Entropy of nonrotating isolated horizons in Lovelock theory from loop quantum gravity

  • In this paper, the BF theory method is applied to the nonrotating isolated horizons in Lovelock theory. The final entropy matches the Wald entropy formula for this theory. We also confirm the conclusion obtained by Bodendorfer et al. that the entropy is related to the flux operator rather than the area operator in general diffeomorphic-invariant theory.
      PCAS:
  • 加载中
  • [1] J. D. Bekenstein, Phys. Rev. D, 7: 2333-2346 (1973)
    [2] S. W. Hawking, Nature, 248: 30-31 (1974)
    [3] S. Carlip, Lect. Notes Phys, 769: 89-123 (2009)
    [4] R. M. Wald, Phys. Rev. D, 48: 3427-3431 (1993)
    [5] V. Iyer and R. M. Wald, Phys. Rev. D, 50: 846-864 (1994)
    [6] T. Jacobson, G. Kang, and R. C. Myers, Phys. Rev. D, 49: 6587-6598 (1994)
    [7] D. Lovelock, J. Math. Phys., 12: 498-501 (1971)
    [8] X. O. Camanho and J. D. Edelstein, Class. Quant. Grav., 30: 035009 (2013)
    [9] N. Bodendorfer and Y. Neiman, Phys. Rev. D, 90: 084054 (2014)
    [10] C. Rovelli, Quantum Gravity (Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2004)
    [11] T. Thiemann, Modern Canonical Quantum General Relativity (ewblock Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2008)
    [12] A. Ashtekar and J. Lewandowski, Class. Quant. Grav., 21: R53 (2004)
    [13] M. Han, W. Huang, and Y. Ma, Int. J. Mod. Phys. D, 16: 1397-1474 (2007)
    [14] J. Wang, Y. Ma, and X.-A. Zhao, Phys. Rev. D, 89: 084065 (2014)
    [15] J. Wang and C.-G. Huang, Class. Quant. Grav., 32: 035026 (2015)
    [16] A. Ashtekar, C. Beetle, and S. Fairhurst, Class. Quant. Grav., 16: L1-L7 (1999)
    [17] A. Ashtekar, S. Fairhurst, and B. Krishnan, Phys. Rev. D, 62: 104025 (2000)
    [18] A. Ashtekar, J. C. Baez, A. Corichi, and K. Krasnov, Phys. Rev. Lett., 80: 904-907 (1998)
    [19] A. Ashtekar, J. C. Baez, and K. Krasnov, Adv. Theor. Math. Phys., 4: 1-94 (2000)
    [20] T. Liko and I. Booth, Class. Quant.Grav., 24: 3769-3782 (2007)
    [21] X.-N. Wu, C.-G. Huang, and J.-R. Sun, Phys. Rev. D, 77: 124023 (2008)
    [22] T. Jacobson and R. C. Myers, Phys. Rev. Lett., 70: 3684-3687 (1993)
    [23] G. F. Barbero, J. Lewandowski, and E. Villasenor, Phys. Rev. D, 80: 044016 (2009)
  • 加载中

Get Citation
Jing-Bo Wang, Chao-Guang Huang and Lin Li. Entropy of nonrotating isolated horizons in Lovelock theory from loop quantum gravity[J]. Chinese Physics C, 2016, 40(8): 083102. doi: 10.1088/1674-1137/40/8/083102
Jing-Bo Wang, Chao-Guang Huang and Lin Li. Entropy of nonrotating isolated horizons in Lovelock theory from loop quantum gravity[J]. Chinese Physics C, 2016, 40(8): 083102.  doi: 10.1088/1674-1137/40/8/083102 shu
Milestone
Received: 2016-01-25
Revised: 2016-04-25
Fund

    Supported by National Natural Science Foundation of China (11275207)

Article Metric

Article Views(1733)
PDF Downloads(147)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Entropy of nonrotating isolated horizons in Lovelock theory from loop quantum gravity

    Corresponding author: Jing-Bo Wang,
    Corresponding author: Chao-Guang Huang,
    Corresponding author: Lin Li,
  • 1.  Institute of High Energy Physics and Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049, China
  • 2.  Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Supported by National Natural Science Foundation of China (11275207)

Abstract: In this paper, the BF theory method is applied to the nonrotating isolated horizons in Lovelock theory. The final entropy matches the Wald entropy formula for this theory. We also confirm the conclusion obtained by Bodendorfer et al. that the entropy is related to the flux operator rather than the area operator in general diffeomorphic-invariant theory.

    HTML

Reference (23)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return