Processing math: 100%

α decay properties of 297Og within the two-potential approach

  • The α decay half-life of the unknown nucleus 297Og is predicted within the two-potential approach, and α preformation probabilities of 64 odd-A nuclei in the region of proton numbers 82 < Z < 126 and neutron numbers 152 < N < 184, from 251Cf to 295Og, are extracted. In addition, based on the latest experimental data, a new set of parameters for α preformation probabilities considering the shell effect and proton-neutron interaction are obtained. The predicted α decay half-life of 297Og is 0.16 ms within a factor of 4.97. The predicted spin and parity of the ground states for 269Sg, 285Fl and 293Lv are 3/2+, 3/2+ and 5/2+, respectively.
      PCAS:
  • [1] S. Hofmann and G. Mnzenberg, Rev. Mod. Phys., 72:733-767(2000)
    [2] S. Hofmann, Radiochim. Acta, 99:405-428
    [3] Y. T. Oganessian and K. P. Rykaczewski, Phys. Today, 68:32-38(2015)
    [4] Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin et al, Phys. Rev. C, 76:011601(2007)
    [5] E. Peik and Z. Kai, Phys. Rev. Lett., 74:044602(2006)
    [6] Y. Oganessian, J. Phys. G, 34:R165(2007)
    [7] Y. T. Oganessian, F. S. Abdullin, P. D. Bailey, D. E. Benker et al, Phys. Rev. Lett., 104:142502(2010)
    [8] P. A. Ellison, K. E. Gregorich, J. S. Berryman et al, Phys. Rev. Lett., 105:182701(2010)
    [9] S. Hofmann, S. Heinz, R. Mann, J. Maurer et al, Eur. Phys. J. A, 48:62(2012)
    [10] A. Sobiczewski, F. Gareev, and B. Kalinkin, Phys. Lett., 22:500-502(1962)
    [11] U. Mosel and W. Greiner, Z. Phys. A, 222:261-282(1969)
    [12] K. P. Santhosh and C. Nithya, Phys. Rev. C, 94:054621(2016)
    [13] X. J. Bao, S. Q. Guo, H. F. Zhang, and J. Q. Li, Phys. Rev. C, 95:034323(2017)
    [14] K. Varga, R. G. Lovas, and R. J. Liotta, Phys. Rev. Lett., 69:37-40(1992)
    [15] B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev. C, 51:559-565(1995)
    [16] G. Royer, J. Phys. G, 26:1149(2000)
    [17] P. Mohr, Phys. Rev. C, 73:031301(2006)
    [18] C. Xu and Z. Ren, Phys. Rev. C, 74:014304(2006)
    [19] D. N. Poenaru, I.-H. Plonski, and W. Greiner, Phys. Rev. C, 74:014312(2006)
    [20] C. Qi, F. R. Xu, R. J. Liotta, and R. Wyss, Phys. Rev. Lett., 103:072501(2009)
    [21] H. F. Zhang and G. Royer, Phys. Rev. C, 77:054318(2008)
    [22] D. Ni and Z. Ren, Phys. Rev. C, 81:064318(2010)
    [23] X. Bao, H. Zhang, H. Zhang et al, Nucl. Phys. A, 921:85-95(2014)
    [24] S. A. Gurvitz and G. Kalbermann, Phys. Rev. Lett., 59:262-265(1987)
