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Abstract: Recently, the BESIII Collaboration observed the three-body decays DY — nwn*, D — K(s)ﬂ+w, and
D® - K=n*w. In this study, we investigate the contributions of the subprocesses p* — wn* in these Cabibbo-
favored decays D — hwr, with pt = {p(770)*,p(1450)*,0(770)" &p(1450)*} and h = {r],Kg,K_}, by introducing
these subprocesses into the decay amplitudes of the relevant decay processes via the vector form factor F,;, which

has been measured in the related z and ete™ processes. We provide the first theoretical predictions for the branching
fractions of the quasi-two-body decays D} — n[p* —»]wrt, D* — Kg [pt =lwrt, and D° - K~ [p* >]wr*t. Our

findings reveal that the contributions from the subprocess p(770)* — wa* are significant in these observed three-

body decays D} — nwn*, D™ — KYwr*, and D — K~wn*, notwithstanding the contributions originating from the

Breit-Wigner tail effect of p(770)*. The numerical results of this study suggest that the dominant resonance contri-

butions for the three-body decays DY — nwn* and D* — KJwn* originate from the P-wave intermediate states

p(770)*, p(1450)" and their interference effects.
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I. INTRODUCTION

Recently, the three-body decay D} — nwn* was ob-
served for the first time by BESIII Collaboration, with its
total branching fraction 8 = (0.54 £ 0.12, +0.044,,)% [1].
This numerical result aligns with an earlier measurement
by the CLEO Collaboration, which reported a branching
fraction of (0.85+0.544, +0.064)% in Ref. [2] for the
same decay channel, but the BESIII measurement offers a
significantly improved precision. Given the quark struc-
ture of the initial and final states in this D, decay process,
the Cabibbo-favored transition ¢ — s along with W* —
ud will be the dominant process at the quark level. The
prospective intermediate states for this process could be
the resonances ay(980)*, p(770)*, b(1235)*, w(1420),
etc., and their excited states which will decay into the
7y, wr*, and wn pairs in the final state [3]. The combin-
ation of n* and wn with the intermediate resonance
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w(1420) implies a pure annihilation process for this
D! decay. The union of w and a((980)" — n*n for this
decay is very similar to the decay process D! —
7°[ay(980)* —]a*n, which has been measured by BESIII
[4], and the branching fraction was found to be consist-
ent with the triangle rescattering processes via
the intermediate processes D — n”p*, Df —» K*K, and
D! — KK* [5-10]. However, the branching fraction for
D! — way(980)" was found to be less than 3.4x10™* in
Ref. [10] owing to the cancellation of the rescattering ef-
fects and suppressed contribution of the short-distance W
annihilation. Consequently, the dominant contributions
for the decay D! — nwn* are expected to arise from the
combination of # and the resonances, which will decay
into the wn* pair in the final state.

The light meson pair of wr, which originates from the
weak current of the matrix element {wn|V¥—A*|0) in the
three-body hadronic D and B meson decays, is related to
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the processes 7 — wnv, and e*e” — wn. The G-parity
conservation requires that the wn pair is determined
mainly by the vector part V* of the weak current [11],
which is associated with the p family resonances as the
intermediate state via the P-wave transition amplitudes
[12]. The axial-vector part A* of the weak current for the
wr system corresponds to the resonance b;(1235) and its
excited states. The state b;(1235), with the quantum num-
bers J¢ =1**, is related to the second-class weak cur-
rent classified in terms of the parity and G parity [13].
The second-class weak current has been investigated in 7
decays in recent years, but no evidence has been ob-
served [14, 15]. The decay amplitude for the b;(1235) —
wr subprocess through S- and D-waves in the relevant
processes is proportional to the mass difference between
the u and d quarks [3], which significantly suppresses the
contribution of wnr from the axial-vector resonance
b1(1235) accompanied by the second-class current.

The ordinary decay mode for p(770) — wn is not al-
lowed because of the pole mass of p(770), which is ap-
parently below the threshold of the wr pair [3]. However,
the Breit-Wigner (BW) [16] tail effect of p(770), also
known as the virtual contribution [17-20], was found in-
dispensable to the production of the wn pair in the pro-
cesses of 7— wnv, [21-24] and ete” — wn® [25-34].
The excited state p(1450) has been observed to decay in-
to the wr pair in B meson decays by the CLEO, BaBar,
and Belle Collaborations [35—37]. This state has been
suggested as a 2§ -hybrid mixture in Ref. [38] consider-
ing its decay characters [39—41], but its mass is consist-
ent with that in the 25 excitation of p(770) [42]. The fur-
ther investigation of the interference between the p(1450)
and its ground state will provide deeper insights into its
nature.

