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Abstract: This study performed a statistical analysis of the correlation and uncertainty of parameters in the classic-

al liquid drop mass formula (namely BW3 type) via regression, along with the theoretical impact of error propaga-

tion. Within the improved BW3 formula, the total deviation between evaluation and experiment can be reduced to
1.66 MeV, involving a reduction from 2.89 (2.42) MeV to 1.92 (1.89) MeV in the proton(neutron)-dripline region.
Ridge regression validation verified this total deviation as the optimal point in the present mass model. Through

trend coefficients and Pearson linear-correlation analysis, obvious collinearity was identified between volume, sur-

face, Coulomb, and curvature terms, with notable correlation among high-order symmetry energy and surface sym-
metry terms. The theoretical derivation of the distribution of binding energy error was then achieved through error
propagation analysis. Across the nuclide chart, the error uncertainty of mass predictions varies from 1.996 to
124.469 keV, demonstrating a convex trend of the initial decrease of evaluation error followed by an increase versus

the neutron number.
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I. INTRODUCTION

The precise calculation of nuclear mass is of pro-
found significance in the fields of nuclear physics and as-
trophysics [1, 2]. Measuring the mass of singular nuclei
[3] and improving their accuracy [4—7] is a long-term
process. However, the present experimental facilities
aimed at nuclear mass are still not accessible to these
short-lived nuclei in the r-process path [8]. As a result,
theoretical mass evaluations are urgently required, espe-
cially toward high-precision extrapolation. Several nucle-
ar mass models have been developed to achieve root-
mean-square deviations (RMSDs) ranging from several
hundred keV to a few MeV for all known nuclear masses.

The study of nuclear mass models traces back to the
early 20th century when Gamow proposed the liquid drop
model for nuclear binding energy based on nuclear force
saturation [9], upon which the Weizsidcker formula was
established as a macroscopic semi-empirical formulation
[10, 11]. Moller [12—14] and Haustein [15] incorporated
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microscopic effects into the liquid drop framework, de-
veloping the Finite-Range Droplet Model (FRDM). Clas-
sified as macro-micro models, analogous approaches in-
clude the extended Bethe-Weizsécker (BW2) mass for-
mula [16, 17], Weizsdcker-Skyrme (WS) mass formula
[18—22], and Duflo-Zuker (DZ) mass formula [23]. Mi-
croscopic theoretical models derive nuclear binding ener-
gies through approximate solutions of many-body equa-
tions from effective nucleon-nucleon interactions, exem-
plified by the Hartree-Fock-Bogoliubov (HFB) model
and relativistic mean-field mass model [24, 25].

For conceptual clarity, scholars categorize these the-
oretical frameworks into three classes: global mass mod-
els encompassing comprehensive theories, local models
deriving target nuclear masses from adjacent known nuc-
lei, and regional models describing nuclear quantity rela-
tionships within specific domains. Typical regional mod-
els include the Isobaric Multiplet Mass Equation (IMME)
[26-27] and mirror nucleus mass formulae [28-29].
Prominent local models include the Garvey-Kelson (GK)
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relations [30-31] and proton-neutron interaction mass re-
lations (6V;,—;,) [32-33].

Conventional mass models relying on empirical para-
meters exhibit notable discrepancies in mass predictions
for nuclei far from the f stability line, necessitating en-
hanced extrapolation capabilities in nuclear mass model-
ing. Recent advances in machine learning have enabled
data-driven approaches for nuclear mass predictions,
opening new avenues through neural network-optimized
models [34-36], fission yield distributions [37], and de-
cay energy studies [38]. Additionally, the physics-in-
formed neural network (PINN) has recently attracted sig-
nificant attention in nuclear mass research [39]. Further-
more, radial basis functions (RBFs) [21-22] and uncer-
tainty quantification methodologies [40—41] have signi-
ficantly improved the precision of theoretical models in
characterizing and predicting nuclear ground-state prop-
erties.

Uncertainty analysis in scientific modeling has
reached paramount importance, particularly in physics
and engineering disciplines. Conventional phenomenolo-
gical approaches, such as least squares methods, predom-
inantly focus on experimental data fitting while neglect-
ing intrinsic model errors and parameter correlations,
thereby failing to fully capture model veracity. Systemat-
ic analysis of nuclear mass model parameter uncertain-
ties and their correlations can substantially enhance theor-
etical prediction accuracy, error estimation reliability, and
extrapolation robustness.

