×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Decay rates of charmonia within a quark-antiquark confining potential

  • In this work, we investigate the spectroscopy and decay rates of charmonia within the framework of the non-relativistic Schrödinger equation by employing an approximate inter quark-antiquark potential. The spin hyperfine, spin-orbit and tensor components of the one gluon exchange interaction are employed to compute the spectroscopy of the excited S states and a few low-lying P and D waves. The resultant wave functions at zero inter quark separation as well as some finite separations are employed to predict the di-gamma, di-leptonic and di-gluon decay rates of charmonia states using the conventional Van Royen-Weisskopf formula. The di-gamma and di-leptonic decay widths are also computed by incorporating the relativistic corrections of order ν4 within the NRQCD formalism. We have observed that the NRQCD predictions with their matrix elements computed at finite radial separation yield results which are found to be in better agreement with experimental values for both di-gamma and di-leptonic decays. The same scenario is seen in the case when di-gamma and di-leptonic decay widths are computed with the Van Royen-Weisskopf formula. It is also observed that the di-gluon decay width with the inclusion of binding energy effects are in better agreement with the experimental data available for 1S-2S and 1P. The di-gluon decay width of 3S and 2P waves waves are also predicted. Thus, the present study of decay rates clearly indicates the importance of binding energy effects.
      PCAS:
  • 加载中
  • [1] G. Bonvicini et al(CLEO Collaboration), Phys. Rev. D, 81:031104(2010)
    [2] K. M. Ecklund et al(CLEO Collaboration), Phys. Rev. D, 78:091501(2008)
    [3] B. Auger et al(BABAR Collaboration), Phys. Rev. Lett., 103:161801(2009)
    [4] N Brambilla et al, 2011 Eur. Phys. J. C, 71:1534
    [5] K. Nakamura(Particle Data Group), 2010 J. Phys. G:Nucl. Part. Phys., 37:075021
    [6] K. A. Olive et al(Particle Data Group), Chinese Physics C, 38:(9) 090001(2014)
    [7] M. R. Ahmady and R. R. Mendel, Phys. Rev. D, 51:141(1995)
    [8] D. Ebert, R. N. Faustov, and V. O. Galkin, Mod. Phys. Lett. A, 18:601(2003)
    [9] C. W. Hwang and Z. T. Wei, J. Phys. G, 34:687(2007)
    [10] H. W. Huang, J. H. Liu, J. Tang, and K. T. Chao, Phys. Rev. D, 56:368(1997)
    [11] C. S. Kim, T. Lee, and G. L. Wang, Phys. Lett. B, 606:323(2005)
    [12] J. P. Lansberg and T. N. Pham, Phys. Rev. D, 74:034001(2006); 75:017501(2007)
    [13] J. J. Dudek and R. G. Edwards, Phys. Rev. Lett., 97:172001(2006)
    [14] W. Buchmuller, S.H.H. Tye, Phys. Rev. D, 24:132(1981)
    [15] A. Martin, Phys. Lett. B, 93:338(1980)
    [16] C. Quigg and J.L. Rosner, Phys. Lett. B, 71:153(1977)
    [17] A. K. Rai, J.N. Pandya, and P. C. Vinodkumar, J. Phys. G:Nucl. Part. Phys., 31:1453(2005)
    [18] S. S. Gershtein, V.V. Kiselev, A.K. Likhoded, and A. V. Tkabladze, Phys. Rev. D, 51:3613(1995)
    [19] H. Khan and P. Hoodbhoy, Phys. Rev. D, 53:2534(1996)
    [20] G. T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. D, 51:1125(1995); 55:5853(1997)(E)
    [21] G. T. Bodwin, D. Kang, and J. Lee, Phys. Rev. D, 74:014014(2006)
    [22] G. T. Bodwin, H.S. Chang, D. Kang, J. Lee, and Chaehyun Yu, Phys. Rev. D, 77:094017(2008)
    [23] N.N. Singh et al, Phys. Rev. D, 38:1454(1988); S. Chakrabarty et al, Prog. Part. Nucl. Phys., 22:143180(1989)
