µϵ
h̄2 h(1)

l (kr)

ϵ

h(1)
l (kr) kr

h(1)
l (kr)

where  , and   is the spherical Hankel func-
tion of the first kind. Note that, for the bound states with
the real negative energy  , the spherical Hankel function
of the first  kind   with imaginary argument   can
be reduced to an exponential decaying function of the co-
ordinate  r  in  the  asymptotic  region.  For  the  continuum
states  with  a  positive  real  part  of  energy,    can  be
reduced  to  an  oscillating  function  of r  in  the  asymptotic
region.  Therefore,  the outside boundary condition in  Eq.
(16) naturally  considers  the  different  asymptotic  behavi-
ors for bound and continuum states according to their en-
ergies.  Consequently,  both  the  bound  and  continuum
states can be included in the GF (13) using the same form
of boundary conditions. 

III.  RESULTS AND DISCUSSION

40

V0 = −57.0 MeV a =
0.67 fm R = 4.06945 fm h̄2/2µ = 20.22671 MeV · fm2

Rbox = 10,20,30 fm
dr = 0.1 fm

In the following, we take the single-neutron potential
of  Ca as  an  example  to  examine the  bound and  reson-
ant states in the Schrödinger equation obtained using the
GF method. The corresponding parameters of the Woods-
Saxon  potential  (3)  are  taken  as  , 

,  , and  .
To identify the resonant states,  we follow three different
methods  using  the  GF  obtained  in  Sec.  I.  To  check  the
stability of the results of the resonant states, we select the
coordinate  space as   with a  mesh size

. 

A.    GFI Method

nl j(ϵ)
ϵ = ε+ iκ

1×10−3 MeV
nl j(ϵ)

nl j(ϵ)
dε = 1×10−3 MeV

nl j(ϵ)

Rbox = 20

In  the  first  method,  GFI  [52],  the  partial  wave  DOS
  (12)  can  be  calculated  using  the  integral  of  GF  in

the  coordinate  space  with  a  complex  energy  ,
where ε and κ are both real numbers representing the real
and  imaginary  parts  of  the  energy,  respectively.  In  this
method, the imaginary part of energy κ has a fixed small
positive value   to visualize the δ peak for the
bound  state  (if  any).  We  can  plot  the  DOS    as  a
function of  the real  part  of  energy ε  to  search the bound
or resonant states.  The energy step to plot    is  taken
as  . With both the given mean-field and
spin-orbit potentials in Eq. (3), the calculated DOSs 
are  shown  in Fig.  1  for  different  partial  waves  obtained
with the box size   fm.

ε < 0
2κ

s1/2, p1/2, p3/2,d3/2,d5/2, f5/2 f7/2

10−3

dε

In  the  energy  region  ,  the  bound  state  (if  any)
will appear as a sharp peak with an artificial width  . As
shown in Fig. 1,  we can extract the bound state energies
at the peaks in  , and   partial
waves. These energies are listed in Table 1, in comparis-
on  with  the  results  obtained  using  the  shooting  method
with  the  box  boundary  condition  in  the  same  coordinate
space.  As  shown,  the  single-neutron  energies  of  bound
states obtained from the two methods correspond within a
precision  of   MeV, which  is  determined  by  the   en-
ergy step  .
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ε = 0

n0
l j(ϵ)

(Vq(r) = 0) nl j(ϵ)
nr

l j(ϵ) = nl j(ϵ)−n0
l j(ϵ)

Just  above  the  continuum  threshold  ,  the  DOS
exhibits sharp upward inclines with some peaks or oscil-
lations  above.  According  to  Ref.  [52],  this  is  primarily
contributed by  the  free  particle  scattering  states.  To   re-
move their contributions, we can subtract the DOS 
calculated using only the centrifugal barrier but no mean-
field  potentials    from the  total  DOS   and
obtain the residual DOS   that is  con-
tributed  only  from the  resonant  states  (if  any).  From the
residual DOS, we can identify the resonant states and ob-
tain the corresponding energy and width information.