Current theoretical modeling practices predominantly
focus on parameter uncertainty analysis through least
squares fitting, while systematic investigations of model
errors remain underdeveloped. This study conducted
comprehensive nuclear mass investigations under the un-
certainty theory framework, accounting for both statistic-
al errors in experimental binding energies and model de-
ficiencies while simultaneously analyzing parameter un-
certainties [42—45]. Parameter errors were quantified via
Monte Carlo sampling techniques, with inter-parameter
correlations analyzed [42, 45—49] to evaluate their im-
pacts on binding energy calculation accuracy.

The remainder of this paper is organized as follows.
Section II presents the selected mass formula. Section I11
provides a concise overview of the quantitative evalu-
ation framework for parameter uncertainty. Building
upon Ref. [48], Section IV conducts in-depth explora-
tions of parameter correlations and optimization compar-
isons, with Section V concluding the paper.

II. MASS FORMULA

The mass formula BW3 is based on the classical li-
quid-drop model and incorporates additional physical
terms for a more comprehensive analysis.

The model used in this study is from Ref. [50]:
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where «; denotes free parameters determined by fitting
the experimental nuclear masses. This formula includes
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fourth-order term of symmetry energy ab“\%) . It should
be noted that the shell effect term contains two paramet-
ers:

In equation
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it takes the value +1 for even—even nuclei, —1 for
odd—odd nuclei, and 0 for odd nuclei.
For P in equation (1),

v,V
p=—"7r
YtV

3)
where v, and v, are the numbers of valence nucleons (the
difference between the actual nucleon numbers N and Z,
respectively, and the nearest magic numbers). To calcu-
late P, the magic numbers were the canonical 2, 8, 20, 28,
50, 82, 126, and 184 for both neutrons and protons.

The latest and most comprehensive database of nucle-
ar masses is the Atomic Mass Evaluation Database, com-
monly known as AME2020 [51]. This tabulation served
as the experimental data for the present study. The pertin-
ent input comprises a list of measured binding energies of
the nuclei acquired by multiplying the tabulated binding
energy per nucleon by the mass number (A).

Eq. (1) can be expressed in the form of a matrix

BTh = Fp, (4)

where B and p are column vectors, representing the cal-
culated value of the binding energy and coefficient cor-
responding to the formula, respectively.

The matrix F is defined as
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where the row and column dimensions correspond to the
number of nuclides and total number of parameters, re-
spectively.

The criteria for evaluating the quality of a semi-em-
pirical mass formula hinge on its capacity to embody
clear physical principles, minimize the dependency on
extraction parameters, obtain superior calculation results,
and clarify nuclear properties relevant to the nuclear
mass. The goodness of fit was assessed using the RMSD
of the extraction from the measured binding energies as

follows:
ISS(M. — E )2
RMS = WTE’), (6)

where M; is the theoretical value, E; is the experimental
value, and # is the total number of data points.

III. REGRESSION ANALYSIS

A. Ordinary least-squares method

In the literature related to the liquid drop model, the
least-squares method is typically the favored method to
determine the parameters. This method aims to minimize
the sum of the squared errors:

Nn
2
X' =) E=) Bl ag - By, )

i=1

where N, is the total number of selected nuclides, E; is
the experimental binding energy of the nuclide, and B; is
the theoretical binding energy of the nuclide.

The previous expression can be written in matrix
form as

X (0) = ||Fp—-Bey >, ®)

and its minimization with respect to the parameters yields
the following solution:

p=(F"F)"'F" Bg,,. )

B. Monte Carlo Bootstrap Method

The Monte Carlo Bootstrap Method is a statistical
resampling technique widely applied in parameter estima-
tion, uncertainty analysis, and model validation. Its fun-
damental principle involves resampling from an original
dataset with a specified estimator to construct new data-
set series, forming a bootstrap sample set. Empirical para-
meter distributions can be derived through analysis of in-
dividual bootstrap samples.

