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Abstract: We have studied the images of the Brans-Dicke-Kerr spacetime with a dimensionless Brans-Dicke para-
meter ω,  which  belongs  to  axisymmetric  rotating  solutions  in  the  Brans-Dicke  theory.  Our  results  show  that  the
Brans-Dicke-Kerr spacetime with the parameter   represents naked singularities with distinct structures. For
the case with  , the shadow in the Brans-Dicke-Kerr spacetime persists, gradually becomes flatter and smaller
as ω decreases. Especially when  , the shadow in the image exhibits a very special "jellyfish" shape and pos-
sesses  a  self-similar  fractal  structure.  For  the  case  with  ,  a  distinct  gray  region  consisting  of  two  separate
patches appears in the image observed by equatorial observers. This indicating that the Brans-Dicke-Kerr spacetime
can be  distinguished from the  Kerr  and Kerr-de  Sitter  cases  based on its  image.  These  effects  of  the  Brans-Dicke
parameter could help us to reveal the intrinsic structure of the Brans-Dicke-Kerr spacetimes and provide a founda-
tion for testing Brans-Dicke theory through future high-precision observations.
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I.  INTRODUCTION

The  Event  Horizon  Telescope  (EHT)  Collaboration
has successfully released the images of the supermassive
black holes at the centers of the elliptical galaxy M87 [1]
and  the  Milky  Way  Galaxy  [2].  This  achievement  not
only marks direct observation of black holes, but also sig-
nifies  a  new  era  in  astrophysics  and  black  hole  physics.
The formation  of  the  shadow in  the  image  is  closely   re-
lated to the geometric structure and gravitational proper-
ties  of  the  spacetime,  making  it  a  crucial  window  for
probing strong gravitational fields and testing theories of
gravity.

Current  observations  indicate  that  Einstein’s  general

relativity  successfully  accounts  for  the  main  features  of
black  hole  shadows,  while  the  possibility  of  modified
gravity  theories  has  not  been  entirely  ruled  out.  Among
various modified theories of gravity, the Brans-Dicke the-
ory is one of the most well-known and extensively stud-
ied, which proposes that the Newtonian constant G is not
assumed to be a constant but related to the scalar field[3,
4].  The Brans-Dicke theory accommodates  Mach’s prin-
ciple  [5]  and Dirac’s  large-number hypothesis  [6],  while
successfully reproduces several key predictions of gener-
al relativity, such as the precession of planetary perihelia,
light  deflection,  and  gravitational  redshift  [3].  Con-
sequently,  research  on  the  Brans-Dicke  theory  remains
highly active and continues to attract  considerable atten-
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tion.  In  the  Brans-Dicke  theory,  the  field  equations  are
significantly more  intricate  than those  in  general   relativ-
ity. Therefore, a common strategy is to construct new ex-
act solutions by starting from simpler known solutions in
either the Brans-Dicke theory itself or Einstein gravity [7,
8].  Using  this  solution  generating  method,  various  types
of solutions in the Brans-Dicke theory have been success-
fully constructed [7−13].