    [24] A. Mittal et al, Phys. Rev. Lett., 57:290(1986); K. K. Gupta et al, Phys. Rev. D, 42:1604(1990); A. Sharma et al, Phys. Rev. D, 50:454(1994)
    [25] S.Bhatnagar, and S-Y.Li, J. Phys. G, 32:949(2006)
    [26] S. Bhatnagar, J. Mahecha, and Y. Mengesha, Phys. Rev D, 90:014034(2014)
    [27] R. Alkofer, P. Watson, and H. Weigel, Phys. Rev. D, 65:094026(2002)
    [28] R. Alkofer and L. W. Smekel, Phys. Rep., 353:281(2001)
    [29] G. Cvetic, C. S. Kim, G.-Li Wang, and W. Namgung, Phys. Lett. B, 596:84(2004)
    [30] A. N. Mitra and B. M. Sodermark, Nucl. Phys. A, 695:328(2001)
    [31] T. Barnes, S. Godfrey, and E.S. Swanson, Phys. Rev. D, 72:054026(2005)
    [32] Olga Lakhina and Eric S. Swanson, Phys. Rev D, 74:014012(2006), arXiv:hep-ph/0603164
    [33] M.B. Voloshin, Prog. Part. Nucl. Phys., 61:455(2008), arXiv:0711.4556[hep-ph]
    [34] E. Eichten, S. Godfrey, and H. Mahlke, J.L. Rosner, Rev. Mod. Phys., 80:1161(2008)
    [35] W. Lucha and F. Shoberl, Int. J. Mod. Phys. C, 10:(1999), arXiv:hep-ph/9811453
    [36] L. Landau, Phys. Abstracts A, 52:125(1949)
    [37] C. N. Yang, Phys. Rev., 77:242(1950)
    [38] Kwong Waikwok et al, Phys. Rev. D, 37:3210(1988)
    [39] Arpit Parmar, Bhavin Patel, and P. C. Vinodkumar, Nuclear Physics A, 848:299-316(2010)
    [40] Patel Bhavin, et al, J. Phys. G:Nucl. Part. Phys., 36:035003(2009)
    [41] Rai A K, Patel B, and Vinodkumar P C, Phys. Rev. C, 78:055202(2008)
    [42] Han-Wen Huang and Kuang-Ta Chao, Phys. Rev. D, 54:6850(1996); Han-Wen Huang and Kuang-Ta Chao, Phys. Rev. D, 56:182(1996)
    [43] R. Barbieri, R. Gatto, and R. Kogerler, Phys. Lett. B, 60:183(1976)
    [44] A. Petrelli, M. Cacciari, M. Greco, F. Maltoni, and M.L. Mangano, Nucl. Phys. B, 514:245(1998)
    [45] Wang G L, Phys. Lett. B, 653; 206(2007)
    [46] J. P. Lansberg, and T. N. Pham, Phys. Rev. D, 79:094016(2009), arXiv:0903.1562[hep-ph]
    [47] R. Barbieri, M. Caffo, R. Gatto, and E. Remiddi, Nucl. Phys. B, 192:61(1981)
    [48] M. Mangano and A. Petrelli, Phys. Lett. B, 352:445(1995)
    [49] Bhavin Patel et al, J. Phy. G.:Nucl. Part. Phys., 35:065001(2008)
    [50] P C Vinodkumar and Bhavin Patel, Chinese Phys. C, 34:1411(2010)
    [51] Appelquist T and Politzer H D, Phys. Rev. Lett., 34:43(1975)
    [52] Bodwin G T and Petrelli A, Phys. Rev. D, 66:094011(2002)
    [53] Bali G S, Schiling K, and Wachter A, Phys. Rev. D, 56:2566
    [54] Lakhina O and Swanson E S, Phys. Rev. D, 74:014012(2006)
    [55] Okamoto M et al, Phys. Rev. D, 65:094508(2002)
    [56] M. Shah, A. Parmar, and P. C. Vinodkumar, Phys. Rev. D, 86:034015(2012)
    [57] Daniel Mohler et al, Fermilab Lattice and MILC Collaborations, arXiv:hep-lat/1412.1057v1
    [58] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. M.Yan, Phys. Rev. D, 17:3090(1978)
    [59] Stanley F. Radford, and Wayne W. Repko, Phys. Rev. D, 75:074031(2007)
    [60] Buchmuller and Tye, Phys. Rev. D, 24:132(1981)
    [61] Vinodkumar P C, Pandya J N, Bannur V M, and Khadkikar S B, Eur. Phys.J. A, 4:83(1999)
    [62] Gonzalez P, Valcarce A, Garcilazo H, and Vijande J, Phys. Rev. D, 68:034007(2003)
    [63] Bai-Qing Li and Kuang-Ta Chao, Phys. Rev. D, 79:094004(2009)
    [64] Chien-Wen Hwang and Rurng-Sheng Guo, Phy. Rev. D, 82:034021(2010)
    [65] S N Gupta et al, Phy. Rev. D, 54:2075(1996)
    [66] H. W. Crater, C. Y. Wong, and P. VanAlstine, Phys. Rev. D, 74:054028(2006)
    [67] James T L et al, arXiv:hep-ph/0901.3917
    [68] M. G. Olsson, A. D. Martin, and A.W. Peacock, Phys. Rev. D. 31:81(1985)
    [69] Huang H W et al, Phys. Rev. D. 54:2123(1996)
  • 加载中

