×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Broken S3L×S3R flavor symmetry and leptonic CP violation

  • In the framework of the canonical seesaw model, we present a simple but viable scenario to explicitly break an S3L×S3R flavor symmetry in the leptonic sector. It turns out that the leptonic flavor mixing matrix is completely determined by the mass ratios of the charged leptons (i.e., me/mμ and mμ/mτ) and those of light neutrinos (i.e., m1/m2 and m2/m3). The latest global-fit results of the three neutrino mixing angles θ12, θ13, θ23 and two neutrino mass-squared differences △ m212, △ m312 at the 3σ level are used to constrain the parameter space of m1/m2, m2/m3. The predictions for the mass spectrum and flavor mixing are highlighted:(1) the neutrino mass spectrum shows a hierarchical pattern and a normal ordering, e.g., m1 ≈ 2.2 meV, m2 ≈ 8.8 meV and m3 ≈ 52.7 meV; (2) only the first octant of θ23 is allowed, namely, 41.8° ≤ θ23 ≤ 43.3° (3) the Dirac CP-violating phase δ ≈ -22° deviates significantly from the maximal value -90°. All these predictions are ready to be tested in ongoing and forthcoming neutrino oscillation experiments. Moreover, we demonstrate that the cosmological matter-antimatter asymmetry can be explained via resonant leptogenesis, including the individual lepton-flavor effects. In our scenario, leptonic CP violation at low-and high-energy scales is closely connected.
      PCAS:
  • 加载中
  • [1] T. Kajita, Rev. Mod. Phys., 88(3):030501(2016)
    [2] A. B. McDonald, Rev. Mod. Phys., 88(3):030502(2016)
    [3] B. Pontecorvo, Sov. Phys. JETP, 6:429(1957); Zh. Eksp. Teor. Fiz., 33:549(1957)
    [4] Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys., 28:870(1962)
    [5] C. Patrignani et al (Particle Data Group), Chin. Phys. C, 40(10):100001(2016)
    [6] F. Capozzi, E. Lisi, A. Marrone, D. Montanino, and A. Palazzo, Nucl. Phys. B, 908:218(2016), arXiv:1601.07777
    [7] F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri, and A. Palazzo, Phys. Rev. D, 95(9):096014(2017), arXiv:1703.04471
    [8] D. V. Forero, M. Tortola, and J. W. F. Valle, Phys. Rev. D, 90(9):093006(2014), arXiv:1405.7540
    [9] F. An et al (JUNO Collaboration), J. Phys. G 43(3):030401(2016), arXiv:1507.05613
    [10] S. B. Kim, Nuovo Cim. C, 39(4):317(2017)
    [11] K. Abe et al (T2K Collaboration), Nucl. Instrum. Meth. A, 659:106(2011), arXiv:1106.1238
    [12] D. S. Ayres et al (NOvA Collaboration), NOvA:Proposal to Build a 30 Kiloton Off-Axis Detector to Study e Oscillations in the NuMI Beamline, hep-ex/0503053
    [13] R. Acciarri et al (DUNE Collaboration), Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE):Volume 2:The Physics Program for DUNE at LBNF, arXiv:1512.06148
    [14] P. Minkowski, Phys. Lett. B, 67:421(1977)
    [15] T. Yanagida, In Proceedings of the Workshop on Unified Theory and the Baryon Number of the Universe:edited by O. Sawada and A. Sugamoto, (KEK, Tsukuba, 1979), p.95
    [16] M. Gell-Mann, P. Ramond, and R. Slansky, In Supergravity:edited by P. van Nieuwenhuizen and D. Z. Freeman, (North-Holland, Amsterdam, 1979), p. 315