nl j(ϵ),n0
l j(ϵ) nr

l j(ϵ)
40

nr
l j(ϵ) d5/2

g7/2 g9/2 h11/2 i13/2

The  neutron  DOSs  ,  and    above  the
continuum  threshold  for  different  partial  waves  in  Ca
calculated by GF are shown in Fig.  2.  From the residual
DOSs  ,  we  observe  some  apparent  peaks  in  ,

,  ,   and   partial waves, which clearly cor-
respond to the resonant states.  We can take the peak en-
ergy  as  the  resonant  energy  and  the  full  width  at  half
maximum (FWHM) to calculate the resonant width Γ: 

FWHM = 2
Å
κ+
Γ

2

ã
. (17)

g9/2

εR = 2.478
Γ = 0.023

dε = 1×10−3 MeV

10−3 nr
l j(ϵ)

d3/2

2 ∼ 8
g9/2 d3/2

nr
l j(ϵ)

Rbox = 10 30
g9/2

Rbox

Among  these  partial  waves,    has  a  typical  sharp
resonant  state  at  the  energy   MeV with  a  con-
siderably  small  width  of    MeV. Since  the   en-
ergy step is taken as  , the extracted en-
ergy  and  width  are  also  truncated  to  the  third  decimal
place (  MeV). In contrast, the residual DOS   in
the   partial wave has some small peaks within a wide
energy region   MeV. The energy and width of reson-
ant state here are difficult to identify. Taking   and 
as two distinct examples, their DOSs   are magnified
and compared in Fig. 3. To check the dependence of the
DOSs on  the  box  sizes,  we  also  show  the  results   calcu-
lated with box sizes   and   fm. For the narrow
resonance in the   partial  wave in Fig.  3 (a),  the peak
structures  calculated  using  different    values are   al-
most the same.  Thus,  the resonant  energy and width ob-
tained from the peaks calculated using different box sizes

 

nl j(ϵ) ϵ = ε+ iκ κ = 1×10−3 MeV 40Ca
Rmax = 20 fm

ε = 0

Fig. 1.    (color online) Neutron DOSs   (  with  ) for different partial waves in   calculated using the GF
method, with Woods-Saxon type mean-field and spin-orbit potentials shown in the box   (solid line). The dashed vertical
line at   marks the continuum threshold.

 

40

Rbox = 20fm dr = 0.10 fm

Table 1.      Single-neutron energies (in MeV) of bound states
in  Ca  obtained  using  the  GFI  and  shooting  methods.  Box
size   and mesh size   are adopted.

nl j GFI Shooting

1s1/2 −41.961 −41.9607

2s1/2 −16.587 −16.5870

1p1/2 −29.077 −29.0770

2p1/2 −3.557 −3.5572

1p3/2 −31.508 −31.5080

2p3/2 −5.648 −5.6479

1d3/2 −15.466 −15.4658

1d5/2 −20.349 −20.3493

1 f5/2 −1.630 −1.6298

1 f7/2 −8.838 −8.8379
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d3/2

are identical,  as shown in Table 2 (GFI).  In contrast,  for
the broad resonance in the   partial wave in Fig. 3 (b),

nr
l j(ϵ)

d3/2

the  DOS    changes  significantly  with  different  box
sizes.  We  can  still  take  the  center  energy  of  the  highest
peak  as  the  resonant  energy  and  the  corresponding
FWHM for the resonant width. The results thus obtained
are  also  listed  in Table  2  (GFI).  We  easily  observe  that
the  obtained  energy  and  width  for  the  broad    reson-
ance sensitively depend on the adopted box size.

g9/2 d3/2,d5/2,

g7/2,h11/2 i13/2 nr
l j(ϵ)

As  shown  in  Fig.  2,  except  for  the  narrow  resonant
state in the   partial wave, other partial waves 

, and   have peaks in the residual DOSs 
with  large  widths.  We  list  their  resonant  energies  and
widths  determined using  GFI  with  different  box sizes  in
Table  2  (GFI).  Their  resonant  energies  and  widths  are
mostly all dependent on the box size. Therefore, the GFI
method  is  reliable  for  determining  the  resonant  energies
and  widths  for  the  narrow  resonant  states,  but  obtaining
this  information  with  high  accuracy  is  difficult  for  the
broad resonant states. 