Nuclear mass formulae typically contain multiple em-
pirical parameters that are determined by fitting experi-
mental data. Parameter values inherently contain uncer-
tainties that propagate from these experimental errors.
This study investigated parameter distributions by per-
forming random sampling through the Monte Carlo boot-
strap method, generating numerous pseudo-datasets that
incorporate statistical errors in experimental binding en-
ergies to estimate parameter uncertainties. The specific
implementation procedure comprises the following steps:

1. The difference between the experimental and cal-
culated values of the binding energy is taken as the initial
set and denoted as £(A). In total, there are M = 3250 nuc-
lides (excluding nuclides with N and Z less than 7). By
using the method of resampling, M samples can be ex-
tracted from the initial set £(A) to obtain a sample set
£*(A), thereby obtaining a new set of experimental val-
ues:

By (N.Z) = Bep(N.Z) + &' (N, 2). (10)

2. Using By, ,(N,Z) as the new input for least squares,

a set of parameters is obtained.

3. Repeating the self-sampling 7 = 5000 times, one
can obtain the empirical distribution of the parameters.

4. Using the obtained parameter set, uncertainty eval-
uation and correlation analysis among each parameter
item are conducted.

C. Ridge regression

The BW3 mass formula was constructed through mul-
tivariate regression analysis with 12 independent wvari-
ables, whose statistical properties are susceptible to mul-
ticollinearity effects. High linear interdependencies
among variables in regression analysis may induce para-
meter estimation bias or model failure, for which the con-
dition number serves as a diagnostic metric. Statistical
benchmarks define condition numbers below 100 as in-
dicating satisfactory variable independence, values
between 100 to 1000 reflecting moderate collinearity, and
those exceeding 1000 signifying severe multicollinearity.
Numerical analysis demonstrated the model's condition
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number reaching 83900, substantially exceeding critical
thresholds and confirming pronounced multicollinearity
among independent variables.

In linear regression, multicollinearity among feature
variables may lead to unstable coefficient estimates with
inflated variance in Ordinary Least Squares (OLS), po-
tentially causing matrix inversion failure. Ridge regres-
sion addresses this issue by incorporating an L2 regular-
ization term (penalty term), whose fundamental principle
lies in constraining coefficients to reduce model complex-
ity and thereby enhance generalization capability.

Ridge regression extends the OLS loss function by in-
corporating an L2 regularization term, formally ex-
pressed as

L(p) = ||Fp— B>+ A1IPI2, (11)

where A >0 is the regularization parameter, which con-
trols the penalty intensity.

Increasing the A value amplifies the regularization ef-
fect, causing parameter estimates to shrink toward smal-
ler magnitudes, thereby mitigating model complexity and
overfitting risks. The regularization term enhances model
stability in the presence of multicollinearity. Ridge re-
gression reduces to OLS regression when regularization
is disabled (1 = 0).

Similar to OLS, ridge regression also has an analytic-
al solution:

p=(FTF+AI)"'F"By,,. (12)

In the selection of regularization parameters, the root
mean square error of the model increases with increasing

A. When 4 € (0,0.08), the model accuracy remains consist-
ent with that of least squares. If 4 exceeds this range, the
model accuracy will be lower than that of the least
squares method. The ridge regression validation verified
this total deviation as the optimal point in the present
mass model.

IV. DISCUSSION

The formalism presented in Sec. II is now exploited
to examine the uncertainties and correlations of the para-
meters entering the liquid drop model (Eq.(1)). A particu-
lar emphasis is given to the parameters, their uncertain-
ties and correlations, and the diversity of observables.

The following results are based on the nuclear bind-
ing energy of N,Z > 8 derived from Ref. [54], and a total
of 3250 atomic nuclei were considered.

A. Statistical nature of the model

The parameters of the BW3 formula obtained from
Eq. (1) are shown in the first column of Typel in Table 1,
and the second column represents the corresponding
standard error. The root mean square error DE"3ous = 1,66
MeV, which is 10.8% lower than that before the coeffi-
cient was updated.

In multivariate linear regression, the fundamental ob-
jective of significance testing (F-test) is to assess the
overall statistical significance of the model. The BW3
model incorporating higher-order symmetry energy terms
demonstrated an F-statistic of 1.479x 10® with a Prob (F-
statistic) of 0.00 (p < 0.05), validating the effectiveness of
the improvement in nuclear mass prediction at the 95%
confidence level. Following model specification valida-
tion, significance testing (z-test) was conducted to evalu-
ate parameter impacts on binding energy. Column 3 of