    [17] S. L. Glashow, In Quarks and Leptons:edited by M. Levy et al, (Plenum, New York, 1980), p. 707
    [18] R. N. Mohapatra, and G. Senjanovic, Phys. Rev. Lett., 44:912(1980)
    [19] Z. Z. Xing and S. Zhou, Neutrinos in particle physics, astronomy and cosmology, (Springer-Verlag, Berlin Heidelberg, 2011)
    [20] H. Harari, H. Haut, and J. Weyers, Phys. Lett. B, 78:459(1978)
    [21] C. D. Froggatt and H. B. Nielsen, Nucl. Phys. B, 147:277(1979)
    [22] Y. Koide, Z. Phys. C, 45:39(1989)
    [23] M. Tanimoto, Phys. Rev. D, 41:1586(1990)
    [24] P. Kaus and S. Meshkov, Phys. Rev. D, 42:1863(1990)
    [25] G. C. Branco, J. I. Silva-Marcos, and M. N. Rebelo, Phys. Lett. B, 237:446(1990)
    [26] H. Fritzsch and J. Plankl, Phys. Lett. B, 237:451(1990)
    [27] H. Fritzsch and D. Holtmannspotter, Phys. Lett. B, 338:290(1994), hep-ph/9406241
    [28] G. C. Branco and J. I. Silva-Marcos, Phys. Lett. B, 359:166(1995), hep-ph/9507299
    [29] H. Fritzsch and Z. Z. Xing, Phys. Lett. B, 372:265(1996), hep-ph/9509389
    [30] Z. Z. Xing, J. Phys. G, 23:1563(1997), hep-ph/9609204
    [31] M. Fukugita, M. Tanimoto, and T. Yanagida, Phys. Rev. D, 57:4429(1998), hep-ph/9709388
    [32] A. Mondragon and E. Rodriguez-Jauregui, Phys. Rev. D, 59:093009(1999), hep-ph/9807214
    [33] H. Fritzsch and Z. Z. Xing, Prog. Part. Nucl. Phys., 45:1(2000), hep-ph/9912358
    [34] N. Haba, Y. Matsui, N. Okamura, and T. Suzuki, Phys. Lett. B, 489:184(2000), hep-ph/0005064
    [35] G. C. Branco and J. I. Silva-Marcos, Phys. Lett. B, 526:104(2002), hep-ph/0106125
    [36] M. Fujii, K. Hamaguchi, and T. Yanagida, Phys. Rev. D, 65:115012(2002), hep-ph/0202210
    [37] P. F. Harrison and W. G. Scott, Phys. Lett. B, 557:76(2003), hep-ph/0302025
    [38] J. Kubo, A. Mondragon, M. Mondragon, and E. Rodriguez-Jauregui, Prog. Theor. Phys., 109:795(2003); Prog. Theor. Phys., 114:287(2005), hep-ph/0302196
    [39] S. L. Chen, M. Frigerio, and E. Ma, Phys. Rev. D, 70:073008(2004); Phys. Rev. Dm 70:079905(2004), hep-ph/0404084
    [40] H. Fritzsch and Z. Z. Xing, Phys. Lett. B, 598:237(2004), hep-ph/0406206
    [41] W. Rodejohann and Z. Z. Xing, Phys. Lett. B, 601:176(2004), hep-ph/0408195
    [42] T. Araki, J. Kubo, and E. A. Paschos, Eur. Phys. J. C, 45:465(2006), hep-ph/0502164
    [43] T. Teshima, Phys. Rev. D, 73:045019(2006), hep-ph/0509094
    [44] T. Kimura, Prog. Theor. Phys., 114:329(2005)
    [45] R. N. Mohapatra, S. Nasri, and H. B. Yu, Phys. Lett. B, 639:318(2006), hep-ph/0605020
    [46] Y. Koide, Eur. Phys. J. Cm 50:809(2007), hep-ph/0612058
    [47] A. Mondragon, M. Mondragon, and E. Peinado, Phys. Rev. D, 76:076003(2007), arXiv:0706.0354
    [48] Z. Z. Xing, D. Yang, and S. Zhou, Phys. Lett. B, 690:304(2010), arXiv:1004.4234
    [49] T. Teshima and Y. Okumura, Phys. Rev. D, 84:016003(2011), arXiv:1103.6127
    [50] S. Zhou, Phys. Lett. B, 704:291(2011), arXiv:1106.4808
    [51] P. V. Dong, H. N. Long, C. H. Nam, and V. V. Vien, Phys. Rev. D, 85:053001(2012), arXiv:1111.6360
    [52] S. Dev, R. R. Gautam, and L. Singh, Phys. Lett. B, 708:284(2012), arXiv:1201.3755
