Preliminary study of 10Be/7Be in rainwater from Xi'an by Accelerator Mass Spectrometry

  • The 10Be/7Be ratio is a sensitive tracer for the study of atmospheric transport, particularly with regard to stratosphere-troposphere exchange. Measurements with high accuracy and efficiency are crucial to 7Be and 10Be tracer studies. This article describes sample preparation procedures and analytical benchmarks for 7Be and 10Be measurements at the Xi'an Accelerator Mass Spectrometry (Xi'an-AMS) laboratory for the study of rainwater samples. We describe a sample preparation procedure to fabricate beryllium oxide (BeO) AMS targets that includes co-precipitation, anion exchange column separation and purification. We then provide details for the AMS measurement of 7Be and 10Be following the sequence BeO-→Be2+→Be4+ in the Xi'an-AMS. The 10Be/7Be ratio of rainwater collected in Xi'an is shown to be about 1.3 at the time of rainfall. The virtue of the method described here is that both 7Be and 10Be are measured in the same sample, and it is suitable for routine analysis of large numbers of rainwater samples by AMS.
  • [1] D. Lal, B. Peters, in Kosmische StrahlungⅡ/Cosmic RaysⅡ, edited by K. Sitte (Berlin, Heidelberg:Spring Berlin Heidelberg, 1967), p. 551-612
    [2] L. R. McHargue, P. E. Damon, Rev Geophys, 29(2):141-158(1991)
    [3] E. F. Danielsen, J Atmos Sci, 25:502-518(1968)
    [4] I. G. Usoskin, C. V. Field, G. A. Schmidt et al, Cosmogenic isotope 7Be as a tracer for air mass dynamics, in Proceedings of the 31st International Cosmic Ray Conference (Ldź Poland, 2009)
    [5] E. Gerasopoulos, P. Zanis, A. Stohl et al, Atmos Environ, 35(36):6347-6360(2001)
    [6] C. A. Huh, C. C. Su, L.J. Shiau, J Geophys Res:Atmosphere, 111(D16):D16304(2006)
    [7] X. D. Zheng, C. D. Shen, G. J. Wan et al, Chinese Sci Bull, 56(1):84-88(2011)
    [8] P. J. Wallbrink, A.S. Murray, Water Resour Res, 32, 467-476(1996)
    [9] J. Chmeleff, F. von Blanckenburg, K. Kossert et al, Nucl. Instrum. Methods B, 268(2):192-199(2010)
    [10] G. Korschinek, A. Bergmaier, T. Faestermann et al, Nucl. Instrum. Methods B, 268(2):187-191(2010)
    [11] C. D. Shen, P. Ding, N. Wang et al, Quat Sci, 27(6):919-33(2007) (in Chinese)
    [12] C. D. Shen, W. X. Yi, P. Ding et al, Radiocarbon, 55(2-3):1790-1800(2013)
    [13] G. M. Raisbeck, F. Yiou, O. Cattani et al, Nature, 444(7115):82-84(2006)
    [14] W. J. Zhou, J. W. Beck, X. H. Kong et al, Geology, 42(6):467-470(2014a)
    [15] K. Horiuchi, T. Uchida, Y. Sakamoto et al, Quat Geochronol, 3(3):253-261(2008)
    [16] G. M. Raisbeck, F. Yiou, M. Fruneau et al, Geophys Res Lett, 8(9):1015-1018(1981)
    [17] C. E. Jordan, J. E. Dibb, R. C. Finkel, J Geophys Res:Atmospheres, 108(D8):4234(2003)
    [18] I. Graham, R. Ditchburn, B. Barry, Geochim Cosmochim Ac, 67:361-373(2003)
    [19] U. Heikkil, J. Beer, V. Alfimov, J Geophys Res:Atmospheres, 113:D11104(2008)
    [20] W. J. Zhou, F. Xian, J. W. Beck et al, Radiocarbon, 52(1):129-147(2010)
    [21] W. J. Zhou, F. Xian, Y. J. Du et al, J Geophys Res:Solid Earth, 119(1):191-197(2014b)
    [22] F. Xian, The study of the data analysis for the past 80 ka paleo-magnetic field tracing and paleo-precipitation reconstruction from 10Be in loess of China. Ph. D. Thesis (Beijing:Graduate University of Chinese Academy of Sciences, 2007) (in Chinese)
    [23] L. Zhang, Z. K. Wu, H. Chang et al, Radiocarbon, 58(01):193-203(2016)
    [24] C. Schuler, E. Wieland, P. H. Santschi et al, J Geophys Res:Ocean, 96(C9):17051-17065(1991)
    [25] M. Baskaran, H. Charles, C. Coleman et al, J Geophys Res:Atmosphere, 98(D11):20555-20571(1993)
    [26] C. Rdenas, J. Gmez, L. S. Quinds et al, Appl Radiat Isotopes, 48(4):545-548(1997)
    [27] G. M. Raisbeck, F. Yiou, M. Fruneau et al, Nature, 282:279-280(1979)
    [28] W. J. Zhou, X. L. Zhao, X. F. Lu et al, Radiocarbon, 48(2):285-293(2006)
    [29] W. J. Zhou, X. F. Lu, Z. K. Wu et al, Nucl. Instrum. Methods B, 262(1):135-142(2007)