    [25] S. A. Gurvitz, P. B. Semmes, W. Nazarewicz, and T. Vertse, Phys. Rev. A, 69:042705(2004)
    [26] Y. Qian and Z. Ren, Phys. Rev. C, 85:027306(2012)
    [27] Y. Qian and Z. Ren, Nucl. Phys. A, 852:82-91(2011)
    [28] Y. Qian, Z. Ren, and D. Ni, Nucl. Phys. A, 866:1-15(2011)
    [29] X.-D. Sun, P. Guo, and X.-H. Li, Phys. Rev. C, 93:034316(2016)
    [30] X.-D. Sun, P. Guo, and X.-H. Li, Phys. Rev. C, 94:024338(2016)
    [31] X.-D. Sun, J.-G. Deng, D. Xiang, P. Guo, and X.-H. Li, Phys. Rev. C, 95:044303(2017)
    [32] X.-D. Sun, C. Duan, J.-G. Deng, P. Guo, and X.-H. Li, Phys. Rev. C, 95:014319(2017)
    [33] X.-D. Sun, X.-J. Wu, B. Zheng, D. Xiang, P. Guo, and X.-H. Li, Chin. Phys. C, 41:014102(217)
    [34] P. Mller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables, 59:185-381(1995)
    [35] J. Duflo and A. P. Zuker, Phys. Rev. C, 52:R23-R27(1995)
    [36] R. C. Nayak and L. Satpathy, At. Data Nucl. Data Tables, 98:616-719(2012)
    [37] N. Wang and M. Liu, Phys. Rev. C, 84:051303(R) (2011)
    [38] N. Wang, M. Liu, X. Wu, and J. Meng, Phys. Rev. C, 93:014302(2016)
    [39] N. Wang, M. Liu, X. Wu, and J. Meng, Phys. Lett. B, 734:215-219(2014)
    [40] I. Muntian, Z. Patyk, and A. Sobiczewski, Acta Phys. Pol. B, 32:691(2001)
    [41] A. Sobiczewski and K. Pomorski, Prog. Part. Nucl. Phys., 58:292-349(2007)
    [42] A. N. Kuzmina, G. G. Adamian, N. V. Antonenko, and W. Scheid, Phys. Rev. C, 85:014139(2012)
    [43] S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C, 93:034337(2016)
    [44] S. Liran, A. Marinov, and N. Zeldes, Phys. Rev. C, 62:047301(2000)
    [45] A. Sobiczewski, J. Phys. G, 43:095106(2016)
    [46] A. Sobiczewski, Phys. Rev. C, 94:051302(R) (2016)
    [47] G. Audi, F. Kondev, M.Wang, W. Huang, and S. Naimi, Chin. Phys. C, 41:030001(2017)
    [48] W.J. Huang, G. Audi, M.Wang, F. Kondev, S. Naimi, and X. Xu, Chin. Phys. C, 41:030002(2017)
    [49] M.Wang, G. Audi, F. Kondev, W.J. Huang, S. Naimi, and X. Xu, Chin. Phys. C, 41:030003(2017)
    [50] A. Zdeb, M. Warda, and K. Pomorski, Phys. Rev. C, 87:024308(2013)
    [51] B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev. Lett., 65:2975-2977(1990)
    [52] J. J. Morehead, J. Math. Phys., 36:5431-5452(1995)
    [53] V. Y. Denisov and A. A. Khudenko, Phys. Rev. C, 79:054614(2009)
    [54] C. Qi, Rev. Phys., 1:77-89(2016)
    [55] W. M. Seif, M. M. Botros, and A. I. Refaie, Phys. Rev. C, 92:044302(2015)
    [56] C. Xu, Z. Ren, G. Rpke, P. Schuck, Y. Funaki, H. Horiuchi, A. Tohsaki, T. Yamada, and B. Zhou, Phys. Rev. C, 93:011306(R) (2016)
    [57] C. Xu, G. Rpke, P. Schuck, Z. Ren, Y. Funaki, H. Horiuchi, A. Tohsaki, T. Yamada, and B. Zhou, Phys. Rev. C, 95:061306(R) (2017)
    [58] C. Xu and Z. Ren, Nucl. Phys. A, 760:303-316(2005)
    [59] H. F. Zhang, G. Royer, Y. J. Wang, J. M. Dong, W. Zuo, and J. Q. Li, Phys. Rev. C, 80:057301(2009)
    [60] S. Guo, X. Bao, Y. Gao, J. Li, and H. Zhang, Nucl. Phys. A, 934:110-120(2015)
  • [1] S. Hofmann and G. Mnzenberg, Rev. Mod. Phys., 72:733-767(2000)
    [2] S. Hofmann, Radiochim. Acta, 99:405-428
    [3] Y. T. Oganessian and K. P. Rykaczewski, Phys. Today, 68:32-38(2015)
    [4] Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin et al, Phys. Rev. C, 76:011601(2007)
    [5] E. Peik and Z. Kai, Phys. Rev. Lett., 74:044602(2006)
    [6] Y. Oganessian, J. Phys. G, 34:R165(2007)
    [7] Y. T. Oganessian, F. S. Abdullin, P. D. Bailey, D. E. Benker et al, Phys. Rev. Lett., 104:142502(2010)
    [8] P. A. Ellison, K. E. Gregorich, J. S. Berryman et al, Phys. Rev. Lett., 105:182701(2010)
    [9] S. Hofmann, S. Heinz, R. Mann, J. Maurer et al, Eur. Phys. J. A, 48:62(2012)
    [10] A. Sobiczewski, F. Gareev, and B. Kalinkin, Phys. Lett., 22:500-502(1962)
    [11] U. Mosel and W. Greiner, Z. Phys. A, 222:261-282(1969)
    [12] K. P. Santhosh and C. Nithya, Phys. Rev. C, 94:054621(2016)
    [13] X. J. Bao, S. Q. Guo, H. F. Zhang, and J. Q. Li, Phys. Rev. C, 95:034323(2017)
    [14] K. Varga, R. G. Lovas, and R. J. Liotta, Phys. Rev. Lett., 69:37-40(1992)
    [15] B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev. C, 51:559-565(1995)
    [16] G. Royer, J. Phys. G, 26:1149(2000)
    [17] P. Mohr, Phys. Rev. C, 73:031301(2006)
    [18] C. Xu and Z. Ren, Phys. Rev. C, 74:014304(2006)
    [19] D. N. Poenaru, I.-H. Plonski, and W. Greiner, Phys. Rev. C, 74:014312(2006)
    [20] C. Qi, F. R. Xu, R. J. Liotta, and R. Wyss, Phys. Rev. Lett., 103:072501(2009)
    [21] H. F. Zhang and G. Royer, Phys. Rev. C, 77:054318(2008)
    [22] D. Ni and Z. Ren, Phys. Rev. C, 81:064318(2010)
    [23] X. Bao, H. Zhang, H. Zhang et al, Nucl. Phys. A, 921:85-95(2014)
    [24] S. A. Gurvitz and G. Kalbermann, Phys. Rev. Lett., 59:262-265(1987)
    [25] S. A. Gurvitz, P. B. Semmes, W. Nazarewicz, and T. Vertse, Phys. Rev. A, 69:042705(2004)
    [26] Y. Qian and Z. Ren, Phys. Rev. C, 85:027306(2012)
    [27] Y. Qian and Z. Ren, Nucl. Phys. A, 852:82-91(2011)
    [28] Y. Qian, Z. Ren, and D. Ni, Nucl. Phys. A, 866:1-15(2011)
    [29] X.-D. Sun, P. Guo, and X.-H. Li, Phys. Rev. C, 93:034316(2016)
    [30] X.-D. Sun, P. Guo, and X.-H. Li, Phys. Rev. C, 94:024338(2016)
    [31] X.-D. Sun, J.-G. Deng, D. Xiang, P. Guo, and X.-H. Li, Phys. Rev. C, 95:044303(2017)
    [32] X.-D. Sun, C. Duan, J.-G. Deng, P. Guo, and X.-H. Li, Phys. Rev. C, 95:014319(2017)
    [33] X.-D. Sun, X.-J. Wu, B. Zheng, D. Xiang, P. Guo, and X.-H. Li, Chin. Phys. C, 41:014102(217)
    [34] P. Mller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables, 59:185-381(1995)
    [35] J. Duflo and A. P. Zuker, Phys. Rev. C, 52:R23-R27(1995)
    [36] R. C. Nayak and L. Satpathy, At. Data Nucl. Data Tables, 98:616-719(2012)
    [37] N. Wang and M. Liu, Phys. Rev. C, 84:051303(R) (2011)
    [38] N. Wang, M. Liu, X. Wu, and J. Meng, Phys. Rev. C, 93:014302(2016)
    [39] N. Wang, M. Liu, X. Wu, and J. Meng, Phys. Lett. B, 734:215-219(2014)
    [40] I. Muntian, Z. Patyk, and A. Sobiczewski, Acta Phys. Pol. B, 32:691(2001)
    [41] A. Sobiczewski and K. Pomorski, Prog. Part. Nucl. Phys., 58:292-349(2007)
    [42] A. N. Kuzmina, G. G. Adamian, N. V. Antonenko, and W. Scheid, Phys. Rev. C, 85:014139(2012)
    [43] S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C, 93:034337(2016)
    [44] S. Liran, A. Marinov, and N. Zeldes, Phys. Rev. C, 62:047301(2000)
    [45] A. Sobiczewski, J. Phys. G, 43:095106(2016)
    [46] A. Sobiczewski, Phys. Rev. C, 94:051302(R) (2016)
    [47] G. Audi, F. Kondev, M.Wang, W. Huang, and S. Naimi, Chin. Phys. C, 41:030001(2017)
    [48] W.J. Huang, G. Audi, M.Wang, F. Kondev, S. Naimi, and X. Xu, Chin. Phys. C, 41:030002(2017)
    [49] M.Wang, G. Audi, F. Kondev, W.J. Huang, S. Naimi, and X. Xu, Chin. Phys. C, 41:030003(2017)
    [50] A. Zdeb, M. Warda, and K. Pomorski, Phys. Rev. C, 87:024308(2013)
    [51] B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev. Lett., 65:2975-2977(1990)
    [52] J. J. Morehead, J. Math. Phys., 36:5431-5452(1995)
    [53] V. Y. Denisov and A. A. Khudenko, Phys. Rev. C, 79:054614(2009)
    [54] C. Qi, Rev. Phys., 1:77-89(2016)
    [55] W. M. Seif, M. M. Botros, and A. I. Refaie, Phys. Rev. C, 92:044302(2015)
    [56] C. Xu, Z. Ren, G. Rpke, P. Schuck, Y. Funaki, H. Horiuchi, A. Tohsaki, T. Yamada, and B. Zhou, Phys. Rev. C, 93:011306(R) (2016)
    [57] C. Xu, G. Rpke, P. Schuck, Z. Ren, Y. Funaki, H. Horiuchi, A. Tohsaki, T. Yamada, and B. Zhou, Phys. Rev. C, 95:061306(R) (2017)
    [58] C. Xu and Z. Ren, Nucl. Phys. A, 760:303-316(2005)
    [59] H. F. Zhang, G. Royer, Y. J. Wang, J. M. Dong, W. Zuo, and J. Q. Li, Phys. Rev. C, 80:057301(2009)
    [60] S. Guo, X. Bao, Y. Gao, J. Li, and H. Zhang, Nucl. Phys. A, 934:110-120(2015)
  • 加载中

Cited by

1. You, H.-Q., Wu, R.-H., Su, H.-Z. et al. Calculating α -decay half-lives with artificial neural networks considering the effects of angular momentum and deformation[J]. Physical Review C, 2024, 110(2): 024319. doi: 10.1103/PhysRevC.110.024319
2. Zhu, X.-Y., Luo, S., Gao, W. et al. An improved simple model for α decay half-lives[J]. Chinese Physics C, 2024, 48(7): 074102. doi: 10.1088/1674-1137/ad3d4b
3. Zhu, D.-X., Xu, Y.-Y., Chu, L.-J. et al. Two-proton radioactivity from excited states of proton-rich nuclei within Coulomb and Proximity Potential Model[J]. Nuclear Science and Techniques, 2023, 34(9): 130. doi: 10.1007/s41365-023-01268-2
4. Xiao, Q., Cheng, J.-H., Wang, B.-L. et al. Half-lives for proton emission and α decay within the deformed Gamow-like model[J]. Journal of Physics G: Nuclear and Particle Physics, 2023, 50(8): 085102. doi: 10.1088/1361-6471/acdfeb
5. Sharifi, B., Naderi, D. Theoretical study of superheavy elements 294,297Og using different versions of proximity potential[J]. Nuclear Physics A, 2023. doi: 10.1016/j.nuclphysa.2023.122606
6. Luo, S., Xu, Y.-Y., Zhu, D.-X. et al. Improved Geiger–Nuttall law for α -decay half-lives of heavy and superheavy nuclei[J]. European Physical Journal A, 2022, 58(12): 244. doi: 10.1140/epja/s10050-022-00898-1
7. Xu, Y.-Y., Zhu, D.-X., Chen, X. et al. A unified formula for α decay half-lives[J]. European Physical Journal A, 2022, 58(9): 163. doi: 10.1140/epja/s10050-022-00812-9
8. Deng, J.-G., Zhang, H.-F., Sun, X.-D. New behaviors of α-particle preformation factors near doubly magic 100Sn[J]. Chinese Physics C, 2022, 46(6): 061001. doi: 10.1088/1674-1137/ac5a9f
9. Fan, J., Xu, C. Exploring the half-lives of extremely long-lived α emitters[J]. Chinese Physics C, 2022, 46(5): 054105. doi: 10.1088/1674-1137/ac500d
10. Cheng, J.-H., Li, Y., Yu, T.-P. Systematic study of laser-assisted proton radioactivity from deformed nuclei[J]. Physical Review C, 2022, 105(2): 024312. doi: 10.1103/PhysRevC.105.024312
11. Xu, Y.-Y., Liu, H.-M., Zhu, D.-X. et al. An improved formula for the favored α decay half-lives[J]. European Physical Journal A, 2022, 58(2): 16. doi: 10.1140/epja/s10050-022-00666-1
12. Zou, Y.-T., Pan, X., Liu, H.-M. et al. Systematic studies on a decay half-lives of neptunium isotopes[J]. Physica Scripta, 2021, 96(7): 075301. doi: 10.1088/1402-4896/abf795
13. Deng, J.-G., Zhang, H.-F. Correlation between α-particle preformation factor and α decay energy[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021. doi: 10.1016/j.physletb.2021.136247
14. Deng, J.-G., Zhang, H.-F. Systematic study of α decay half-lives within the Generalized Liquid Drop Model with various versions of proximity energies[J]. Chinese Physics C, 2021, 45(2): 024104. doi: 10.1088/1674-1137/abcc5a
15. Deng, J.-G., Zhang, H.-F. Analytic formula for estimating the α -particle preformation factor[J]. Physical Review C, 2020, 102(4): 044314. doi: 10.1103/PhysRevC.102.044314
16. Deng, J.-G., Zhang, H.-F., Royer, G. Improved empirical formula for α -decay half-lives[J]. Physical Review C, 2020, 101(3): 034307. doi: 10.1103/PhysRevC.101.034307
17. Manjunatha, H.C., Sowmya, N., Nagaraja, A.M. Semi-empirical formula for alpha and cluster decay half-lives of superheavy nuclei[J]. Modern Physics Letters A, 2020, 35(6): 2050016. doi: 10.1142/S0217732320500169
18. Wang, Y., Gao, Y., Cui, J. et al. Nuclear properties of Z = 114 isotopes and shell structure of 298114[J]. Communications in Theoretical Physics, 2020, 72(2): 025303. doi: 10.1088/1572-9494/ab6906
19. Xu, J.-Y., Chen, J.-L., Deng, J.-G. et al. α Decay Properties of Even-Even Nuclei296-308120 within the Two-Potential Approach[J]. Communications in Theoretical Physics, 2019, 71(11): 1328-1334. doi: 10.1088/0253-6102/71/11/1328
20. Cheng, J.-H., Chen, J.-L., Deng, J.-G. et al. Systematic study of α decay half-lives based on Gamow–like model with a screened electrostatic barrier[J]. Nuclear Physics A, 2019. doi: 10.1016/j.nuclphysa.2019.05.002
21. Chen, J.-L., Li, X.-H., Cheng, J.-H. et al. Systematic study of proton radioactivity based on Gamow-like model with a screened electrostatic barrier[J]. Journal of Physics G: Nuclear and Particle Physics, 2019, 46(6): 065107. doi: 10.1088/1361-6471/ab1a56
22. Deng, J.-G., Zhao, J.-C., Chu, P.-C. et al. Systematic study of α decay of nuclei around the Z=82, N=126 shell closures within the cluster-formation model and proximity potential 1977 formalism SYSTEMATIC STUDY of α DECAY of NUCLEI ... DENG, ZHAO, CHU, and LI[J]. Physical Review C, 2018, 97(4): 044322. doi: 10.1103/PhysRevC.97.044322
23. Deng, J.-G., Zhao, J.-C., Chen, J.-L. et al. α decay properties of 296Og within the two-potential approach[J]. Chinese Physics C, 2018, 42(4): 044102. doi: 10.1088/1674-1137/42/4/044102
Get Citation
Jun-Gang Deng, Jun-Hao Cheng, Bo Zheng and Xiao-Hua Li. α decay properties of 297Og within the two-potential approach[J]. Chinese Physics C, 2017, 41(12): 124109. doi: 10.1088/1674-1137/41/12/124109
Jun-Gang Deng, Jun-Hao Cheng, Bo Zheng and Xiao-Hua Li. α decay properties of 297Og within the two-potential approach[J]. Chinese Physics C, 2017, 41(12): 124109.  doi: 10.1088/1674-1137/41/12/124109 shu
Milestone
Received: 2017-07-15
Revised: 2017-09-19
Fund