Table 1. Parameters of the BW3 formula obtained by least squares fitting (Typel) and bootstrap fitting (Type2).
Type 1 Type 2
coef std. err. t P> @ Ti |ovi/@:|(%)
ay 16.1488 0.054 301.744 0.000 16.1481 0.054 0.33
e —23.7980 0.372 —63.979 0.000 —23.7947 0.372 1.56
ac —0.7443 0.002 -311.590 0.000 —0.7443 0.002 0.32
; —32.0760 0.227 —141.488 0.000 —32.0716 0.227 0.70
axc 1.6694 0.049 33.760 0.000 1.6696 0.049 2.92
Qy —76.0155 2.394 —31.758 0.000 —75.9916 2.354 3.09
g 66.8440 1.323 50.520 0.000 66.8271 1.311 1.96
ap 10.7051 0.415 25.795 0.000 10.6994 0.416 3.89
agR 10.9821 0.652 16.842 0.000 10.9769 0.648 5.90
7% —1.7686 0.034 —52.678 0.000 —1.7685 0.034 1.94
Bm 0.1246 0.003 37.827 0.000 0.1245 0.003 2.68
ap —12.0663 0.796 —15.155 0.000 -12.0731 0.784 6.49

024107-4



Uncertainty analysis of the nuclear liquid drop model

Chin. Phys. C 50, 024107 (2026)

Typel in Table 1 lists parameter-specific #-values, with
Column 4 showing all P > |t values below 0.05, confirm-
ing coefficient significance at the 95% confidence level.

In Table 1, Type2 presents the parameters obtained
through the bootstrating method. The sixth column rep-
resents the standard deviation corresponding to each para-
meter, that is, the uncertainty of each parameter, which is
calculated as

e a0

where @; represents the mean value of the parameter.
Meanwhile, the relative uncertainty |o-;/@;| is given to fur-
ther explain the variation amplitudes of each coefficient.
Obviously, the volume and Coulomb terms are the most
stable, while the higher-order terms of symmetry energy,
the curvature term, and the Wigner term change relat-
ively greatly and have less constraint on the model.

It can be seen from the second and sixth columns of
Table 1 that the parameters obtained by the bootleg and
least square methods are basically the same. Calculating
the root mean square error DL = 1,66 MeV of the
BW3 formula under the bootstrap coefficient demon-
strates that the two have the same fitting accuracy.

B. Parameter uncertainty and transmission

x = (x1,%3,...,x,) are random variables, the mathemat-
ical expectation of = (u,us,...,1,), and the covariance
matrix is Y .. Among them, the element X;; = cov(x;, x;).
Given a function y = F(x), y variance can use the covari-
ance matrix representation of F.

The first-order Taylor expansion of F(x) at u is per-
formed as follows:

(i — 1) (14)

i

n (')F
F(x)~ F(x)+ E 3
i=1

i

Here, higher-order minor terms (second-order and above)
are ignored, and the uncertainty of the function is domin-
ated by first-order linear terms.

Variance is defined by

Var(y) = E [(F(x) ~ E[F(0)])’] . (15)

Substituting Eq.(14) gives

n

oF
F(x)-E[F(x)]~ )

par 6x,»

(i — ). (16)

n

Therefore, the variance is

aFaF
Var(y) = ZZ =) —ppl. (A7)

i=1 j=1

where E[()Ci —,ui)(xj —/,lj)] = COV(X,', )Cj) = 2,']'.
The final error transfer formula is

s Xj)s

2 N-1 N
Zf,) var(x;) +2 ZZ

=1 j=i+l J

N
Var(y) =) | (
i=1

which can also be expressed as

N OF N-1 N OF 0
O'; = ZI <67x,> Z Z 67 p(xt’ /)o-x,o—xj
i= j=i+

" (18)

where p(x;,x;) is the correlation coefficient between ux;
and x;, defined as

p(x;,x;) = COV(Xi,Xj)/O'xiO'x,- (19)

When p(x;,x;) = 0, Eq. (18) becomes

N 2
oF 2
2 _
oy = E (3)6,-) o (20)

This is written in matrix form as

Var(y) = VFTEVF, 21
oF OF oF \" . .
where VF = ax o o) 18 the gradient vector.
1 2 n

The error range of the predicted atomic mass values
on the entire nuclide map calculated by Eq.(21) is from
1.996 to 124.469 keV, with an average value of 9.311
keV. The accuracy distribution characteristics of nuclear
binding energy prediction were revealed through error
analysis. As shown in the confidence heat map in Fig. 1,
compared with the model error, the statistical error fluctu-
ation of the predicted value of the combined energy is rel-
atively small. In the low-mass number region (A <50)
and super-heavy core region (A > 210), the dispersion de-
gree of the predicted value significantly increased
(Ao > 63) keV, while the medium-mass nuclide region
(50 <A <210) presents a high confidence feature
(Ao < 32.25) keV.