Get Citation
Smruti Patel, P. C. Vinodkumar and Shashank Bhatnagar. Decay rates of charmonia within a quark-antiquark confining potential[J]. Chinese Physics C, 2016, 40(5): 053102. doi: 10.1088/1674-1137/40/5/053102
Smruti Patel, P. C. Vinodkumar and Shashank Bhatnagar. Decay rates of charmonia within a quark-antiquark confining potential[J]. Chinese Physics C, 2016, 40(5): 053102.  doi: 10.1088/1674-1137/40/5/053102 shu
Milestone
Received: 2015-08-13
Revised: 2015-11-12
Fund

    Supported by Major Research Project NO. F. 40-457/2011(SR), UGC, India

Article Metric

Article Views(1784)
PDF Downloads(168)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Decay rates of charmonia within a quark-antiquark confining potential

    Corresponding author: Smruti Patel,
    Corresponding author: P. C. Vinodkumar,
    Corresponding author: Shashank Bhatnagar,
  • 1.  Department of Physics, Sardar Patel University, Vallabh Vidyanagar, India
  • 2.  Department of Physics, Addis Ababa University, P. O. Box 101739, Addis Ababa, Ethiopia
Fund Project:  Supported by Major Research Project NO. F. 40-457/2011(SR), UGC, India

Abstract: In this work, we investigate the spectroscopy and decay rates of charmonia within the framework of the non-relativistic Schrödinger equation by employing an approximate inter quark-antiquark potential. The spin hyperfine, spin-orbit and tensor components of the one gluon exchange interaction are employed to compute the spectroscopy of the excited S states and a few low-lying P and D waves. The resultant wave functions at zero inter quark separation as well as some finite separations are employed to predict the di-gamma, di-leptonic and di-gluon decay rates of charmonia states using the conventional Van Royen-Weisskopf formula. The di-gamma and di-leptonic decay widths are also computed by incorporating the relativistic corrections of order ν4 within the NRQCD formalism. We have observed that the NRQCD predictions with their matrix elements computed at finite radial separation yield results which are found to be in better agreement with experimental values for both di-gamma and di-leptonic decays. The same scenario is seen in the case when di-gamma and di-leptonic decay widths are computed with the Van Royen-Weisskopf formula. It is also observed that the di-gluon decay width with the inclusion of binding energy effects are in better agreement with the experimental data available for 1S-2S and 1P. The di-gluon decay width of 3S and 2P waves waves are also predicted. Thus, the present study of decay rates clearly indicates the importance of binding energy effects.

    HTML

Reference (69)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return