×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Production mechanism of neutron-rich nuclei around N=126 in the multi-nucleon transfer reaction 132Sn + 208Pb

  • The time-dependent Hartree-Fock approach in three dimensions is employed to study the multi-nucleon transfer reaction 132Sn + 208Pb at various incident energies above the Coulomb barrier. Probabilities for different transfer channels are calculated by using the particle-number projection method. The results indicate that neutron stripping (transfer from the projectile to the target) and proton pick-up (transfer from the target to the projectile) are favored. De-excitation of the primary fragments is treated by using the state-of-art statistical code GEMINI++. Primary and final production cross sections of the target-like fragments (with Z=77 to Z=87) are investigated. The results reveal that fission decay of heavy nuclei plays an important role in the de-excitation process of nuclei with Z>82. It is also found that the final production cross sections of neutron-rich nuclei depend only slightly on the incident energy, while those of neutron-deficient nuclei depend strongly on the incident energy.
      PCAS:
  • 加载中
  • [1] H. Grawe, K. Langanke, and G. Martnez-Pinedo, Rep. Prog. Phys., 70(9):1525 (2007)
    [2] E. M. Kozulin et al, Phys. Rev. C, 86:044611 (2012)
    [3] Y. X. Watanabe et al, Phys. Rev. Lett., 115:172503 (2015)
    [4] V. I. Zagrebaev and W. Greiner, J. Phys. G:Nucl. Part. Phys., 34(11):2265 (2007)
    [5] V. I. Zagrebaev and W. Greiner, Phys. Rev. Lett., 101:122701 (2008)
    [6] V. I. Zagrebaev and W. Greiner, Phys. Rev. C, 83:044618 (2011)
    [7] L. Zhu, J. Su, W.-J. Xie, and F.-S. Zhang, Phys. Lett. B, 767:437-442 (2017)
    [8] C. Li et al, Phys. Lett. B, 776:278-283 (2018)
    [9] O. Beliuskina et al, Eur. Phys. J. A, 50(10):161 (2014)
    [10] J. S. Barrett et al, Phys. Rev. C, 91:064615 (2015)
    [11] A. Winther, Nucl. Phys. A, 572(1):191-235 (1994)
    [12] Z.-Q. Feng, Phys. Rev. C, 95:024615 (2017)
    [13] L. Zhu, F.-S. Zhang, P.-W. Wen, J. Su, and W.-J. Xie, Phys. Rev. C, 96:024606 (2017)
    [14] N. Wang and L. Guo, Phys. Lett. B, 760:236-241 (2016)
    [15] C. Li, F. Zhang, J.-J. Li, L. Zhu, J.-L. Tian, N. Wang, and F.-S. Zhang, