×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Magnetic moments and g-factors in odd-A Ho isotopes

  • The ground-state magnetic moment, gK factor and quenching spin gyromagnetic ratio have been calculated using the microscopic method based on the Quasiparticle Phonon Nuclear Model (QPNM) for 155-169Ho nuclei for the first time. It is shown that the residual spin-spin interactions are responsible for the core polarization, and because of the core polarization the spin gyromagnetic factors are quenched. By considering the core polarization effects, a satisfactory agreement is obtained for the computed ground state gK factor, which gives an intrinsic contribution to the magnetic moments. In order to assess the collective contribution to the magnetic moments, the rotational gyromagnetic factors gR have been also calculated within the cranking approximation using the single particle wave function of the axially symmetric Woods-Saxon potential. For the ground-state magnetic moments of odd-proton 155-165Ho nuclei, a good description of the experimental data is obtained with an accuracy of 0.01-0.1 μN. From systematic trends, the quenching spin gyromagnetic factor, gK factor and magnetic moment have also been theoretically predicted for 167,169Ho where there is no existing experimental data.
      PCAS:
  • 加载中
  • [1] K. Heyde, Hyperfine Interactions, 75: 69-84 (1992)
    [2] N. J. Stone, Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments, (IAEA Vienna Report No. INDC(NDS)-0658, 2014)
    [3] T. Schmidt, Z. Phys., 106: 358-361 (1937)
    [4] A. Bohr and B. Mottelson, Nuclear Structure, 1: 2 (Benjamin, 1975)
    [5] E. G. Zhao, Chin. Sci. Bull., 57: 4394-4399 (2012)
    [6] I. S. Towner, Phys. Rep., 155: 263-377 (1987)
    [7] A. Arima, K. Shimizu, W. Bentz, and H. Hyuga, Adv. Nucl. Phys., 18: 1-106 (1987)
    [8] A. Arima, H. Horie, Prog. Theor. Phys., 11: 509-511 (1954)
    [9] A. Arima, H. Horie, Prog. Theor. Phys., 12: 623-641 (1954)
    [10] A. A. Kuliev, N. I. Pyatov, Phys. Lett. B, 28(efeq7): 443-445 (1969)
    [11] Z. Bochnacki, S. Ogaza, Nucl. Phys., 69(efeq1): 186-192 (1965)
    [12] H. Yakut, E. Guliyev, M. Guner, E. Tabar, Z. Yildirim, Nuclear Physics A, 888: 23-33 (2012)
    [13] H. Yakut, E. Tabar, A. A. Kulev, Z. Zengnerler, P. Kaplan, Int. J. Mod. Phys. E, 22(efeq10): 1350076 (2013)
    [14] H. Yakut, E. Tabar, A. A. Kuliev, E. Guliyev, Cent. Eur. J. Phys., 12(efeq12): 843-850 (2014)
    [15] M. I. Baznat, N. I. Pyatov and M. I. Chernej, Physica Scripta, 6: 227-238 (1972)
    [16] V. G. Soloviev, Theory of Atomic Nuclei: Quasiparticles and Phonons (Institute of Physics Publishing Bristol and Philadelphia, 1992)
    [17] G. D. Alkhazov, A. E. Barzakh, I. Ya. Chubukov, V. P. Denisov, V. S. Ivanov, Nuclear Physics A, 504: 549-561 (1989)
    [18] O. Prior, F. Boehm, S. G. Nilsson, Nuclear Physics A, 110: 257-272 (1968)
    [19] S. Raman, C. W. Nestor Jr., P. Tikkanen, Atomic Data and Nuclear Data Tables, 78: 1-128 (2001)
    [20] J. Dudek, T. Werner, J. Phys. G, 4: 1543-1561 (1978)
    [21] P. Moller, W. D. M. J. R. Nix, W. J. Swiateck, Atomic Data Nucl. Data Tables, 59: 185-381 (1995)
    [22] V. G. Soloviev, Theory of Complex Nuclei (Pergamon Press, 1976)
    [23] E. Tabar, H. Yakut, A. A. Kuliev, Nuclear Physics A, 957: 33-50 (2017)
    [24] E. Tabar, H. Yakut, A. A. Kuliev, International Journal of Modern Physics E, 25(efeq8): 1650053 (24 pages) (2016)
    [25] V. G. Soloviev, A. V. Sushkov, N. Yu. Shirikova, Phys. Rev. C, 53: 1022-1024 (1995)
    [26] S. I. Gabrakov, A. A. Kuliev, N. I. Pyatov, D. I. Salamov and H. Schulz, Nuclear Physics A, 182: 625-633 (1972)
    [27] Y. F. Bow, Phys. Rev. C, 2: 1608 (1970)
    [28] Inger-Lena Lamm, Nuclear Physics A, 125: 504-530 (1969)
  • 加载中

Get Citation
E. Tabar, H. Yakut, A. A. Kuliev, H. Quliyev and G. Ho?gör. Magnetic moments and g-factors in odd-A Ho isotopes[J]. Chinese Physics C, 2017, 41(7): 074101. doi: 10.1088/1674-1137/41/7/074101
E. Tabar, H. Yakut, A. A. Kuliev, H. Quliyev and G. Ho?gör. Magnetic moments and g-factors in odd-A Ho isotopes[J]. Chinese Physics C, 2017, 41(7): 074101.  doi: 10.1088/1674-1137/41/7/074101 shu
Milestone
Received: 2016-12-08
Revised: 2017-03-03
Fund

    Supported by Scientific and Technological Research Council of Turkey (TUBITAK) (115F564)

Article Metric

Article Views(1713)
PDF Downloads(53)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Magnetic moments and g-factors in odd-A Ho isotopes

    Corresponding author: E. Tabar, etabar@sakarya.edu.tr
    Corresponding author: H. Yakut, etabar@sakarya.edu.tr
  • 1. Physics Department, Sakarya University, 54187 Sakarya, Turkey
  • 2. Biomedical, magnetic and semiconductor materials research center (BIMAYAM), Sakarya University, 54187 Sakarya, Turkey
  • 3.  Azerbaijan National Academy of Aviation, Baku, Azerbaijan
  • 4.  Physics Department, Sakarya University, 54187 Sakarya, Turkey
Fund Project:  Supported by Scientific and Technological Research Council of Turkey (TUBITAK) (115F564)

Abstract: The ground-state magnetic moment, gK factor and quenching spin gyromagnetic ratio have been calculated using the microscopic method based on the Quasiparticle Phonon Nuclear Model (QPNM) for 155-169Ho nuclei for the first time. It is shown that the residual spin-spin interactions are responsible for the core polarization, and because of the core polarization the spin gyromagnetic factors are quenched. By considering the core polarization effects, a satisfactory agreement is obtained for the computed ground state gK factor, which gives an intrinsic contribution to the magnetic moments. In order to assess the collective contribution to the magnetic moments, the rotational gyromagnetic factors gR have been also calculated within the cranking approximation using the single particle wave function of the axially symmetric Woods-Saxon potential. For the ground-state magnetic moments of odd-proton 155-165Ho nuclei, a good description of the experimental data is obtained with an accuracy of 0.01-0.1 μN. From systematic trends, the quenching spin gyromagnetic factor, gK factor and magnetic moment have also been theoretically predicted for 167,169Ho where there is no existing experimental data.

    HTML

Reference (28)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return