r = r±

r = r±

r = r±

Images of  compact  objects  encode valuable   informa-
tion about the spacetime [14−39], making them a power-
ful  tool  for  testing  various  modified  theories  of  gravity
[40−49].  In  this  paper,  we  will  study  the  images  of  the
Brans-Dicke-Kerr  spacetime  in  the  Brans-Dicke  theory.
Hongsu  Kim  [9]  derived  the  Brans-Dicke-Kerr  solution
directly  from  explicit  spacetime  solutions  within  the
Brans-Dicke theory,  while  Joseph Sultana and Benjamin
Bose [50] employed the conformal transformation to ob-
tain the corresponding metric in the Einstein frame with a
dimensionless Brans-Dicke parameter ω. In this solution,
different values of the parameter ω correspond to Brans-
Dicke-Kerr  spacetimes  with  distinct  characteristics
[50–51].  For  certain  values  of ω,  the  Brans-Dicke-Kerr
metric exhibits  finite  curvature  invariants  and  zero   sur-
face  gravity  on  the  horizons  ,  and  although  the
Brans-Dicke  scalar  field  diverges  there,  it  still  satisfies
the weak  energy  condition,  allowing  the  metric  to   de-
scribe  a  nontrivial  black  hole  spacetime  distinct  from
those  in  Einstein-Maxwell  theory  [9,  50]. For  other  val-
ues  of ω,  the  Brans-Dicke-Kerr spacetime  is   character-
ized  by  a  divergence  of  the  Kretschmann  scalar  on  the
horizons  , causing the corresponding metric to rep-
resent a naked singularity rather than a black hole space-
time  [9,  50].  This  class  of  naked  singularity  spacetimes
characterized by the Kretschmann scalar  diverges on the
surfaces    also  arises  in  the  ''Kerr-like''  solution,  a
reasonable  rotating  generalization  of  the  Fisher-Janis-
Newman-Winicour  solution  [52−54].  The  image  of  the
''Kerr-like'' spacetime  with  this  distinctive  structure   ex-
hibits  a  shadow  [54].  Moreover,  recent  studies  have
demonstrated  that  static  spherically  symmetric  Brans-
Dicke naked singularities, despite lacking a conventional
event  horizon,  can  still  capture  photons  and  produce  a
shadow  smaller  than  that  of  a  Schwarzschild  black  hole
of the same mass [55]. Therefore, the image of the Brans-
Dicke-Kerr naked singularity with the Brans-Dicke para-
meter  is  expected  to  produce  results  different  from  the
Kerr case.

The  paper  is  organized  as  follows.  In  Sec.  II,  we
briefly  review  the  Brans-Dicke-Kerr  spacetime  metric
and discuss  the  distinct  characteristics  of  spacetimes  ex-
hibiting  the  secondary  curvature  singularity,  as  well  as
analyze  photon  motion.  In  Sec.  III,  we  numerically
present the shadows and photon trajectories of the Brans-
Dicke-Kerr  spacetime  and  examine  the  effects  of  the
Brans-Dicke  parameter  on  the  shadow.  Finally,  Sec.  IV

provides a brief summary of our results. 

II.  THE BRANS-DICKE-KERR SOLUTION

G = 1/φ

The  Brans-Dicke  theory  [3]  is  a  well-known  scalar-
tensor extension of Einstein’s general relativity, in which
Newton’s  gravitational  constant  is  replaced  by  a  scalar
field φ, typically written as  . Its action is given by
the following equation: 

S =
1

16π

∫ ï
φR− ω

φ
gαβ∇αφ∇βφ−V(φ)+Lm

ò √−gd4x, (1)

Lm

V(φ)

where ω and   represent the dimensionless Brans-Dicke
parameter  and  the  matter  action,  respectively,  while  the
scalar  field potential    is set  to zero.  Varying the ac-
tion with respect to the metric tensor and the scalar field
yields the field equations: 

Gµν =
8π
φ

Tµν+
ω

φ2

ï
∇µφ∇νφ−

1
2

gµν∇αφ∇αφ
ò

+
1
φ

[
∇µ∇νφ−gµν□φ

]
, (2)

 

□φ =
8π

2ω+3
T (m), (3)

Tµν =
−2√−g

δ

δgµν
(√−gLm

)
T (m) = T µ

µwhere    and    represent
the  energy-momentum tensor  of  matter  and  its  trace,   re-
spectively.

φ = (∆/M2)2/(2ω+3) sin4/(2ω+3) θ

gab→ g̃ab = Ω
2gab Ω =

√
Gφ

By solving the above field equations, a Kerr-like solu-
tion in Brans-Dicke theory under the Jordan frame can be
obtained  [9,  50],  with  the  scalar  field  expressed  as

. Through the conformal trans-
formation  ,  with  ,  the  solution
can  be  expressed  in  the  Einstein  frame,  and  the  scalar
field is then redefined as 

φ̃ =

…
2ω+3
16πG

ln
Å
φ

φ0

ã
, (4)

φ0where    is the  current  value  of  the  gravitational   con-
stant.  Substituting the scalar field from the Jordan frame
into its definition in the Einstein frame Eq. (4) yields: 

φ̃ =
1

2
√
π
√

2ω+3
ln
Å
∆

M2
sin2 θ

ã
. (5)

φ̃

ω > −3/2
To ensure that the transformed scalar field   remains

real,  we consider only    in the following discus-
sion.  The  corresponding  field  equation  takes  a  simple
form 

Fen Long, Weike Deng, Xin Qin et al. Chin. Phys. C 50, 025108 (2026)