    [30] Y. C. Fu, W. J. Zhou H. Du et al, Chinese Phys C, 39(3):036202(2015)
    [31] Y. C. Fu, L. Zhang, W. J. Zhou et al, Nucl. Instrum. Methods B, 361:207-210(2015)
    [32] G. M. Raisbeck, F. Yiou, Earth Planet Sc Lett, 89(1):103-108(1988)
    [33] L. Brown, G. J. Stensland, J. Klein et al, Geochimi Cosmochim Ac, 53(1):135-142(1988)
    [34] D. L. Knies, D. Elmore, P. Sharma et al, Nucl. Instrum. Methods B, 92(1-4):340-344(1994)
    [35] M. C. Monaghan, S. Krishnaswami, K. K. Turekian, Earth Planet Sc Lett, 76(3):279-287(1986)
  • [1] D. Lal, B. Peters, in Kosmische StrahlungⅡ/Cosmic RaysⅡ, edited by K. Sitte (Berlin, Heidelberg:Spring Berlin Heidelberg, 1967), p. 551-612
    [2] L. R. McHargue, P. E. Damon, Rev Geophys, 29(2):141-158(1991)
    [3] E. F. Danielsen, J Atmos Sci, 25:502-518(1968)
    [4] I. G. Usoskin, C. V. Field, G. A. Schmidt et al, Cosmogenic isotope 7Be as a tracer for air mass dynamics, in Proceedings of the 31st International Cosmic Ray Conference (Ldź Poland, 2009)
    [5] E. Gerasopoulos, P. Zanis, A. Stohl et al, Atmos Environ, 35(36):6347-6360(2001)
    [6] C. A. Huh, C. C. Su, L.J. Shiau, J Geophys Res:Atmosphere, 111(D16):D16304(2006)
    [7] X. D. Zheng, C. D. Shen, G. J. Wan et al, Chinese Sci Bull, 56(1):84-88(2011)
    [8] P. J. Wallbrink, A.S. Murray, Water Resour Res, 32, 467-476(1996)
    [9] J. Chmeleff, F. von Blanckenburg, K. Kossert et al, Nucl. Instrum. Methods B, 268(2):192-199(2010)
    [10] G. Korschinek, A. Bergmaier, T. Faestermann et al, Nucl. Instrum. Methods B, 268(2):187-191(2010)
    [11] C. D. Shen, P. Ding, N. Wang et al, Quat Sci, 27(6):919-33(2007) (in Chinese)
    [12] C. D. Shen, W. X. Yi, P. Ding et al, Radiocarbon, 55(2-3):1790-1800(2013)
    [13] G. M. Raisbeck, F. Yiou, O. Cattani et al, Nature, 444(7115):82-84(2006)
    [14] W. J. Zhou, J. W. Beck, X. H. Kong et al, Geology, 42(6):467-470(2014a)
    [15] K. Horiuchi, T. Uchida, Y. Sakamoto et al, Quat Geochronol, 3(3):253-261(2008)
    [16] G. M. Raisbeck, F. Yiou, M. Fruneau et al, Geophys Res Lett, 8(9):1015-1018(1981)
    [17] C. E. Jordan, J. E. Dibb, R. C. Finkel, J Geophys Res:Atmospheres, 108(D8):4234(2003)
    [18] I. Graham, R. Ditchburn, B. Barry, Geochim Cosmochim Ac, 67:361-373(2003)
    [19] U. Heikkil, J. Beer, V. Alfimov, J Geophys Res:Atmospheres, 113:D11104(2008)
    [20] W. J. Zhou, F. Xian, J. W. Beck et al, Radiocarbon, 52(1):129-147(2010)
    [21] W. J. Zhou, F. Xian, Y. J. Du et al, J Geophys Res:Solid Earth, 119(1):191-197(2014b)
    [22] F. Xian, The study of the data analysis for the past 80 ka paleo-magnetic field tracing and paleo-precipitation reconstruction from 10Be in loess of China. Ph. D. Thesis (Beijing:Graduate University of Chinese Academy of Sciences, 2007) (in Chinese)
    [23] L. Zhang, Z. K. Wu, H. Chang et al, Radiocarbon, 58(01):193-203(2016)
    [24] C. Schuler, E. Wieland, P. H. Santschi et al, J Geophys Res:Ocean, 96(C9):17051-17065(1991)
    [25] M. Baskaran, H. Charles, C. Coleman et al, J Geophys Res:Atmosphere, 98(D11):20555-20571(1993)
    [26] C. Rdenas, J. Gmez, L. S. Quinds et al, Appl Radiat Isotopes, 48(4):545-548(1997)
    [27] G. M. Raisbeck, F. Yiou, M. Fruneau et al, Nature, 282:279-280(1979)
    [28] W. J. Zhou, X. L. Zhao, X. F. Lu et al, Radiocarbon, 48(2):285-293(2006)
    [29] W. J. Zhou, X. F. Lu, Z. K. Wu et al, Nucl. Instrum. Methods B, 262(1):135-142(2007)
    [30] Y. C. Fu, W. J. Zhou H. Du et al, Chinese Phys C, 39(3):036202(2015)
    [31] Y. C. Fu, L. Zhang, W. J. Zhou et al, Nucl. Instrum. Methods B, 361:207-210(2015)
    [32] G. M. Raisbeck, F. Yiou, Earth Planet Sc Lett, 89(1):103-108(1988)
    [33] L. Brown, G. J. Stensland, J. Klein et al, Geochimi Cosmochim Ac, 53(1):135-142(1988)
    [34] D. L. Knies, D. Elmore, P. Sharma et al, Nucl. Instrum. Methods B, 92(1-4):340-344(1994)
    [35] M. C. Monaghan, S. Krishnaswami, K. K. Turekian, Earth Planet Sc Lett, 76(3):279-287(1986)
  • 加载中