In addition to the data for the D} — nwn* decay, the
absolute branching fractions of the decays D° —» K~ 7" w,
D’ - K)n’w, and D* — Kin*w were recently determ-
ined by the BESIII Collaboration and reported in Ref.
[43], with the results as (3.392+0.044, +0.085,)%,
(0.848 £0.0464,£0.0315)%, and  (0.707 £0.041g %
0.029,y4) %, respectively. To better understand these ex-
perimental results, we investigated the Cabibbo-favored
three-body decays D! —nwn*, D*— Klwn*, and
D" — K-wr* in this study, where the wn pairis attrib-
uted to the decays of the intermediate states p(770)* and
p(1450)*. The schematic for the quasi-two body decay
Dt — np* — nwnt is shown in Fig. 1. In its rest frame,
the state D! will decay into the intermediate resonance p*
along with the bachelor state #. Subsequently, p* decays
into w and n* via the strong interaction. A similar pattern
will arise in the D* and D° decay processes, with # re-
placed by K? and K-, respectively. The subprocesses
0(770,1450)* — wn* in these decays will be introduced
into their decay amplitudes in the isobar formalism
[44—46] via the vector form factor F,. This form factor
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Fig. 1.
D} — np* - nwr*, where p* denotes the intermediate states
p(770,1450)* that decayed into wn* in this study.

(color online) Schematic of the cascade decay

has been measured in the processes related to 7 decay and
e*e” annihilation.

The contributions of p(770,1450) — wn to the three-
body decays B — D™wn were recently studied in Ref.
[47]. The p family resonance contributions of the kaon
pair have been explored in Refs. [48—54] and in Refs.
[55—58] for the three-body B and D meson decays, re-
spectively. In Ref. [25], four resonances, namely, p(770),
p(1450), p(1700), and p(2150), were employed to para-
metrize the related transition form factor for p — wn for
the process e*e” — wn® — x*n 7% in the energy range
1.05—2.00 GeV by the SND Collaboration. However, we
will examine the contributions of p(1700,2150) - wn to
the relevant decays in future studies considering that the
masses of p(1700,2150) are very close to or even exceed
the masses of the initial D** and D} mesons, the contri-
butions to wn from p(1700,2150) are unimportant when
compared with those of p(770) and p(1450) [25], and in
addition, the excited p states around 2 GeV are not well
understood [34, 59].

Owing to the c-quark mass, the heavy quark expan-
sion tools and factorization approaches, which have been
successfully used in hadronic B meson decays for dec-
ades, encounter significant challenges when applied to
the two-body or three-body hadronic D meson decays. In
this context, methods that do not rely on models, such as
the topological-diagram approach [60—66] and factoriza-
tion-assisted topological-amplitude approach [67-70],
have been adopted in various D decay studies. In Ref.
[55], we constructed a theoretical framework for quasi-
two-body D meson decays with the help of electromag-
netic form factors, with which we studied the contribu-
tions of p(770,1450) — KK for the three-body D decays
within the flavour SU(3) symmetry. In this study, we ad-
opted the method in [55] and investigated the pertinent
decays within the quasi-two-body framework [55, 71,
72], while neglecting the interaction between the wr sys-
tem and the corresponding bachelor state in the relevant
decay processes.

This paper is organized as follows: in Sec. I, we take
D° — K~ [p(770)" —]wn* as an example to derive the dif-
ferential branching fractions for the quasi-two-body D
meson decay processes. In Sec. III, we present our nu-
merical results for the branching fractions of the quasi-
two-body decays D — n[p* —Jwrt, D* — K} [p* —]wn*,
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and D’ — K- [p* —»]wn*, along with necessary discus-
sions. Finally, Sec. IV summarizes this study.

II. DIFFERENTIAL BRANCHING FRACTIONS

In this section, we use the decay D° — K~ [p(770)* —
Jwr* as an example to derive the differential branching
fraction for the quasi-two-body D meson decay pro-
cesses. Shrinking the subprocess p(770)* — wn* to the
meson p(770)* will yield the two-body decay D°—
K~ p(770)*. The related effective weak Hamiltonian for D
decays is written as [73]

Her [E}MQOwcw»

q=d,s

_Gr
V2

6
=Y Ci0i= 4,Cs, 05, | (1)