B.    GFII Method

nl j(ϵ) ϵ = εr + iεi

εr

εi

ϵR = εR− iΓ/2

Resonant  states  manifest  as  poles  situated  within  the
fourth  quadrant  of  the  single-particle  complex  energy
plane.  Consequently,  the  DOS  exhibits  a  δ  peak  at  the
pole  position.  The  DOS  in  the  complex  energy  plane

,  where    can  be  calculated  using  the  GF
with scanning the real and imaginary parts of energies 
and   in the fourth quadrant. It can be demonstrated that
[58], near the energy of resonant states  , 

 

nl j(ϵ) ϵ = ε+ iκ κ = 1×10−3 MeV 40Ca

n0
l j(ϵ) nr

l j(ϵ) = nl j(ϵ)−n0
l j(ϵ) Rbox = 20 ε = 0

Fig. 2.    (color online) Neutron DOSs   (  with  ) for different angular momentum partial waves in   cal-
culated using the GF method with Woods-Saxon type mean-field and its spin-orbit potentials (solid line), with only centrifugal barrier

  (dashed  line)  and  their  differences    (dotted  line)  in  the  box    fm.  The  dashed  vertical  line  at 
marks the continuum threshold.

 

nr
l j(ϵ) ϵ = ε+ iκ

κ = 1×10−3 MeV
Rbox = 10,20,30 g9/2 d3/2

dr = 0.1

Fig.  3.      (color online) The  residual  DOSs    (
with  )  calculated  with  different  box  sizes

  fm are  shown for  (a)    and  (b)   partial
waves. The same mesh size   fm is adopted.
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nl j(ϵ) = δ(ϵ − ϵR)

=



−2 j+1
π

∫
dr Im

[
Gl j(r,r, ϵ)

]
,

if εi > −Γ/2,
2 j+1
π

∫
dr Im

[
Gl j(r,r, ϵ)

]
,

if εi < −Γ/2.

(18)

εi

−Γ/2
nl j(ϵ)
εr εR

εi −Γ/2

In  other  words,  when  the  imaginary  part    crosses
before  and  after    at  the  resonant  state,  the  value  of
DOS   will change the sign. When the real part of the
energy,  , approaches the resonance energy  , two dis-
tinct positive  and  negative  peak  structures  emerge   sym-
metrically before  and after  the  imaginary  part  of  the  en-
ergy   scanning across the value  , serving as a sig-
nature of resonant states. To obtain the resonance energy
and  width  with  high  accuracy,  we  must  first  determine
the  range for  the  energy scan.  In  principle,  the  bisection

εr

εr εi

method  can  be  employed  to  progressively  narrow the 
scanning range  based  on  the  two  peak  structures   dis-
cussed above.  In  practice,  the  rough  resonant  state   in-
formation given by the GFI method can be used as a ref-
erence for the   and   scanning.

g9/2 d3/2

nl j(ϵ)
εr εi

εi

nl j(ϵ) g9/2

εr = 2.4780

εR = 2.4780
εi −0.0120 εi = −0.0119

εi = −0.0119
nl j(ϵ)

Γ = −2εi = 0.0238 d3/2

Taking partial waves   and   as examples, Fig. 4
shows  the  scanned  DOS    as  a  function  of  the  real
part  energy   with  different  imaginary  part  energies  .
As  clearly  shown  in Fig.  4  (a),  with  different    values,
the peaks of   in the   partial wave all appear at the
same  real  part  energy    MeV  with  different
heights.  This  center  energy  of  the  peaks  corresponds  to
the resonant energy   MeV. Furthermore, with
  increasing  from   MeV  to   MeV,

the  DOS  inverses  its  negative  values  to  positive  values.
We  select  the  value   MeV that  provides  the
largest  absolute  value    to  calculate  the  resonant
width as   MeV. For partial wave   in
Fig. 4 (b), the peaks of DOS appear not to be symmetric

 

