D-brane superpotentials and Ooguri-Vafa invariants of compact Calabi-Yau threefolds

  • We calculate the D-brane superpotentials for two compact Calabi-Yau manifolds X14(1,1,2,3,7) and X8(1,1,1,2,3) which are of non-Fermat type in the type II string theory. By constructing the open mirror symmetry, we also compute the Ooguri-Vafa invariants, which are related to the open Gromov-Witten invariants.
      PCAS:
  • 加载中
  • [1] Aganagic M, Vafa C. arXiv: hepth/0012041[2] Aganagic M, Klemm A, Vafa C. Z. Naturforschung. A, 2002, 57: 1[3] Lerche W, Mayr P, Warner N. arXiv: hepth/0208039[4] Lerche W, Mayr P, Warner N. arXiv: hepth/0207259[5] Aganagic M, Klemm A, Marino M et al. arXiv: hepth/0305132[6] Kachru S, Katz S H, Lawrence A E et al. arXiv: hepth/9912151[7] Kachru S, Katz S H, Lawrence A E et al. Phys. Rev. D, 2000, 62: 126005[8] Walcher J. arXiv:hepth/0605162[9] Morrison D R, Walcher J. arXiv: hepth/0709.4028[10] Knapp J, Scheidegger E. arXiv:hepth/0805.1013[11] Krefl D, Walcher J. JHEP, 0809, 031 (2008), arXiv:hepth/ 0805.0792[12] Jockers H, Soroush M. arXiv: hepth/0808.0761[13] Grimm T W, Ha T-W, Klemm A et al. Nucl. Phys. B, 2009, 816:139[14] Grimm T W, Ha T-W, Klemm A et al. arXiv: hepth/ 0912.3250[15] Alim M, Hecht M, Mayr P et al. JHEP,2009, 0909: 126[16] Alim M, Hecht M, Jockers H et al. Nucl. Phys. B, 2010, 841, 303[17] Grimm T W, Ha T-W, Klemm A et al. JHEP, 2010, 1004: 015[18] Jockers H, Mayr P, Walcher J. arXiv:hepth/0912.3265[19] Jockers H, Soroush M, Nucl. Phys. B, 2009, 821: 535, arXiv:hepth/0904.4674[20] LI Si, LIAN B H, YAU Shing-Tung. arXiv: mathAG/0910.4215[21] Walcher J. JHEP, 2009, 0909: 129[22] Alim M, Hecht M, Jockers H et al. JHEP, 2011, 1106: 103[23] Grimm T W, Klemm A, Klevers D. JHEP, 2011, 1105: 113[24] Alim M, Hecht M, Jockers H et al. arXiv: hepth/1110.6522[25] Klevers D. arXiv: hepth/1106.6259[26] Baumgartl M, Brunner I, Gaberdiel M R. arXiv:hepth/ 0704.2666[27] Baumgartl M, Wood S. arXiv: hepth/0812.3397[28] Baumgartl M, Brunner I, Soroush M. Nucl. Phys. B, 2011, 843: 602[29] Fuji H et al. arXiv: hepth/1011.2347[30] Shimizu M, Suzuki H. JHEP, 2011, 1103, 083[31] XU Feng-Jun, YANG Fu-Zhong. arXiv:hepth/1206.0445[32] XU Feng-Jun, YANG Fu-Zhong. arXiv:hepth/1303.3369[33] CHENG Shi, XU Feng-Jun, YANG Fu-Zhong. arXiv:hepth/1303.3318[34] Gel'fand I M, Zelevinski A, Kapranov M. Funct. Anal. Appl., 1989, 28: 94[35] Hosono S, Klemm A, Theisen S et al. Commun. Math. Phys., 1995. 167: 301[36] Hosono S, LIAN B H, YAU Shing-Tung. Commun. Math. Phys., 1996, 182: 535[37] Hosono S, LIAN B H, YAU Shing-Tung. arXiv:alg-geom/9707003v2[38] Batyrev V V, van Straten D. Commun. Math. Phys., 1995, 168: 493[39] BatyrevV V. J. Alg. Geom., 1994, 3: 493[40] Mayr P. Adv. Theor. Math. Phys., 2002, 5: 213[41] Gukov S, Vafa C, Witten E. arXiv:hepth/990607[42] Berglund P, Mayr P. hep-th/0504058[43] Witten E. arXiv: hepth/9207094[44] Lerche W. arXiv: hepth/0312326[45] Mayr P. arXiv:hepth/0003198[46] Taylor T R, Vafa C. arXiv:hepth/9912152[47] Witten E. arXiv:hepth/9706109[48] Clemens H. arXiv: math/0206219[49] Griffiths P. Am. J. Math, 1979, 101: 96[50] Ooguri H, Vafa C. arXiv: hepth/9912123[51] Witten E. arXiv: hepth/9301042[52] Fujino O, Sato H. arXiv:mathAG/0307180v2[53] Fujino O. arXiv:mathAG/0112090v1[54] Scaramuzza A. Smooth Complete Toric Varieties: An Algorithmic Approach (Ph.D. Dissertation). University of Roma Tre, 2007[55] Renesse C V. Combinatiorial Aspects of Toric Varieties (Ph.D. Dissertation). University of Massachusetts Amherst, 2007[56] Berglund P, Mayr P. arXiv:hepth/9811217[57] Berglund P, Katz S H, Klemm A. Nucl. Phys. B, 1995, 456: 153 [hep-th/9506091][58] Lerche W, Mayr P,Warner N P. arXiv:hepth/9612085[59] Aspinwall P S et al. JHEP, 2006, 0610: 047[60] Ashok S K, Dell'Aquila E, Diaconescu D E et al. arXiv: hepth/0404167[61] Ashok S K, Dell'Aquila E, Diaconescu D E. arXiv:hepth/ 0401135[62] Herbst M. arXiv:hepth/0602018[63] Carqueville N, Dowdy L, Recknagel A. JHEP, 2012, 04: 014[64] Carqueville N. JHEP, 2009, 0907: 005[65] Carqueville N, Runke I. arXiv:1104.5438[66] Aspinwall P S, Morrison D R. arXiv:1005.1042[67] Aspinwall P S, Katz S. Commun. Math. Phys., 2006, 264: 227-253[68] Todorov G. arXiv:0709.4673
  • 加载中

Get Citation
XU Feng-Jun and YANG Fu-Zhong. D-brane superpotentials and Ooguri-Vafa invariants of compact Calabi-Yau threefolds[J]. Chinese Physics C, 2015, 39(4): 043102. doi: 10.1088/1674-1137/39/4/043102
XU Feng-Jun and YANG Fu-Zhong. D-brane superpotentials and Ooguri-Vafa invariants of compact Calabi-Yau threefolds[J]. Chinese Physics C, 2015, 39(4): 043102.  doi: 10.1088/1674-1137/39/4/043102 shu
Milestone
Received: 2014-04-22
Revised: 2014-11-02
Article Metric

Article Views(1525)
PDF Downloads(170)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

D-brane superpotentials and Ooguri-Vafa invariants of compact Calabi-Yau threefolds

    Corresponding author: XU Feng-Jun,
    Corresponding author: YANG Fu-Zhong,

Abstract: We calculate the D-brane superpotentials for two compact Calabi-Yau manifolds X14(1,1,2,3,7) and X8(1,1,1,2,3) which are of non-Fermat type in the type II string theory. By constructing the open mirror symmetry, we also compute the Ooguri-Vafa invariants, which are related to the open Gromov-Witten invariants.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return