=3

where the Fermi coupling constant Gr = 1.1663788(6)x
10°GeV~2 [3]; the product of the Cabbibo-Kobayashi-
Maskawa (CKM) [74, 75] matrix elements 1,=V; V,,
and A, =V}, V,;,; C denotes the Wilson coefficients at the
scale u; O, and O, are the current-current operators; O;
and O, are the QCD penguin operators; and Os, is the
chromomagnetic dipole operator. The total decay amp-
litude for the process of a D meson decays into a pseudo-
scalar (P) plus a vector (¥), which can be described us-
ing the typical topological diagram amplitudes Tpy,
Cpy,Epy, and Apy according to the diagrams shown in
Fig. 2, as well as the additional penguin amplitudes in the
factorization-assisted topological-amplitude approach
[68] and topological-diagram approach [62—65]. The de-
tailed discussions on these topological diagram amp-
litudes are available in Refs. [62—65, 68].

The decay amplitude for D° — K=p(770)* is domin-
ated by the color-favored tree amplitude T3% with the
D" — K~ transition, as shown in Fig. 2-(a), where the su-
perscript 2B represents a two-body decay process. We
have the amplitude T3 as [63, 64, 68]

GF « C] —K
A e
= M%BE/)’PD’ (2)

where the subscript p denotes the resonance p(770);
FP~R(m)) is the transition form factor for the D° — K-
process. Beyond the dominant amplitude 7328, a W-ex-
change nonfactorizable contribution of the amplitude E}?
in the topological diagram Fig. 2-(c) exists, which can be
parametrized as E}® = M%¢,-pp. In addition, we have
[68]

D \:@/ p

D h
(a) (b)
\‘\®//h hp)
D < D <
/®\\p p(h)
(c) (d)

Fig. 2.
cays at quark level, where p stands for the intermediate states
p(770,1450)*, h for n, Kg or K-, and the symbol ® stands for
the weak vertex in this work.

Typical topological diagrams for the concerned de-

G I E
ME = TI;V:SVudCZ/\/qu’% Somp [fK/fﬂ] s (3)

in the factorization-assisted topological-amplitude ap-
proach, where y} =0.25 and ¢, = 1.73 [68] are two para-
meters that characterize the strength and strong phase of
the corresponding amplitude; f,, fpn, fx, and f, are the
decay constants for p(770), D°, kaon, and pion, respect-
ively. In addition to the amplitudes T3® and EZ?, we need
[68]

G o
CY' = M6, pp = TFZ‘QVM [Cl +C(1/3 +chze%)]
XmepAOD_)p(mi’)z € Pp,
4)
A28 — Mipr'PD
G * i
= éVcsVudcl)(geﬁfDmD [f,,(/) /f,r} €°DPD> (5)

in the numerical calculations of the decays D' —
K20(770)* and D} — np(770)" according to the topologic-
al diagrams Fig. 2-(b) and -(d), respectively. The remain-
ing parameters are set as y9y=-0.53, ¢ =-0.25,
x, =0.11, and ¢) = =0.35 by referring to [68].

For the two-body D°— K=p(770)" decay, the
Lorentz-invariant total decay amplitude is
AP = MPPe,pp = (MP® + MiP)e, pp. (6)
By utilizing the partial decay rate
dr= ! |ﬂ|2|_i|d§2 (7)
3272 m?
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in Review of Particle Physics [3] along with the formula

S e, 08 (p, ) =~ + L ®)
A=0,+ p
it is trivial to obtain the partial decay width
\"\3 5|2
(D’ — K p(770)" )_ 2| ? )

)

The magnitude of the momentum [¢| for p(770)* or K~ is

1
@)= 5 /=, ] oy, - mi]. (10)
mp

in the rest frame of the D° meson, and m; (with
i={D°p(770)",K"}) denotes the masses of the relevant
particles above.

By connecting the subprocess p(770)" — n*z° and
two-body mode D° — K~p(770)*, we obtain the quasi-
two-body decay D°— K-p(770)" — K-n*z°. Its decay
amplitude can be written as [55]

1
= MQzBEp'pD DTgpmrep : (P:r* _Pnf’)- (11)
BW

Here, the BW denominator Dy =m—s—im,[,(s) for
the p(770)* propagator, and the related s-dependent width
is

3

—
m,

I,(s)=T X2(|a| ow)- (12)

The Blatt-Weisskopf barrier factor for p family reson-
ances is given by [76]

1+73
X(2) = , (13)
@ 1+22
where |7» =1/s—4m2, ol is |24 at s:mﬁ, and the

barrier radius is rgy = 1.5 GeV~! [77]. Note that the amp-
litude M2*# can be obtained from the related amplitude
M?E with the replacement m, — +/s. By using Eq. (8),
the decay amplitude A%*# of Eq. (11) is reduced to