To further analyze the error evolution law of the inter-
mediate transition region, a relationship graph between
the uncertainty of the predicted binding energy value and
number of neutrons was constructed (embedded in lower
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Fig. 1. (color online) Uncertainty of the predicted value of
the binding energy.

right corner of Fig. 1). Quantitative analysis shows that
the statistical error of the predicted binding energy value
shows a trend of first decreasing and then increasing with
increasing number of neutrons. Specifically, in the light
nuclei region (N <28), it reaches the peak (Ao = 120
keV) and gradually converges to the stable state (Ao~ 20
keV) as the number of neutrons increases to the medium
nuclei region (28 < N < 126). In the heavy nuclei region
(N >126), a secondary increase phenomenon occurs
again (Ao ~ 40 keV). It is worth noting that the excellent
performance of the higher-order terms of symmetry en-
ergy in the medium kernel region verifies the applicabil-
ity of the BW3 formula in this region.

C. Correlation among model parameters

This study employed nuclear mass data from the
AME2020 database to generate normally distributed ran-
dom nuclear mass values via the Monte Carlo method (5,
000 samples), subsequently fitting and deriving 5, 000
sets of optimized BW3 parameters while quantifying their
standard deviations and Pearson correlation coefficients.
Correlation information can be extracted from the final
parameter distributions.

The visualization scheme in Fig. 2 systematically re-
veals linear correlation patterns among parameters. This
figure implements a partitioned visualization strategy: the
upper triangular section employs two-dimensional kernel
density estimation to demonstrate association intensity,
where elliptical distributions indicate strong linear correl-
ations and circular patterns denote weak/no significant as-
sociations; the lower triangular section utilizes graduated
color-scale heatmaps to quantify Pearson correlation
coefficients between BW3 parameter pairs, with the chro-
matic spectrum spanning deep red (r=—1) to deep blue
(r=+1).

It can be seen from Fig. 2 that there is significant col-
linearity among the volume, surface, Coulomb, and
curvature terms. The model represents the binding en-
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W 290805000
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Fig. 2.
histogram of BW3 model parameters obtained by bootstrap-

(color online) Matrix heat map and two-dimensional

ping method. The color code of the two-dimensional histo-
gram is a heat map. The total number of parameters involved
in each graph is fixed at 7=5000.

ergy of atomic nuclei as a power series expansion of the
reciprocal of the nuclear radius (1/R). Because the rela-
tionship between the nuclear radius R and number of nuc-
leons A is R oc A'3, these terms are actually functions of
different powers of A (such as the volume term o A,
surface term o« A*3, Coulomb term o Z?/A'3, and
curvature term o A'/3). The shell correction term based on
the number of valence nucleons presents a binary coup-
ling structure, and the relationship among its parameters
is significant (r = —0.92). This indicates that the paramet-
ers describing the shell effect are not independent. The
change of one parameter can be offset by the change of
another parameter. This means that the parametric form
of shell correction terms must be optimized to reduce this
redundancy. The paired items show statistical independ-
ence characteristics in the entire parameter system. Its in-
dependence indicates that the pairing term provides
unique physical information for the nuclear mass for-
mula that cannot be replaced by any other term.

The higher-order terms of symmetry energy and the
surface symmetry terms show the strongest covariation
trend (r=-0.43). This means that when fitting nuclear
mass data, it is very difficult to separate the surface sym-
metry effect from the higher-order correction effect of
symmetry energy. This directly affects the coefficients
for precisely extracting the higher-order terms of sym-
metric energy from the atomic nucleus mass. The above
analysis provides a clear direction for the further develop-
ment and optimization of the droplet model: reduce or
eliminate the collinearity between the core droplet terms
(volume, surface, coulomb, and curvature) and the sym-
metry energy terms, and explore alternative mathematic-
al expressions that do not rely entirely on the expansion
of 1/R power series.
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D. Calculation accuracy of the model

The optimization performance of the model can be re-
vealed through the three-dimensional error distribution
map (Fig. 3). In the figure, the blue dots represent the cal-
culation results after parameter optimization, while the
black dots represent the benchmark data of the original
model. Analysis shows that the error distribution charac-
teristics of the modified model converge significantly to-
ward the zero-value reference plane, indicating that the
root mean square error between the calculated and experi-
mental binding energy values presents a systematic re-
duction. The error surface presents a parabolic shape that
rises first and then falls. This shows significant changes
in the region with a low number of nucleons and gradu-
ally stabilizes as the number of nucleons increases.