    Supported by National Natural Science Foundation of China (11205083, 11505100), Construct Program of the Key Discipline in Hunan Province, the Research Foundation of Education Bureau of Hunan Province, China (15A159), the Natural Science Foundation of Hunan Province, China (2015JJ3103, 2015JJ2121), the Innovation Group of Nuclear and Particle Physics in USC, the Shandong Province Natural Science Foundation, China (ZR2015AQ007) and Hunan Provincial Innovation Foundation For Postgraduate (CX2017B536)

Article Metric

Article Views(2632)
PDF Downloads(46)
Cited by(23)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

α decay properties of 297Og within the two-potential approach

    Corresponding author: Bo Zheng,
    Corresponding author: Xiao-Hua Li,
  • 1.  School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
  • 2. School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
  • 3. Cooperative Innovation Center for Nuclear Fuel Cycle Technology &
  • 4. Key Laboratory of Low Dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha 410081, China
Fund Project:  Supported by National Natural Science Foundation of China (11205083, 11505100), Construct Program of the Key Discipline in Hunan Province, the Research Foundation of Education Bureau of Hunan Province, China (15A159), the Natural Science Foundation of Hunan Province, China (2015JJ3103, 2015JJ2121), the Innovation Group of Nuclear and Particle Physics in USC, the Shandong Province Natural Science Foundation, China (ZR2015AQ007) and Hunan Provincial Innovation Foundation For Postgraduate (CX2017B536)

Abstract: The α decay half-life of the unknown nucleus 297Og is predicted within the two-potential approach, and α preformation probabilities of 64 odd-A nuclei in the region of proton numbers 82 < Z < 126 and neutron numbers 152 < N < 184, from 251Cf to 295Og, are extracted. In addition, based on the latest experimental data, a new set of parameters for α preformation probabilities considering the shell effect and proton-neutron interaction are obtained. The predicted α decay half-life of 297Og is 0.16 ms within a factor of 4.97. The predicted spin and parity of the ground states for 269Sg, 285Fl and 293Lv are 3/2+, 3/2+ and 5/2+, respectively.

    HTML

Reference (60)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return