εR nl j 40Ca
Rbox = 10,20,30 0.10 fm

Table 2.    Resonant energies   and widths Γ of single-neutron resonant states   in   obtained using three different methods (GFI,
GFII, GFIII) and the SM with box sizes   fm and the same mesh size  . All in MeV.

nl j
10 fm 20 fm 30 fm

εR Γ εR Γ εR Γ

2d3/2

GFI 2.902 2.356 2.732 1.674 2.556 3.196

GFII 2.7143 4.8350 2.7133 4.8498 2.7133 4.8496

GFIII 2.7143 4.8350 2.7133 4.8496 2.7133 4.8496

SM 2.7140 4.8362 2.7133 4.8500 2.7133 4.8500

2d5/2

GFI 1.860 1.096 1.946 1.325 2.018 1.401

GFII 1.7610 1.3296 1.7603 1.3310 1.7603 1.3312

GFIII 1.7610 1.3296 1.7603 1.3310 1.7603 1.3310

SM 1.7610 1.3298 1.7603 1.3312 1.7603 1.3312

1g7/2

GFI 10.040 3.643 10.025 4.016 10.582 3.546

GFII 10.2206 3.5296 10.2208 3.5278 10.2207 3.5276

GFIII 10.2206 3.5296 10.2208 3.5276 10.2208 3.5276

SM 10.2206 3.5294 10.2208 3.5276 10.2208 3.5276

1g9/2

GFI 2.478 0.023 2.478 0.022 2.478 0.022

GFII 2.4780 0.0240 2.4780 0.0238 2.4780 0.0238

GFIII 2.4780 0.0238 2.4781 0.0238 2.4781 0.0238

SM 2.4780 0.0238 2.4780 0.0238 2.4780 0.0238

1h11/2

GFI 12.799 2.678 12.940 2.899 12.880 2.312

GFII 12.8877 2.6938 12.8880 2.6924 12.8880 2.6924

GFIII 12.8877 2.6938 12.8880 2.6924 12.8880 2.6924

SM 12.8878 2.6936 12.8880 2.6924 12.8880 2.6924

1i13/2

GFI 24.685 8.662 24.250 7.610 23.211 8.661

GFII 23.8506 9.4758 23.8470 9.4806 23.8469 9.4804

GFIII 23.8489 9.4764 23.8470 9.4804 23.8470 9.4804

SM 23.8502 9.4754 23.8470 9.4804 23.8470 9.4804

Wentao Zeng, Zehao Lin, Yiran Wang et al. Chin. Phys. C 50, 024103 (2026)

024103-6



g9/2 εi

−2.4249 εi = −2.4248

nl j(ϵ) εi = −2.4249
εR = εr = 2.7133 Γ = −2εi =

4.8498
10−4

as  those  in  partial  wave  .  As    increases  from
 MeV to   MeV,  the  DOS flips  from

the  valley  structure  to  the  peak  structure.  Similarly,  we
take  the  DOS  that  provides  the  largest  absolute  value

 (  MeV) to identify the resonant energy
and  width,  that  is,   MeV  and 

 MeV.  In  this  calculation,  the  step  for  the  energy
scanning  is  taken  as    MeV,  which  determines  our
precision in identifying the resonant energies and widths.

Rbox = 20
10−4

Following  the  same  procedures,  we  can  obtain  the
resonant  energies  and  widths  for  all  the  other  partial
waves.  In Table  2, the  resonant  energies  and  widths  de-
termined using the GFII method with different box sizes
are listed for comparison. Compared with those obtained
using GFI, the results are less sensitive to the adopted box
size.  In  particular,  the  GFII  method  with  the  box  sizes

 fm and 30 fm provides consistent results within
an accuracy of   MeV for both narrow and broad res-
onances. 