025108-2



Rµν =
1
2
∇µφ̃∇νφ̃,

□φ̃ = 0. (6)

Using  the  metric  in  the  Jordan  frame  along  with  the
conformal  transformation,  one  obtains  the  metric  in  the
Einstein frame [50]: 

ds2 = −
Å

1− 2Mr
Σ

ã
dt2− 4Mar sin2 θ

Σ
dtdψ

+

Å
r2+a2+

2Ma2r
Σ

sin2 θ

ã
sin2 θdψ2

+

Ç
∆sin2 θ

M2

å4/(2ω+3)

Σ

Å
dr2

∆
+dθ2

ã
, (7)

with 

Σ = r2+a2 cos2 θ, ∆ = r2+a2−2Mr, (8)

ω→∞

where M and a represent the mass and the rotation para-
meter,  respectively.  As  the  Brans-Dicke  parameter

,  this  axisymmetric  rotating  solution  in  Brans-
Dicke  theory  reduces  to  the  Kerr  solution.  The  presence
of the Brans-Dicke parameter ω further influences the im-
age by modifying the spacetime properties throughout the
entire region.

ω > 1/2 r±

Next, we introduce the two key surfaces in the strong
gravity region of the Brans-Dicke-Kerr solution that sig-
nificantly influence the formation of images: the horizon
and the curvature singularity. For Brans-Dicke parameter

,  the  horizon  radii    of  the  Brans-Dicke-Kerr
solution are given by the roots of the following equation 

∆ = r2+a2−2Mr = 0. (9)

The Kretschmann scalar κ to determine the location of
the curvature singularity, denoted by 

κ = RµνρσRµνρσ = Σ−6∆−(4ω+14)/(2ω+3)g(r, θ,a,M,ω). (10)

g(r, θ,a,M,ω)

Σ = 0
r = 0, θ = π/2

∆ = 0
a ⩽ M − (4ω+14)/ (2ω+3) < 0

a ⩽ M

ω > 1/2

As the expression   is complicated, we do
not display it here. The Kretschmann scalar indicates that
the Brans-Dicke-Kerr solution possesses the same intrins-
ic  curvature  singularity  as  the  Kerr  solution  at  ,
which lies on the ring at  .  Moreover,  it  also
indicates  that  the  Brans-Dicke-Kerr  solution  possesses  a
secondary  curvature  singularity  at   when the   para-
meters satisfy   and  . There-
fore,  When  the  rotation  parameter  ,  two  distinct
cases arise in the spacetime depending on the value of ω.
For the Brans-Dicke parameter  , the divergence of

∆ = 0
r±

−3/2 < ω ⩽ 1/2

Σ = 0
∆ = 0

a > M ∆ = 0

a ⩽ M a > M
a > M

a > M

the  Kretschmann  scalar  κ  at    leads  to  a  secondary
curvature  singularity  at  the  horizon  radii  ,  so  that  the
Brans-Dicke-Kerr  metric  describes  a  naked  singularity.
For the Brans-Dicke parameter  , the disap-
pearance of the horizon causes spacetime to become a na-
ked  singularity  with  the  ring  singularity  located  at 
and  the  secondary  curvature  singularity  at  .  When
the rotation parameter  ,   has no real roots, res-
ulting in the absence of both the horizon and the second-
ary curvature singularity, so the spacetime corresponds to
a naked singularity containing only a ring singularity for
any Brans-Dicke parameter ω. To conclude, in the Brans-
Dicke-Kerr  spacetime,  naked  singularities  can  occur  for
both the rotation parameter   and  , whereas in
the  Kerr  spacetime  they  occur  only  when  .
Moreover,  for  the  rotation  parameter  ,  the  naked
singularity  in  the  Brans-Dicke-Kerr  spacetime  behaves
like a Kerr naked singularity with hair ω. Since the form-
ation mechanisms of  the  three  types  of  naked singularit-
ies in the Brans-Dicke-Kerr spacetime differ from that of
the  Kerr  naked  singularity,  their  images  are  expected  to
display distinct features.