A = MQZB Bpmn |p1‘ | P3| cosé, (14)

where

’17)| 1\/s—4m,2r,
2 (15)
P3| = 5 \f [m = (Vs +mg)?] [m3— (Vs —mg)?],

are the momenta for the final states 7" and K, respect-
ively, in the rest frame of the pion pair in the D° —
K-n*n° decay, and 6 is the angle between n° and K~ in
the same frame for the pion pair. After the integration of
cos@, it is trivial to obtain the partial decay width [3]

r_[plml ’

- Q2B gpmr
ds  4873m3,

(16)

BW

for the quasi-two-body decay D° — K~[p(770)* —]x*n°.
We can further define the pion electromagnetic form
factor of the p(770) component as [78, 79]

Jo&prn M,
Fo(s) = , (17)
\/zmp Diw
and rewrite Eq. (16) as
31— 13
r_[pil[pl ), oop
a5 = 2ammy, M lom (18)

which is the same expression as that in Ref. [55].

To calculate the quasi-two-body decay D°—
K~ [p(770)" —»]wn*, we introduce the effective Lagrangi-
an [80—-82]

prn = gpwneyvaﬁaﬂpyaaaﬁﬂ (19)

to describe the p and wr coupling. The related form
factor F,.(s) is expressed as [83—85]

(@(Pas V7P| ju(0)I0) = i€urap” (Pas PG PP Fon(s),  (20)

where j, is the isovector part of the electromagnetic cur-
rent; A and ¢ are the polarization and polarization vector
for w, respectively; p.(p,) is the momentum for w(r), and
the momentum p = p, + p,, for the resonance p(770)*. The
form factor F,.(s) in the vector meson dominance model
is parametrized as [26, 29, 32, 86]

 Gor = ARm
Fon(s) = i > Dp‘(s) 1)

Pi

where the summation is over the isovector resonances
pi = {p(770),p(1450),p(1700), ...} in the p family, with m,,
as their masses. A; and ¢, are the weights and phases for
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these resonances, respectively, and we can assign A =1
and ¢ =0 for p(770). Technically, the contributions from
the excitations of w(782) should also be included in Eq.
(21), but their weights were found to be negligibly small
[87].

The decay amplitude for the quasi-two-body process
D° — K~ [p(770)" —]wn* is primarily written as

1
ﬂwn = errEp'pDigpwnEuvaﬁeg‘gZ;pzpﬂ' (22)
DBW

By using the relation [47]

D Gnapphe (pus VP PPT = sIpIF PP (L=cos”0), (93

A=0,+

we obtain the partial decay width [3]

2

‘3
, 24)

o SR s
ds 9673 m;,

wn
D BW

for the quasi-two-body decay D° — K~[p(770)" —]wnr*
after the integration of cos6. Then, we can define an aux-
iliary electromagnetic form factor

fwir = f;;z/mpszr = ﬁ)mpg;>wn/DBW7 (25)

and rewrite Eq. (24) as
dr _ sl |’

26
ds 9673m3, (26)

2
Morl,

mp— for®

Note that this expression is slightly different from that of
the differential branching fraction in Ref. [47] for
B — DWwr decays. This discrepancy arises from the dif-
ference in the definitions of the quasi-two-body decay
amplitudes between the perturbative QCD approach [47]
and the present study.

We need to stress that Dpw = mﬁ —s—iv/s[,(s) for
0(770)* in Eq. (22) is different from Dgy, in Eq. (11). The
former has the expression [25, 26]

w8
1 OW:
= > S @)
P1 s:mﬁwm)

m2(770)
P
Fp(770)(s) = Iﬂp(770) B

for the energy-dependent width of the resonance p(770),
with

IPol = ZL\/E \/[s —(my,+me?] [s—(my,—m)?| . (28)

In addition to T',770)(s), we employ the expression

qu(s) 3

Tpas0)(8) = Tpaso) [Bp(l450)—>w7r (f
do (mp( 145()))

m,z)<1450) qx(s) 3

+( 1 Bp(1450)~>(u7r) s q”(m;(mso)) (29)
for the energy-dependent width of the excited resonance
p(1450), as used in Ref. [27] for the process e*e™ —
wr® —» 1°72% by the CMD-2 Collaboration, where
B, 1450-wr 18 the branching ratio of the p(1450) — wn de-
cay; I'y770) and Tpas0) are the full widths for p(770) and
p(1450), respectively.