C.    GFIII Method
Inspired by the idea of the GFII method that the res-

onant  states  are  identified  by  searching  the  extremes  of
DOSs,  a  more  straightforward  method  was  proposed  in
Refs. [59, 60] by probing the poles or extremes of the GF.
To be more intuitive, we can integrate the modulus of GF

Gl j(r,r, ϵ) over coordinate r 

Gl j(ϵ) =
∫

dr
∣∣Gl j(r,r, ϵ)

∣∣ , (19)

εr εi

εR = εr

Γ = 2εi

and search its extremes by scanning the real and imagin-
ary parts ( ,  ) in the fourth quadrant of the complex en-
ergy plane.  The resonant  states  will  manifest  themselves
as  peak  structures  at  the  resonant  energy   with  a
width  .

g9/2 d3/2

Gl j(ϵ)
εr

εi Rbox = 20

g9/2

d3/2

εR = εr = 2.4780 Γ =

−2εi = 0.0238 g9/2

εR = εr = 2.7133 Γ = −2εi = 4.8496
d3/2

Taking partial waves   and   as examples, Fig. 5
shows the three-dimensional plot of the integral   as
a function of  the real  and imaginary parts  of  energies 
and   calculated with a box size of   fm. In both
panels, the peak structure representing the pole is  appar-
ent for the narrow resonance in   and the broad reson-
ance  in  .  From  the  peak  structures,  we  can  easily
identify the resonant energies and widths at the center of
the  peak,  which  are    MeV  and 

  MeV  for  the    partial  wave  and
 MeV and   MeV for the

 partial wave.
The GFIII method has been applied for all the partial

waves calculated  with  different  box  sizes,  and  the   ob-
tained resonant energies and widths are also listed in Ta-
ble 2. As the results show, the GFIII method is as effect-
ive as the GFII method, and both methods are less sensit-

 

nl j(ϵ)
εr εi

Rbox = 20 fm g9/2 d3/2

Fig.  4.      (color  online)  Neutron  DOSs    calculated  with
different  real  and  imaginary  parts  of  energy    and    in  the
coordinate space with   for (a)   and (b)   par-
tial waves.

 

Gl j(ϵ)
εr

εi Rbox = 20 fm g9/2

d3/2

Fig. 5.    (color online) Three-dimensional modulus   cal-
culated  with  different  real  and  imaginary  parts  of  energy 
and  ,  in  the  coordinate  space  with    for  (a) 
and (b)   partial waves.
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ive to the adopted box size than the GFI method. 

D.    Discussion

εR
40

Rbox = 10
dr = 0.1

In Table 2, we have listed the single-neutron resonant
energies    and  widths  Γ  for  different  partial  waves  in
Ca  obtained  using  the  three  methods  GFI,  GFII,  and

GFIII. To check the dependence on the box sizes, we per-
form the calculations using different box sizes  ,
20,  and  30  fm  and  the  same  mesh  size    fm.  For
comparison, the corresponding results obtained using the
SM method [13] are also included.

g9/2For the resonant state in partial wave   with a small
width, the GFI, GFII, and GFIII methods provide almost
the same results  as  the  SM,  which  are  also  not  very  de-
pendent  on  the  box  sizes.  For  other  partial  waves  that
have relatively broad resonances, with the same box size,
the results given by GFI are not very consistent with oth-
er  methods.  However,  the  results  given  by  GFII  and
GFIII  for  these  broad  resonances  are  consistent  with
those obtained using the SM. Furthermore, the results of
GFII, GFIII, and the SM are not sensitive to the box sizes
for these broad resonances.

εR

To  further  check  the  results'  dependence  on  the  box
sizes, we can plot the partial wave density distribution at
the resonant energy  : 

ρl j(r, εR) = − (2 j+1)
4πr2

1
π

Im
[
Gl j(r,r, εR)

]
. (20)

g9/2 d3/2

εR

Rbox = 10,20,30

εR = 2.478
1g9/2 2d3/2

εR = 2.7143 Rbox = 10
εR = 2.7133 Rbox = 20,30

2d3/2

g9/2

r ≈ 8
d3/2

d3/2

Rbox = 10

Taking  the  narrow  and  broad  resonances  in  partial
waves   and   as examples, Fig. 6 shows their dens-
ity distributions at the corresponding resonant energies 
calculated  with  box  sizes    fm.  As  shown
in  Table  2,  the  resonant  energies  obtained  using  GFI,
GFII,  and  GFIII  are  the  same    MeV  for  the