We now examine the motion of photons in the Brans-
Dicke-Kerr  spacetime  (7).  In  a  curved  spacetime,  the
Hamiltonian  for  photons  propagating  along  null
geodesics can be expressed as 

H(x, p) =
1
2

gµν(x)pµpν = 0. (11)

Lz

There are two conserved quantities: the energy E and
the angular momentum   with the following expressions 

E = −pt = −gtt ṫ−gtψψ̇, Lz = pϕ = gtψ ṫ+gψψψ̇. (12)

From these conserved quantities we obtain the photon
equations of motion along null geodesics 

ṫ =
gψψE+gtψLz

g2
tψ−gttgψψ

, (13)

 

ψ̇ =
gtψE+gttLz

gttgψψ−g2
tψ
, (14)

 

r̈ =
1

2grr
(gtt,r ṫ2−grr,r ṙ2+gθθ,rθ̇2+gϕϕ,rϕ̇2

+2gtψ,r ṫψ̇−2gθθ,θ ṙθ̇), (15)

 

θ̈ =
1

2gθθ
(gtt,θ ṫ2+grr,θ ṙ2−gθθ,θθ̇2+gψψ,θψ̇2

+2gtψ,θ ṫψ̇−2gθθ,r ṙθ̇). (16)
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r̈ θ̈

grr gθθ

From Eqs.  (15)  and (16),  it  can be seen that   and 
both  depend  on  Brans-Dicke  parameter  ω,  because  the
metric  components    and    contain  ω.  This  causes
photon trajectories in the Brans-Dicke-Kerr spacetime to
deviate from those in the Kerr spacetime, thereby affect-
ing the images. 

III.  THE IMAGES OF THE BRANS-DICKE-KERR
SPACETIME

{et̂,er̂,eθ̂,eψ̂}
{∂t,∂r,∂θ,∂ψ}

In  the  following,  we  investigate  image  formation  in
the  Bran-Dicke-Kerr  and  examine  the  influence  of  the
Brans-Dicke parameter ω on the images. We employ the
''backward  ray-tracing''  method  [14−25]  to  numerically
simulate the shadow of the Brans-Dicke-Kerr  spacetime.
In this approach, light rays are traced backward from the
observer  by  numerically  integrating  the  null  geodesic
equations(13)−(16),  which  determines  the  position  of
each  pixel  in  the  final  image.  The  observer’s  basis

  can  be  expressed  in  terms  of  the  coordinate
basis . 

eµ̂ = eνµ̂∂ν, (17)

eνµ̂ gµνe
µ
α̂eν

β̂
= ηα̂β̂ ηα̂β̂where  the  matrix    satisfies  ,  and    de-

notes  the usual  Minkowski  metric.  For  the Brans-Dicke-
Kerr spacetime  (7),  it  is  convenient  to  choose  a   decom-
position [14−27] 

eνµ̂ =

à
ζ 0 0 γ

0 Ar 0 0

0 0 Aθ 0

0 0 0 Aψ

í
, (18)

Ar Aθ Aϕwhere ζ, γ,  ,  , and   are real coefficients. From the
Minkowski normalization condition 

eµ̂eν̂ = δν̂µ̂, (19)

it follows that 

Ar =
1
√

grr
, Aθ =

1
√

gθθ
, Aψ =

1
√gψψ

,

ζ =

 
gψψ

g2
tψ−gttgψψ

, γ = − gtψ

gψψ

 
gψψ

g2
tψ−gttgψψ

. (20)

pµ̂
According to Eq. (17), the locally measured four-mo-

mentum   of a photon takes the form 

pt̂ = −pt̂ = −eνt̂ pν, pî = pî = eνî pν. (21)

pµ̂
By making use of Eq. (20), the locally measured four-

momentum   in the Brans-Dicke-Kerr spacetime can be
derived as follows 

pt̂ = ζE−γL, pr̂ =
1
√

grr
pr,

pθ̂ =
1
√

gθθ
pθ, pψ̂ =

1
√gψψ

L, (22)

Hence,  the  celestial  coordinates  corresponding  to  a
given light ray in the spacetime (7) are written as 

x = −robs
pψ̂

pr̂
= −robs

 
1

grrgψψ

gtψ ṫ+gψψψ̇
ṙ

,

y = robs
pθ̂

pr̂
= robs

…
gθθ
grr

θ̇

ṙ
, (23)

robs, θobswhere   are the radial coordinate and polar angle of
observer.