III. NUMERICAL RESULTS AND DISCUSSIONS

The key input in this study is the coupling constant
8pwr 10 Eq. (21) for the subprocess p(770) — wrr; its value
can be estimated from the relation g, ~ 3g§”n/(87r2F,,)
[88] with F, =92 MeV [3] and can also be calculated
from the decay width of w — % [3]. In the numerical
calculation in this study, we used the value g, =
16.0+2.0 GeV~' [47] by considering the corresponding
fitted and theoretical values in Refs. [12, 22, 26, 31, 32,
89—-91]. Based on the expression for F,,(s), we have the
constraint [47]

1450 1450)Mp(770
A, = 5 o fo(1450) Mlp( ). (30)
gp(770)wnfp(770>mp(1450)

for the weight A, for the subprocess p(1450) — wr in Eq.
(21). With the measured result f3,,5,8(0(1450) — wr) =
0.011+0.003 GeV? [35], we have A, =0.171 £0.036 [47].

In the quasi-two body decay D! — nlp* —]wn, the
mixing between # and n’ is considered. The physical 7

and 1 states are related to the quark flavor basis [92, 93]

(D () o
n sing  cos¢ s
The meson # was obtained from 7, = (uii+dd)/ V2 and
ny = s5 at the quark level in early studies by using the
mixing angle ¢=393°+1.0° and decay constants
fo, = (1.07£0.02)f; and f, = (1.34+0.06)f, [92, 93]. Re-
cently, the mixing angle ¢ was measured by the KLOE
[94, 95], LHCD [96], and BESIII [97, 98] Collaborations.
In this study, we used the angle ¢ = (40.0 + 2.0, £ 0.64y4)°
that was recently reported by BESIII in Ref. [98] for the
n-1’ mixing.

The three-parameter fitting formulae for the D — K
and D, — 7, transition form factors are parametrized as
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[99]
ke 0.78
= 2 —024s/2.01) >
0.78
Dx—"]s —
F (s)= (1-15/2.112)(1-0.235/2.112)° 9
In addition, we need the form factor [99]
Ay (s) = o eh

(1-5/1.872)(1-0.365/1.872)

for the D* — K9p* decay. The result FP~K(0)=0.78
in [99] agrees well with the Ilattice determination
FP=K(0) = 0.765(31) [100]. The form factor for D, —
was recently measured by BESIII, and the results
were  f7(0)|Ve,| =0.452£0.0104, +0.007,,  [101] and
F(O) V5| = 0.4519 £0.007 1 £ 0.0065y5 [98] in the D} —
n”utv, and D} — n”e*v, decays, respectively. In Ref.
[102], the corresponding form factors were determined to
be f7(0)=0.442+0.022, +0.017,. Given the mixing
angle ¢ [98] and |V,,| [3], the result F>~"(0)=0.78 in
Eq. (33) is consistent with the measurements in Refs. [98,
101, 102] presented by BESIII Collaboration.

In the numerical calculation, we applied the mean
lives 7pe = (1033+5)x 1075 s, 7,0 = (410.3+1.0)x 1013
s, and 7p: = (501.2+£2.2)x 107" s for the D) mesons [3].
The decay constants for p(770) and its excited state
p(1450) used in this study are f,770) = 0.216+0.003 GeV
[103] and f,as0 = 0.18550032 GeV [104, 105]. The
masses of the particles in the decays of interest, decay
constants for kaon and pion, full widths of the reson-

ances p(770) and p(1450) (in units of GeV), CKM matrix
elements |V,4| and |V,| [3], and decay constants fp and
fp, for D, [106, 107] are presented in Table 1.

To verify the reliability of the parameters used in this
study, we calculated the branching ratios for the quasi-
two-body decays, involving D} — n[p(770)" —]x*n°,
D" = K2[p(770)" =]n*7°, and D° — K~ [p(770)" —]n*n°,
and compared them with the experimental results in Ref.
[3]. By utilizing the differential branching fraction of Eq.
(18), obtaining the branching fractions for the quasi-two-
body decays DF — n[p(770)" —]x*n°, D* — K2 [p(770)* —
J7*n°, and D° — K~ [p(770)* —]x*n°, shown in Table 2, is
a trivial problem. The table also shows the corresponding
two-body data from Review of Particle Physics [3]. In our
numerical results of the relevant quasi-two-body in Table
2, the first source of the error corresponds to the uncer-
tainties in the decay constant f,779) = 0.216+0.003 GeV
[103], whereas the uncertainties in the CKM matrix ele-
ments |V,4| and |V, in Table 1 contribute to the second
source of error. It can be seen that these errors are much
smaller than their corresponding central values. For the
D, decay, the uncertainty in the mixing angle ¢ contrib-
utes the third error. We neglected the errors arising from
the uncertainties in the other parameters because of their
very small contributions. Considering B(p* — 7*n%)=
100% [3], our results in Table 2 for the decays D! —
nlp(770)* =1n*x° and D° — K~ [p(770)* —=]a*n® are con-
sistent with the data. However, for the decay D* —
K2[p(770)" —]n*7°, our result deviates from the experi-
mental measurement by more than 40-. Note that our res-
ults for the D* decay agree with those in Ref. [68]. This
indicates that further investigations are required to under-
stand the branching ratio for D* — Kon*n°.