Cited by

1. He, Q., He, X., Li, T. Measuring intensity interference in a low multiplicity system ΠΠX with a new observing method[J]. Acta Physica Polonica B, 2020, 51(2): 463-471. doi: 10.5506/APhysPolB.51.463
2. He, Q., Li, T., He, X. et al. Sub-regional event mixing constraints for two-pion Bose-Einstein correlations measurements in ππx system[J]. International Journal of Modern Physics E, 2019, 28(4): 1950024. doi: 10.1142/S0218301319500241
3. He, Q.. An event-mixing method using energy hierarchy constraint for two-pion Bose-Einstein correlations measurements in ππx system[J]. International Journal of Modern Physics E, 2018, 27(11): 1850095. doi: 10.1142/S0218301318500957
4. He, Q.. An event mixing method with invariant-mass/energy hierarchy correspondence cut for Bose–Einstein correlations in ππX system[J]. Acta Physica Polonica B, 2018, 49(11): 1877-1884. doi: 10.5506/APhysPolB.49.1877
Get Citation
Li Zhang and Yun-Chong Fu. Preliminary study of 10Be/7Be in rainwater from Xi'an by Accelerator Mass Spectrometry[J]. Chinese Physics C, 2017, 41(1): 018201. doi: 10.1088/1674-1137/41/1/018201
Li Zhang and Yun-Chong Fu. Preliminary study of 10Be/7Be in rainwater from Xi'an by Accelerator Mass Spectrometry[J]. Chinese Physics C, 2017, 41(1): 018201.  doi: 10.1088/1674-1137/41/1/018201 shu
Milestone
Received: 2016-05-06
Fund

    Supported by National Natural Science Foundation of China (11205161) and CAS Key Technology Talent Program

Article Metric

Article Views(2796)
PDF Downloads(92)
Cited by(4)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Preliminary study of 10Be/7Be in rainwater from Xi'an by Accelerator Mass Spectrometry

    Corresponding author: Yun-Chong Fu,
  • 1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
  • 2. Xi'an AMS Center, Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an 710061, China
  • 3. University of Chinese Academy of Sciences, Beijing 100049, China
  • 4. Xi'an AMS Center, Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an 710061, China
Fund Project:  Supported by National Natural Science Foundation of China (11205161) and CAS Key Technology Talent Program

Abstract: The 10Be/7Be ratio is a sensitive tracer for the study of atmospheric transport, particularly with regard to stratosphere-troposphere exchange. Measurements with high accuracy and efficiency are crucial to 7Be and 10Be tracer studies. This article describes sample preparation procedures and analytical benchmarks for 7Be and 10Be measurements at the Xi'an Accelerator Mass Spectrometry (Xi'an-AMS) laboratory for the study of rainwater samples. We describe a sample preparation procedure to fabricate beryllium oxide (BeO) AMS targets that includes co-precipitation, anion exchange column separation and purification. We then provide details for the AMS measurement of 7Be and 10Be following the sequence BeO-→Be2+→Be4+ in the Xi'an-AMS. The 10Be/7Be ratio of rainwater collected in Xi'an is shown to be about 1.3 at the time of rainfall. The virtue of the method described here is that both 7Be and 10Be are measured in the same sample, and it is suitable for routine analysis of large numbers of rainwater samples by AMS.

    HTML

Reference (35)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return