a ⩽ M

a = 0
ω > 1/2

Figures  1−4  present  the  images  of  the  Brans-Dicke-
Kerr  spacetime  obtained  by  an  observer  located  on  the
equatorial plane for different values of the rotation para-
meter a  and  the  Brans-Dicke  parameter ω. For  the   rota-
tion  parameter  ,  the  shadow  in  the  Brans-Dicke-
Kerr spacetime  always  exists  and  enlarges  with   increas-
ing ω. As shown in Fig. 1 for the rotating spacetime cases
with  ,  when  the  Brans-Dicke-Kerr  parameter

  decreases  (where  the  event  horizon  coincides
with  the  secondary  curvature  singularity),  the  shadow in

 

a = 0

M = 1 robs = 8M θobs = π/2 ω = 0.4 1 10 500
Fig. 1.    (color online) The variation of images with the Brans-Dicke parameter ω for the Brans-Dicke-Kerr spacetime with fixed  .
Here we set the mass parameter  ,   and  . The figures from left to right correspond to  ,  ,  , and  , re-
spectively.
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−3/2 < ω ⩽ 1/2

a = 0.5 a = 0.99

a ⩽ M

the  Brans-Dicke-Kerr  spacetime  gradually  deviates  from
the perfect disk shape of the Kerr black hole, becoming a
flattened  elliptical  disk  while  still  maintaining  left-right
symmetry.  When  the  Brans-Dicke-Kerr  parameter

  (where  the  event  horizon  disappears  but
the secondary curvature singularity still exists), the shad-
ow  will  exhibit  a  very  special  ''two-headed  jellyfish''
shape.  As shown in Figs.  2−3 for  the  rotating spacetime
cases with   and  ,  as the Brans-Dicke-Kerr
parameter ω decreases the shadow gradually flattens and
shrinks while the left half showing more obvious changes
than the  right  half.  The  overall  shape  of  shadow   gradu-
ally takes on a footprint-like shape and eventually devel-
ops  into  a  ''jellyfish''  shape.  Therefore,  for  ,  the
Brans-Dicke-Kerr solutions  belong  to  a  class  of   space-
times  that  exhibit  naked  singularities.  Although  these

a > M

solutions  lack  a  conventional  event  horizon,  they  still
give rise to shadow-like features. Similar phenomena also
occur  in  the  spherically  symmetric  metric  belong  to  the
Brans-Dicke gravity [55] and the Bogush-Galt’sov naked
singularity [54].  These results  suggest  that  there remains
the possibility for naked singularities to exist as compact
astrophysical  objects.  For  the  rotation  parameter  ,
the  naked singularity  in  the  Brans-Dicke-Kerr  spacetime
behaves  like  a  Kerr  naked  singularity  with  hair  ω.  As
shown  in  Fig.  4,  similar  to  the  Kerr  naked  singularity
[30],  the  Brans-Dicke-Kerr  naked  singularity  lacks  an
event horizon and has only a ring singularity,  so the im-
age shows a bright background light source with a black
straight  line  rather  than  a  closed  black  shadow  region.
Unlike  in  the  case  of  a  Kerr  naked  singularity,  as  the
Brans-Dicke  parameter ω  decreases, a  distinct  gray   re-

 

a = 0.5 M = 1 robs = 8M θobs = π/2 ω = 0.4
Fig.  2.      (color online) The  variation  of  images  with  the  Brans-Dicke  parameter ω  for  the  Brans-Dicke-Kerr  spacetime  with  fixed

. Here we set the mass parameter  ,   and  . The figures from left to right correspond to  , 1, 10, and
500, respectively.

 

a = 0.99 M = 1 robs = 8M θobs = π/2
ω = 0.4

Fig. 3.    (color online) The variation of shadows with the Brans-Dicke parameter ω for the Brans-Dicke-Kerr-type black holes and na-
ked singularities with fixed  . Here we set the mass parameter  ,   and  . The figures from left to right cor-
respond to  , 1, 10, and 500, respectively.