Next, we investigated the contributions of p(770,

Masses for the relevant states, decay constants for pion and kaon, full widths of p(770) and p(1450) (in units of GeV), and

Table 1.
CKM matrix elements |V,4| and |V,,| in [3], along with the decay constants fp and fp, from [106, 107].
mps = 1.870 mpo = 1.865
My, = 0.783 mys = 0.494
Jx=0.130 fx =0.156

mp(770) = 0.775
mp(1450) = 1.465 +0.025
[Vial = 0.97367 +0.00032

mp: =1.968 Mg = 0.140

myo =0.498 my = 0.548

fp=0212 fp, =0.250
Tp770) = 0.147

[p(1450) = 0.400 +0.060
[Vesl = 0.975 £0.006

Table 2.
ing two-body data from Review of Particle Physics [3].

Branching fractions for the concerned quasi-two-body Dy, decays with the subprocess p(770)* — 7*z°, and the correspond-

Decay mode

B Data [3]

DY — nlp(770)* =)n*x°
D* = K[p(770)* >]a*n®
D® — K~ [p(770)* —]a*7°

(7.11+£0.20+£0.09+£0.47)%
(3.67+0.10+0.05)%
(9.12+0.25+0.11)%

(8.9+0.8)%
(6.14598)%
(11.2+£0.7%
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Table 3.

Predicted branching fractions for the relevant quasi-two-body D, decays with the subprocesses p(770,1450)* — wn* along

with the experimental measurements in [3] for the related three-body decay processes.

Decay mode

B

D} — n[p(770)" —]wn*
D} — n[p(1450)* —]Jwn™*
D! — nlp(770&1450)" —>]wn*

(1.90£0.35+0.05+0.14)x 1073
(0.39£0.16£0.14+0.03) x 1073
(2.89+0.63+0.29+0.20) x 1073

Dt = K2[p(770)* —]wnr*
D* — K2[p(1450)* —>]wn*
D* - K2[p(770&1450)* —>]wn*

(1.03+0.20+0.03)x 1073
(0.16+0.07 +0.06) x 1073
(1.53+0.34+0.15)x 1073

DY — K~ [p(770)* —]wnr*t
D% - K~ [p(1450)* —]wn™*
DY — K~ [p(770&1450)" —]wr*

(1.96+0.38 +0.05)x 1073
(0.28+0.12+0.10) x 1073
(2.86+0.63+0.31)x 1073

Three-body mode

Data [3]

D! - nont
Dt — K(S)amJr

DY - K- wnt

(5.4+1.3)x1073
(7.1£0.5)x 1073
(3.39+£0.10)x 1072

1450) — wn to the relevant quasi-two-body D, decays.
By using Eq. (26), we obtain the branching fractions for the
decays D! —nlp* -lwrt, D' - K{[p* —>Jwr*, and
D’ — K- [p" »]wn* in Table 3, with the intermediate
o+ € {p(770)*, p(1450)*, p(770)* &p(1450)*}. For these pre-
dicted branching fractions in Table 3, the first source of
the error relates to the uncertainties in g, = 16.0+£2.0
GeV~! and A, =0.171+0.036. The second error origin-
ates from the uncertainties in the decay constants for
p(770) and p(1450), mass myss0) = 1.465+0.025 GeV,
and full width Fp(]450) =0.400+0.060 GeV for p(1450)
For these three decay channels with the meson # in their
final states in Table 3, the uncertainty in the mixing angle
¢ will contribute the third error. The other errors in the
predictions, originating from the uncertainties in the
masses and decay constants of the initial and final states,
uncertainties in the CKM matrix elements, etc., are very
small and have been neglected.