    [53] F. Gonzalez Canales, A. Mondragon, and M. Mondragon, Fortsch. Phys., 61:546(2013), arXiv:1205.4755
    [54] R. Jora, J. Schechter, and M. N. Shahid, Int. J. Mod. Phys. A, 28:1350028(2013), arXiv:1210.6755
    [55] F. Gonzlez Canales, A. Mondragn, M. Mondragn, U. J. Salda na Salazar, and L. Velasco-Sevilla, Phys. Rev. D, 88:096004(2013), arXiv:1304.6644
    [56] C. Arbelez, A. E. Crcamo Hernndez, S. Kovalenko, and I. Schmidt, arXiv:1602.03607
    [57] M. J. S. Yang, Phys. Lett. B, 760:747(2016), arXiv:1604.07896
    [58] J. Xu, X. Yang, and D. Yang, Mod. Phys. Lett. A, 31(24):1650131(2016)
    [59] S. Pramanick and A. Raychaudhuri, Phys. Rev. D, 94(11):115028(2016), arXiv:1609.06103
    [60] E. Barradas-Guevara, O. Flix-Beltrn, F. Gonzalez-Canales, and M. Zeleny-Mora, arXiv:1704.03474
    [61] H. Fritzsch, Z. Z. Xing, and D. Zhang, arXiv:1705.01391
    [62] M. Fukugita and T. Yanagida, Phys. Lett. B, 174:45(1986)
    [63] A. Pilaftsis, Phys. Rev. D, 56:5431(1997), hep-ph/9707235
    [64] A. Pilaftsis and T. E. J. Underwood, Nucl. Phys. B, 692:303(2004), hep-ph/0309342
    [65] Z. Z. Xing, H. Zhang and S. Zhou, Phys. Rev. D, 77:113016(2008), arXiv:0712.1419
    [66] Z. Z. Xing, H. Zhang, and S. Zhou, Phys. Rev. D, 86:013013(2012), arXiv:1112.3112
    [67] K. Abe et al (Hyper-Kamiokande Working Group), arXiv:1412.4673
    [68] E. Wildner et al, Adv. High Energy Phys., 2016:8640493(2016), arXiv:1510.00493
    [69] J. Cao et al, Phys. Rev. ST Accel. Beams, 17:090101(2014), arXiv:1401.8125
    [70] M. Blennow, P. Coloma, and E. Fernndez-Martinez, JHEP, 1603:197(2016), arXiv:1511.02859
    [71] Y. Wang and Z. Z. Xing, Adv. Ser. Direct. High Energy Phys., 26:371(2016), arXiv:1504.06155
    [72] K. N. Abazajian et al (CMB-S4 Collaboration), CMB-S4 Science Book, First Edition, arXiv:1610.02743
    [73] W. Buchmuller, P. Di Bari, and M. Plumacher, Annals Phys., 315:305(2005), hep-ph/0401240
    [74] W. Buchmuller, R. D. Peccei, and T. Yanagida, Ann. Rev. Nucl. Part. Sci., 55:311(2005), hep-ph/0502169
    [75] S. Davidson, E. Nardi, and Y. Nir, Phys. Rept., 466:105(2008), arXiv:0802.2962
    [76] T. Hambye, New J. Phys., 14:125014(2012), arXiv:1212.2888
    [77] R. Barbieri, P. Creminelli, A. Strumia, and N. Tetradis, Nucl. Phys. B, 575:61(2000), hep-ph/9911315
    [78] A. Abada, S. Davidson, F. X. Josse-Michaux, M. Losada, and A. Riotto, JCAP, 0604:004(2006), hep-ph/0601083
    [79] E. Nardi, Y. Nir, E. Roulet, and J. Racker, JHEP, 0601:164(2006), hep-ph/0601084
    [80] P. A. R. Ade et al (Planck Collaboration), Astron. Astrophys., 594:A13(2016), arXiv:1502.01589
    [81] Z. Z. Xing and S. Zhou, Phys. Lett. B, 653:278(2007), hep-ph/0607302
    [82] J. Zhang and S. Zhou, JHEP, 1509:065(2015), arXiv:1505.04858
    [83] S. Blanchet and P. Di Bari, JCAP, 0606:023(2006), hep-ph/0603107
    [84] S. Blanchet and P. Di Bari, JCAP, 0703:018(2007), hep-ph/0607330
    [85] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada, and M. Tanimoto, Prog. Theor. Phys. Suppl., 183:1(2010), arXiv:1003.3552
    [86] W. Grimus and P. O. Ludl, J. Phys. A, 45:233001(2012), arXiv:1110.6376
  • 加载中