 

a = 1.05 M = 1 robs = 8M θobs = π/2 ω = 0.4
Fig.  4.      (color online) The  variation  of  images  with  the  Brans-Dicke  parameter ω  for  the  Brans-Dicke-Kerr  spacetime  with  fixed

. Here we set the mass parameter  ,   and  . The figures from left to right correspond to  , 1, 10, and
500, respectively.
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r = 0, θ , π/2

gion appears near the center on the left side of the Brans-
Dicke-Kerr  spacetime  naked  singularity  image  obtained
by equatorial  observers.  In  this  region,  photons  originat-
ing  from  the  negative  radii  region  can  traverse

 and reach observers in the positive radii re-
gion. If we assume that a sphere light source exists in the
negative radii region of the Brans-Dicke-Kerr naked sin-
gularity  spacetime,  the  gray  region  corresponds  to  a
bright region illuminated by photons originating from the
negative radii region. Conversely, without a light source,
the gray region appears as the completely dark spot. The
presence of gray regions depends not only on the rotation
parameters but also on the inclination angle of the observ-
er. For observers deviates from the equatorial plane, dark
spot appear in the Kerr naked singularity image, whereas
in the Brans-Dicke-Kerr naked singularity spacetime they
will shrink. The study of the Kerr-de Sitter naked singu-
larities also takes into account photons entering the negat-
ive  radii  region  of  the  spacetime  [37].  As  a  result  the
shadow  of  the  Kerr-de  Sitter  naked  singularities  on  the
observer’s celestial sky includes not only an arc or circle
structure  but  also  a  dark  spot  corresponding  to  photons
escaping to negative infinity [37]. Since the gray regions
in  the  image  of  the  Brans-Dicke-Kerr  naked  singularity
appear  as  two  separate  patches  rather  than  as  a  single

dark spot  as  in  the  Kerr  naked singularities  [30]  and the
Kerr-de  Sitter  naked  singularities  [37],  it  indicates  that
the  Brans-Dicke-Kerr naked  singularity  can  be   distin-
guished from the Kerr  and the Kerr-de Sitte  cases  based
on  its  image.  To  clarify  the  formation  of  the  shadow  in
the Brans-Dicke-Kerr spacetime image, we further invest-
igate the trajectory of photon motion.

(r− θ)

(r− θ)

X =
√

r2+a2 sinθ
Z = r cosθ

a = 0.5

Figures  5−6 present  photon  trajectories  in  the 
plane  with  different  Brans-Dicke  parameter  and  rotation
parameter  in  the  Brans-Dicke-Kerr spacetime.  The   pro-
jection of the photon trajectories onto the   plane is
obtained  from the  transformation  between  Cartesian  and
Boyer-Lindquist coordinates, with the horizontal coordin-
ate  expressed  as    and the  vertical   co-
ordinate  as  .  In  Figs.  5(a)−(b),  we  find  that  in
the Brans-Dicke-Kerr spacetime with a rotation paramet-
er of  , photons can be captured near the naked sin-
gularity whether the event horizon coincides with the sec-
ondary curvature  singularity  or  the  event  horizon   disap-
pears  while  the  secondary  curvature  singularity  exists
alone. As a result,  shadows appear in the image for both
configurations  of  the  naked  singularity.  As  the  Brans-
Dicke  parameter  ω  decreases,  the  minimum  turning
points in  the  radial  direction  gradually  shrink  and   ap-
proach  the  secondary  singularity,  which  implies  smaller

 

(r− θ) a = 0.5

x = −0.3

y = 4.5, 4.168, 3.5, 3.0 y = 1.6, 1.2, 0.8, 0.4

Fig. 5.    (color online) Photon trajectories in the   plane for the Brans-Dicke-Kerr spacetime with  . The black half-ellipses
denote surfaces of constant Boyer-Lindquist radius r, while the black dashed hyperbolas correspond to surfaces of constant latitude co-
ordinate θ. The black dot-dashed line represents the event horizon, the orange solid line indicates the secondary curvature singularity,
and the  other  colored solid  curves  show photon trajectories  for   with  different  values  of y.  In  the  left  panel,  the  purple,  red,
green, and blue curves are associated with  ; in the right panel, they take values  .
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a = 1.05

r = 0
θ , π/2

shadows. In Fig. 6, we find that in the Brans-Dicke-Kerr
spacetime  with  a  rotation  parameter  of  ,  where
both the event horizon and the secondary curvature singu-
larity  are  absent.  In  the  “backward  ray-tracing” method,
part  of  photons  are  traced  from  the  observer  and  pass
through  the  positive  radii  region,  approaching  the  radial
coordinate    but  reaching  a  latitudinal  coordinate

, thereby bypassing the ring singularity and enter-
ing the negative radii  region. Photons with a radial   turn-
ing point return to the positive radii region, while photons
without  such  turning  point  escape  to  negative  infinity,
resulting  in  gray  region  appearing  in  the  image.  Due  to
the  crucial  role  of  photon  motion  in  forming  spacetime
images, the photon dynamics in Brans-Dicke-Kerr naked

singularities differ from those in Kerr naked singularities
and generate distinct gray regions in the image observed
by an equatorial-plane observer.