The parameters x,*, ¢;*, xV, and ¢y in Egs. (3)=(5)
were fitted for the two-body D decays, with a light
pseudoscalar and ground vector meson as their final
states. In principle, these parameters are not really appro-
priate to the decays with p(1450) as the intermediate
state. However, note that these parameters do not exist in
the dominant decay amplitudes for the relevant decay
processes in this study. To identify the effects of these
parameters on the branching fractions with the intermedi-
ate state p(1450), we take D! — n[p(1450)" —]wn* as an
example. When we vary the related parameters with 50%
uncertainties in their values for this decay channel, we
obtain the branching fraction as 8= (0.39+0.03)x 1073,
This means the effects of these parameters would be very
small when compared with those of the corresponding er-
rors in Table 3 for the D! — n[p(1450)" —]wn* decay.

The form factor Aj " in Eq. (34) is for the D — p(770)
transition. In addition, for the decay D* — K?[p(1450)* —
Jwn*, the form factor A, for the D — p(1450) transition is
needed. According to the discussions in Ref. [104] for the
same intermediate state p(1450) in quasi-two-body B
meson decays, we used A —p(1450) Foquaso/ fp(77o)Aé’ —p(770)
considering the lack of information regarding the form
factor AY7"*% in literature. By applying this form factor
with a 20% uncertainty of its central value, we obtain the
branching fraction (0.16+0.03)x10 for the D*—
K?[p(1450)* —]wn* decay. Apparently, the error is not
large.

In Ref. [1], the branching fraction for the three-body
decay D! — nwn* was measured to be (0.54+0.12,+
0.044y5)%; by comparing this value with the correspond-
ing prediction (2.89+0.72)x 107 in Table 3 for D} —
nlp(770&1450)* —]wn*, we conclude that the three-body
decay D! — nwn* is dominated by the contribution from
the subprocess p(770&1450)* — wn™, roughly contribut-
ing to half of the total branching fraction when employ-
ing the phase difference ¢, = n between the intermediate
states p(770) and p(1450) [22, 26, 27, 29, 31, 32].
However, in Ref. [47], with ¢; = &, the shapes of the pre-
dicted differential branching fractions for B°—
D* p* - D" wr* did not show a good agreement with the
distribution of wm measured by the Belle Collaboration in
[37] for the B®— D*wn* decay. The interference be-
tween the subprocesses p(770)" — wn* and p(1450)" —
wr” is seriously affected by the phase difference ¢, =x
for the D — nwn* decay. We switched the phase differ-
ence ¢; from zero to 27 and found that we could obtain
the maximum branching fraction 8=3.67x107 as the
central value for D} — n[p(770&1450)* — Jwn* by select-
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ing ¢; = 1.35x. The prediction in this case is roughly 68%
of the measured total branching fraction for D} — nwn*
presented by BESIII in [1].

One could argue that as a virtual bound state [17, 18],
the intermediate state p(770)* cannot completely exhibit
its properties in the quasi-two-body decay D! —
nlp(770)* —Jwn*. It is true that the invariant masses of
the wn pair exclude the region around the p(770) pole
mass. However, as shown in Fig. 3, the width of p(770)
renders its contribution quite sizable in the energy region
of interest of three-body Dy, decays. It is important to ex-
plicitly consider the subthreshold resonances in amp-
litude analysis in experimental studies, even if they con-
tribute via the tail of their energy distribution. The differ-
ential branching fractions shown in Fig. 3 for the quasi-
two-body decay D} — nlp* —Jwnt with p* ={p(770)*,
p(1450)*,p(770)* + p(1450)*} are not typical curves such
as those in p(770,1450) — 7z in three-body B meson de-
cays [104]. The peaks of the dashed line for p(770)* —
wn* and dotted line for p(1450)* — wn* in Fig. 3 arise
from the BW expressions for the involved resonances and
mainly from the phase space factor in Eq. (26).

The absolute branching fraction for the three-body
decay D" — Kn*w was determined to be (0.707+
0.041 5 +0.029,,)% by BESIII in Ref. [43], which is 4.6
times larger than the prediction (1.53+0.37)x 1073 in Ta-
ble 3 for the quasi-two-body decay D* — K0 [p(770&
1450)* —»]Jwn*. We need to stress that the contribution
weight of D* — K2[p(770&1450)" —»]wn* in the corres-
ponding three-body decay could be enhanced by improv-
ing the calculation method employed in this study, as our
prediction for D* — K{[p(770)* —]a*x° in Table 2 is just
approximately half of the value in [3]. This also means
the branching fraction for D* — K{[p(770&1450)" —]wn™*
could be twice the corresponding prediction in Table 3. In
addition, the D* — b,(1235) transition with an emitted K9
could generate the wn* pair from b;(1235) for the D* —
Kn*w decay. The wn* pair generated from the D* —
b1(1235) transition is unlike that from the matrix element
(wr|V*—A¥|0) in D! — nwn* decay, where the amplitude
is proportional to the mass difference between the u and
d quarks. The measurement of B(D* — b;(1235)%"v,)x
B(b1(1235)° — wr) = (1.16 £ 0.44, + 0.164y) X 1074 by
BESII [108] suggests a possible contribution of
b1(1235)" > wr* to the D* - Kin*w decay. However,
we know that the contribution would not be large be-
cause we have the theoretical estimation 1.7 x 107% as the
branching fraction for D* — K%, (1235)* [109].