To explore which types of nuclei the mass model has
a greater effect on after updating the coefficients, the pre-

Binding Bnergy per Nucleon Exp—Theo MeV)

Fig. 3.

(color online) 3D comparison of prediction results
before and after updating of BW3 formula coefficients.

dictive efficacy of the BW3 formula parameter optimiza-
tion was systematically evaluated for the binding ener-
gies of different types of atomic nuclei. Figure 4 shows
the comparative analysis framework before and after the
model correction, including the nuclide distribution and
residual mapping diagrams. The horizontal axis repres-
ents the number of neutrons and corresponding residual
distribution range, and the vertical axis describes the
number of protons and the corresponding residual range.
The residual distribution graph at the top shows the rela-
tionship between the residual and number of neutrons,
and that on the right shows the relationship between the
residual and number of protons.

The statistical evaluation based on the least square
method shows that the parameter optimization signific-
antly improves the calculation accuracy of the nuclide
binding energy. The residual distribution characteristics
show that the error convergence in the neutron-rich nuc-
leus region is better than that in the neutron-deficient nuc-
leus region, which is closely related to the core-shell
filling effect on the calculation accuracy of the binding
energy of the model. The improvement in the proton
droplet line region was more significant. The root mean
square error was optimized from 2.89 MeV to 1.92 MeV,
with a reduction of 33.6%. In the neutron drop line re-
gion, the root mean square error decreased from 2.42
MeV to 1.89 MeV, and the relative optimization amp-
litude reached 21.9%. To further investigate the impact of
parameter uncertainties on mass difference, the single
neutron separation energies are compared with data in
neutron-rich nuclei. As shown in Fig. 5, the calculations
reproduce experimental values well in the medium and
heavy nuclear regions, except for j}*Zr7. The difference
is large before Z <20 or A <56. The update of formula
coefficients makes a slight improvement in single neut-
ron separation energies. For example, the value for
OSpm!™ changes from 4.866 to 4.863 MeV (datum is

A
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Fig. 4. (color online) Comparison of binding energy prediction results before and after BW3 formula coefficient update.
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before (after) BW3 formula coefficient update.

4.384 MeV). Such little improvement can not be distin-
guished in Fig. 5.

V. SUMMARY

In summary, we studied the ground state properties
and predictive power of atomic nuclei by using the im-
proved nuclear mass formula. Combining least squares
fitting and Monte Carlo sampling, 5,000 traversal calcula-
tions were conducted on the 12-dimensional parameter
space to re-fit the parameters of the BW3 mass formula.
Our main conclusions are as follows:

(1) The root mean square error of the improved BW3
mass formula was reduced to 1.66 MeV, which is 10.7%
lower than before.

(2) In the proton droplet line region, the root mean
square error was optimized from 2.89 MeV to 1.92 MeV,
with a reduction of 33.6%. In the neutron droplet line re-
gion, the root mean square error decreased from 2.42
MeV to 1.89 MeV, and the relative optimization amp-
litude reached 21.9%.

(color online) Single neutron separation energies in neutron-rich nuclei. Label A refers to nuclear mass. Results Th1 (Th2) are

(3) There is significant collinearity among the
volume, surface, Coulomb, and curvature terms. The shell
correction term based on the number of valence nucleons
presents a binary coupling structure, and there is a signi-
ficant correlation among its parameters. The curvature
term shows a weak correlation feature with the paired
term but has a strong correlation with the remaining
terms. The paired items show statistical independence in
the entire parameter system. The higher-order terms of
symmetry energy show a significant correlation with the
surface symmetry terms.

(4) The error situation of theoretical binding energy
was studied using error transfer theory. The error range of
the predicted atomic mass value on the entire nuclide map
is from 1.996 to 124.469 keV, with an average value of
9.311 keV. The error shows a trend of first decreasing
and then increasing with increasing number of neutrons.

Our results are in good agreement with some experi-
mental and theoretical studies. This study demonstrates
good performance in the neutron-rich mass region, which
is useful for rapid neutron capture in nuclear astrophysics.
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