In Fig. 7, we shows the variations of the width W, the
height H and the oblateness K of the shadow with respect
to the Brans-Dicke parameter ω for different values of the
rotation  parameter a  in  the  Brans-Dicke-Kerr  spacetime.
The quantities W, H and K are defined as [38–39] 

W = xr − xl, H = yt − yb, K =
W
H
, (24)

yt ybwhere   and   represents the vertical coordinates of the
topmost  and  the  bottommost  point  of  the  shadow,  while

 

(r− θ) a = 1.05, ω = 10
r < 0

r < 0
x = −0.3

y = 1.5, 1.074, 0.8, 0.25
r > 0 r < 0

Fig. 6.    (color online) Photon trajectories in the   plane for the Brans-Dicke-Kerr spacetime with   under different
initial conditions. Black half-ellipses denote surfaces of constant Boyer-Lindquist radius r (with   cases indicated in parentheses),
while black dashed hyperbolas correspond to surfaces of constant latitude coordinate θ(with the distribution of these surfaces for 
shown in parentheses). The colored curves represent photon trajectories for   with different values of β (purple, red, green, and
blue correspond to  ), corresponding to the four red points marked on the image of the left panel. The solid por-
tions of the curves correspond to radius  , while dashed portions correspond to  .

 

Fig. 7.    (color online) The change in the shadow width W, the height H and the oblateness K with the Brans-Dicke parameter ω in the
Brans-Dicke-Kerr spacetime for different rotation parameter a.
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(xr,0) (xl,0)  and    denote its  intersections  with  the   hori-
zontal axis on the right and left sides, respectively.

Figure 7 shows that  for  a  fixed rotation parameter a,
as  the  Brans-Dicke  parameter ω  decreases,  the  shadow
width W  remains unchanged  as  in  the  Kerr  case.  Mean-
while, the height H gradually decreases, causing the shad-
ow to  appear  more  flattened  and  thus  increasing  its   ob-
lateness  K, which  is  consistent  with  the  behavior   ob-
served  in  the  image.  For  a  fixed  Brans-Dicke  parameter
ω,  as  the  rotation  parameter  a  increases,  the  shadow
width  W  first  increases  and  then  decreases,  while  the
height  H  increases  and  the  oblateness  K  gradually  de-
creases. It is observed that the shadow shape varies more
significantly with the Brans-Dicke parameter ω than with
the rotation parameter a.

a ⩽ M ω < 1/2As shown in Figs. 1−3, when   and  , the
shadow of the Brans-Dicke-Kerr naked singularity exhib-
its  a  ''jellyfish''  shape  that  is  symmetrically  distributed
about  the  horizontal  line.  Within  this  “jellyfish”  shape
shadow, many smaller  eyebrow-like features can also be
observed as shown in Fig. 8. This indicates that the shad-
ow  of  the  axisymmetric  Brans-Dicke-Kerr naked   singu-
larity  possesses  a  self-similar  fractal  structure  caused  by
chaotic photon scattering, a property that is different from
that  of  the  Kerr  spacetime.  These  new  shadow  features
arising  from  the  Brans-Dicke parameter  help  us   under-
stand  the  Brans-Dicke-Kerr  naked  singularities  and
provide a theoretical basis for testing the nature of grav-
ity in the future. 