The input parameters for the quasi-two-body D meson
decays were updated very recently in Ref. [70]. With the
updated inputs in [70], the quasi-two-body decay branch-
ing fractions for D! — np(770)* and D° — K p(770)*
agree well with the corresponding results in Tables 2—3
with the subprocesses p(770)" — n*n® and p(770)* —
wn*, respectively. In addition, the branching fractions for

the quasi-two-body decays D* — K? [p(770)* —]x*2° and
D" — K2[p(770&1450)* —]wn* will increase to (4.45+
0.14)% and (2.63+0.64)x 1073, respectively. The latter
numerical value is approximately 37% of the total
branching fraction of D* — K2n*w in [43]. For this three-
body decay D* — K2rn*w, the contribution of D* — K*'n*
with the subprocess K** — Kw must also be considered.
When we apply the branching fraction (1.04+0.12)% to
D* — K*%x* along with K* — K-n* [3] and the discus-
sions for the virtual contributions of K* in [110], we can-
not expect a large contribution of D* — K*'n* — K wn*
to this three-body decay process. In addition, the cascade
decay D* — K*(892)'w — K{n*w is a doubly Cabibbo
suppressed model. This establishes the quasi-two-body
process D' — K?[p(770&1450)" —>]wn* as the most im-
portant process for the three-body decay D* — Kon*w.

The  branching  fraction for the  decay
D’ — K~ [p(770&1450)" —]wn* was predicted to be
(2.86+0.70) x 10~ in this study, which is less than a tenth
of the measurement (3.392 +0.044,, +0.085,,,)% for the
three-body decay D° — K n*w in Ref. [43]. The value
(6.5£3.00x1073 for D° — K*(892)°w with the subpro-
cesses K*(892)° —» K n* and w— n*n z° is approxim-
ately twice our result for D° — K~ [p(770&1450)" —]wn*
in this study. Actually, the three-body decay D° — K n*w
is very different from the process D} — nwr*, as the
former has very rich intermediate states. The resonan-
ces K*(892,1410,1680)°, K;,(1430)°, K*(892,1410,1680)",
K1(1270)~, and p(770,1450)* decay into K~ n*, K~ w, and
n*w, respectively, in this three-body decay D° — K7t w.
The analyses of the complete resonance contributions for
the decay process D’ — K-n*w are beyond the scope of
this study and will be addressed in future studies.

IV. SUMMARY

The Cabibbo-favored three-body decays D! — nwn*,
D* - K{n*w, and D’ —» K n*w were recently observed
by the BESIII Collaboration, but an amplitude analysis
was not conducted. To better understand the relevant ex-
perimental measurements, we studied the contributions of
the subprocesses p(770,1450)" — wn* in these three-body
D meson decays by introducing them into the decay amp-
litudes of the relevant decay channels via the vector form
factor F,.(s), which has been measured in the related
processes of 7 decay and e*e™ annihilation.

With the parameters g,,.=16.0+2.0 GeV™' and
A; =0.171+0.036 for the vector form factor F,,, we pre-
dicted the branching fractions for the first time for the
quasi-two-body decays D! — plp* —>Jwr*, D' — K)
[p* =]wn*, and D° — K [p* —]wr* with the intermedi-
ate p* = {p(770)*,p(1450)*, p(770)* + p(1450)*}. By com-
paring our predictions with the experimental data, we
found that the contributions of the subprocess p(770)" —
wrt are significant in the three-body decays D} — nwn*,
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D* — Klwr*, and D - K~ wn*, notwithstanding the con-
tributions originating from the Breit-Wigner tail effect of
p(770)*. The interference effects between the resonances
p(770)* and p(1450)* enhance the P-wave resonance con-
tributions for the wn* pair in these three-body decays.

The numerical results of this study suggest that the dom-
inant resonance contributions for the three-body decays
D! - nqwrt and D — K)wn* originate from the P-wave
intermediate states p(770)*, p(1450)* decaying into the
wn™ pair and their interference effects.
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