-
Abstract:
With new generation neutron sources, traditional neutron detectors cannot satisfy the demands of the applications, especially under high flux. Furthermore, facing the global crisis in 3He gas supply, research on new types of neutron detector as an alternative to 3He is a research hotspot in the field of particle detection. GEM (Gaseous Electron Multiplier) neutron detectors have high counting rate, good spatial and time resolution, and could be one future direction of the development of neutron detectors. In this paper, the physical process of neutron detection is simulated with Geant4 code, studying the relations between thermal conversion efficiency, boron thickness and number of boron layers. Due to the special characteristics of neutron detection, we have developed a novel type of special ceramic nTHGEM (neutron THick GEM) for neutron detection. The performance of the nTHGEM working in different Ar/CO2 mixtures is presented, including measurements of the gain and the count rate plateau using a copper target X-ray source. A detector with a single nTHGEM has been tested for 2-D imaging using a 252Cf neutron source. The key parameters of the performance of the nTHGEM detector have been obtained, providing necessary experimental data as a reference for further research on this detector.
-
-
References
[1]
|
R. T. Kouzes, A. T. Lintereur, and E. R. Siciliano, Nucl. Instrum. Methods A, 784:172-175(2015) |
[2]
|
M. R. Fitzsimmons, S. D. Bader, J. A. Borchers et al, J MAGN MAGN MATER, 271:103-146(2004) |
[3]
|
A. Pietropaolo, F. Murtas, G. Claps et al, Nucl. Instrum. Methods A, 729:117-126(2013) |
[4]
|
H. Ohshita, S Uno, T Otomo et al, Nucl.Instr. Methods A, 623:126-128(2010) |
[5]
|
C. J. Schmidt, M. Klein, Neutron News, 17(1):12-15(2006) |
[6]
|
M. Klein, C. J. Schmidt, Nucl. Instrum. Methods A, 628:9-18(2011) |
[7]
|
Y. G. Xie, J. G. L, A. W. Zhang et al, Nucl. Instrum. Methods A, 729:809-815(2013) |
[8]
|
J. R. Zhou, Z. J. Sun, B. Liu et al, Chin. Phys. C, 35(7):668-674(2011) |
[9]
|
J. Q. Yan, Y. G. Xie, T. Hu et al, Chin. Phys. C, 39(6):066001(2015) |
[10]
|
Y. F. Wang, Z. J. Sun, J. R. Zhou et al. SCI CHINA PHYS MECH, 56:1897-1902(2013) |
[11]
|
Z. Y. He, J. R. Zhou, Z. J. Sun et al, Chin. Phys. C, 38(5):58-61(2013) |
[12]
|
L. Yang, J. R. Zhou, Z. J. Sun et al, Chin. Phys. C, 39(5):056002(2015) |
-
[1] |
Xin Wu
, Qi Chen
, Ye Xing
, Zhi-Peng Xing
, Ruilin Zhu
. SU(3) flavor symmetry analysis of hyperon non-leptonic two body decays. Chinese Physics C,
2025, 49(12): 123101.
doi: 10.1088/1674-1137/adf1f1
|
[2] |
Ronghao Hu
, Qike Gu
, Kejian Shi
, Zezhong Wei
, Meng Lv
, Shiyang Zou
, Yongkun Ding
. Polarized neutron beams from polarized deuterium-tritium fusion with applications to magnetic field imaging in high-energy-density plasmas. Chinese Physics C,
2025, 49(12): 124102.
doi: 10.1088/1674-1137/adec4f
|
[3] |
YAN Jia-Qing
, XIE Yu-Guang
, HU Tao
, LU Jun-Guang
, ZHOU Li
, QU Guo-Pu
, CAI Xiao
, NIU Shun-Li
, CHEN Hai-Tao
. Simulation and performance study of ceramic THGEM. Chinese Physics C,
2015, 39(6): 066001.
doi: 10.1088/1674-1137/39/6/066001
|
[4] |
ZHANG Cong
, HE Yuan
, ZHAO Hong-Wei
, ZHANG Sheng-Hu
. Multipacting simulation and analysis of a taper quarter wave cavity by using Analyst-PT3P. Chinese Physics C,
2012, 36(4): 362-366.
doi: 10.1088/1674-1137/36/4/012
|
[5] |
GUO Yan-Qing
, SONG Jie
. Quantitative conditions for the formation of p-wave neutron halos. Chinese Physics C,
2011, 35(2): 158-162.
doi: 10.1088/1674-1137/35/2/010
|
[6] |
LIU Chang-Long
, LU Yi-Ying
, YIN LI
. Effects of Additional Vacancy-Like Defects Produced by Ion Impealations on Boron Thermal Diffusion in Silicon. Chinese Physics C,
2005, 29(11): 1107-1111. |
-
Access
-
-