IV.  SUMMARY

In  this  paper  we  have  investigated  the  images  of
Brans-Dicke-Kerr  type  naked  singularities  with  the
Brans-Dicke-Kerr parameter ω, analyzed the influence of
parameter ω on the spacetime structure, the shadows, and
the photon trajectories.

a ⩽ M

Firstly,  we  analyzed  the  distribution  of  the  horizon
and the  secondary  curvature  singularity,  which  are   im-
portant  for  the  formation of  shadows.  When the  rotation
parameter  satisfies  ,  the  Brans-Dicke  parameter
plays a  crucial  role  in  determining  the  spacetime   struc-

ω > 1/2
r±

−3/2 < ω ⩽ 1/2

a > M

ture. For  , the horizon coincides with the second-
ary curvature singularity at  , and the metric describes a
naked  singularity  rather  than  a  black  hole.  When

, the horizon disappears while the second-
ary  curvature  singularity  remains,  so  the  Brans-Dicke-
Kerr spacetime still represents a naked singularity. When
the  rotation  parameter  ,  both  the  horizon  and  the
secondary  curvature  singularity  vanish,  and  the  Brans-
Dicke-Kerr  naked  singularity  behaves  like  a  Kerr  naked
singularity  with  the  hair ω.  Since  the  formation  of  the
three  types  of  Brans-Dicke-Kerr naked  singularities   dif-
fers from that of the Kerr case, their images are expected
to exhibit distinct features.

a ⩽ M

a > M

r = 0
θ , π/2

Our result show that for the rotation parameter  ,
the  shadow  in  the  Brans-Dicke-Kerr  spacetime  always
exists.  As  the  Brans-Dicke-Kerr  parameter ω  decreases,
the shadow gradually  becomes flatter  and smaller,  even-
tually  evolving  into  a  ''jellyfish''  shape.  Although  the
Brans-Dicke-Kerr solutions lack a conventional event ho-
rizon,  they  still  produce  shadow-like  features.  Similar
phenomena also occur in the spherically symmetric met-
ric  belong  to  the  Brans-Dicke  gravity  [55]  and  the
Bogush-Galt’sov  naked  singularity  [54].  These  results
suggest that  naked  singularities  may  still  exist  as   com-
pact  astrophysical  objects.  For  the  rotation  parameter

,  a  distinct  gray  region  appears  near  the  center  of
the  image  observed  by  equatorial  observers.  Photons
traced  backward  from  the  observer  approach    at

 and bypass the ring singularity to escape to negat-
ive  infinity,  forming  a  gray  region  in  the  image.  Unlike
the single dark spot in Kerr [30] and Kerr-de Sitter naked
singularities  [37],  the  Brans-Dicke-Kerr  case  shows  two
separate gray  patches,  indicating  that  it  can  be   distin-
guished from the Kerr and Kerr-de Sitter cases based on
its image.

Finally,  we  calculated  the  shadow’s  width W,  height
H, and oblateness K. For a fixed rotation parameter a, as
the Brans-Dicke parameter ω decreases,  the width W  re-
mains unchanged, while the height H gradually decreases,
leading to an increase in oblateness K.  For a fixed ω,  as
the  rotation  parameter a  increases,  the  width W  first  in-
creases  and  then  decreases,  whereas  the  height  H  in-

 

a = 0.5 ω = 0.4 M = 1 robs = 8M θobs = π/2
Fig.  8.      (color online) The  two-headed  jellyfish-shaped  shadow  and  the  self-similar  fractal  structures  in  the  shadow  of  the  Brans-
Dicke-Kerr spacetime with fixed   and  . Here we set the mass parameter  ,   and  .
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a ⩽ M ω < 1/2
creases  and  the  oblateness K  gradually  decreases.  When

 and  ,  the shadow of the Brans-Dicke-Kerr
naked  singularity  possesses  a  self-similar fractal   struc-
ture  caused by chaotic  photon scattering,  a  property  that
is essentially different from that of the Kerr spacetime.

ω > −3/2

a ⩽ M

In  conclusion,  the  Brans-Dicke-Kerr  spacetime  with
the Brans-Dicke parameter    represents  different
types  of  naked  singularities.  For  the  rotation  parameter

,  the  shadow  in  the  Brans-Dicke-Kerr  spacetime
persists  and  gradually  becomes  flatter  and  smaller  as ω

a > M

a ⩽ M ω < 1/2

decreases. For  , a distinct gray region appears in the
image  observed  by  equatorial  observers.  Especially,  for

 and  ,  the shadow of the Brans-Dicke-Kerr
naked singularity exhibit  a very special “jellyfish” shape
and possesses a self-similar fractal structure. Such invest-
igations not only help reveal the intrinsic structure of the
Brans-Dicke-Kerr  spacetimes  but  also  provide  essential
theoretical  foundations  for  testing  Brans-Dicke  theory
through future high-precision observations.
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