Get Citation
Zong-guo Si, Xing-hua Yang and Shun Zhou. Broken S3L×S3R flavor symmetry and leptonic CP violation[J]. Chinese Physics C, 2017, 41(11): 113105. doi: 10.1088/1674-1137/41/11/113105
Zong-guo Si, Xing-hua Yang and Shun Zhou. Broken S3L×S3R flavor symmetry and leptonic CP violation[J]. Chinese Physics C, 2017, 41(11): 113105.  doi: 10.1088/1674-1137/41/11/113105 shu
Milestone
Received: 2017-06-19
Fund

    Supported by NNSFC (11325525), National Recruitment Program for Young Professionals and CAS Center for Excellence in Particle Physics (CCEPP)

Article Metric

Article Views(1576)
PDF Downloads(31)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Broken S3L×S3R flavor symmetry and leptonic CP violation

    Corresponding author: Zong-guo Si,
    Corresponding author: Xing-hua Yang,
    Corresponding author: Shun Zhou,
  • 1.  School of Physics, Shandong University, Jinan, Shandong 250100, China
  • 2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 3. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4. Center for High Energy Physics, Peking University, Beijing 100871, China
Fund Project:  Supported by NNSFC (11325525), National Recruitment Program for Young Professionals and CAS Center for Excellence in Particle Physics (CCEPP)

Abstract: In the framework of the canonical seesaw model, we present a simple but viable scenario to explicitly break an S3L×S3R flavor symmetry in the leptonic sector. It turns out that the leptonic flavor mixing matrix is completely determined by the mass ratios of the charged leptons (i.e., me/mμ and mμ/mτ) and those of light neutrinos (i.e., m1/m2 and m2/m3). The latest global-fit results of the three neutrino mixing angles θ12, θ13, θ23 and two neutrino mass-squared differences △ m212, △ m312 at the 3σ level are used to constrain the parameter space of m1/m2, m2/m3. The predictions for the mass spectrum and flavor mixing are highlighted:(1) the neutrino mass spectrum shows a hierarchical pattern and a normal ordering, e.g., m1 ≈ 2.2 meV, m2 ≈ 8.8 meV and m3 ≈ 52.7 meV; (2) only the first octant of θ23 is allowed, namely, 41.8° ≤ θ23 ≤ 43.3° (3) the Dirac CP-violating phase δ ≈ -22° deviates significantly from the maximal value -90°. All these predictions are ready to be tested in ongoing and forthcoming neutrino oscillation experiments. Moreover, we demonstrate that the cosmological matter-antimatter asymmetry can be explained via resonant leptogenesis, including the individual lepton-flavor effects. In our scenario, leptonic CP violation at low-and high-energy scales is closely connected.

    HTML

Reference (86)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return