  resonant  state.  For  , the  resonant  energy   ob-
tained  using  GFI  is  different  from  those  of  GFII  and
GFIII.  The  resonant  energies  obtained  using  GFII  and
GFIII are consistent, i.e.,   MeV with 
fm,  and   MeV with    fm.  We  use
these two  resonant  energies  to  plot  the  density   distribu-
tions  for    obtained with  different  box  sizes   corres-
pondingly.  From Fig.  6  (a),  we  observe  that  the  density
distribution  of  narrow  resonant  state  in  the    partial
wave behaves as a bound state. Its density distribution de-
creases quickly to be zero after   fm. In contrast, the
broad resonance state in the   partial wave in Fig. 6 (b)
has  obvious  oscillating  density  distributions.  However,
for both narrow and broad resonances, the density distri-
butions calculated using the GF method at their resonant
energies are not sensitive to the box size. In particular, for
the broad resonant state in the   partial  wave with the
rapid oscillations in the density distribution, even with the
small box size   fm, it can still provide consistent
density  distributions  with  those  obtained  by  the  larger

r = 10boxes up to   fm. The larger box sizes only display
the density  distribution  in  further  region.  This  is   attrib-
uted  to  the  proper  description  of  the  wave  functions  for
the  continuum states  given  by  the  GF  method.  This  can
also explain why the resonant energies and widths are not
sensitive  to  the  box  sizes  given  by  the  GFII  and  GFIII
methods. We expect  that  the  density  distributions  calcu-
lated  using  GF  can  properly  include  the  contributions
from the  continuum  states  in  the  density  functional   the-
ory.

Comparing  the  GFI,  GFII,  and  GFIII  methods  to
provide the resonant energies and widths,  the GFI meth-
od reading from the DOSs calculated using a fixed small
imaginary part energy is only reliable for the narrow res-
onant  states.  In  contrast,  the  GFII  and  GFIII  methods,
which scan the poles of the DOSs and the GF with differ-
ent  real  and  imaginary  part  of  energies,  are  reliable  for
both the narrow and broad resonant states. In practice, we
can use GFI in the first  step to locate the resonant states
roughly  and  then  use  GFII  or  GFIII  to  scan  the  poles
around this location with a higher precision. 

IV.  SUMMARY

In  this  paper,  the  Schrödinger  equation  with  Woods-

 

ρl j(r, εR)
εR 1g9/2

2d3/2

Rbox = 10,20,30 fm dr = 0.1 fm

Fig.  6.      (color online) Density  distributions    at  the
resonant energies   for single-neutron resonant state (a) 
and (b)   calculated in the coordinate space with box sizes

 and the same mesh size  .
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40CaSaxon  type  potentials  for  neutrons  in    is solved   us-
ing the GF method. The bound and resonant states are ob-
tained with the GF constructed using the wave functions
with  proper  boundary  conditions  corresponding  to  their
energies.  The  GF  results  for  both  bound  and  resonant
single-neutron  states  are  consistent  with  those  obtained
by the shooting and SM methods. Explicitly, three differ-
ent recipes (GFI, GFII, and GFIII) are used to determine
the energies and widths of resonant states.  With the GFI
method,  by  subtracting  the  contributions  of  free  particle
from  the  total  DOS,  we  can  identify  the  resonant  states
and obtain the corresponding energy and width  informa-
tion. In  the  GFII  method,  the  resonant  states  are   identi-
fied using  the  flip  of  DOS  as  the  imaginary  part  of   en-

ergy changes. More straightforwardly, in the GFIII meth-
od, the resonant states are identified as poles of the modu-
lus of GF scanned in the fourth quadrant of the complex
energy  plane.  Compared  with  the  results  given  by  the
SM, we find that GFI is only reliable for the narrow res-
onant  states,  whereas  GFII  and  GFIII  are  effective  for
both the  narrow  and  broad  ones.  Additionally,  we   ob-
serve  that  the  energies,  widths,  and  density  distributions
of resonant states obtained using the GF method exhibit a
rather weak dependence on the box size.  We expect that
the GF can provide the proper  density  distributions  with
the contributions  from the  continuum states  in  the  dens-
ity functional theory.
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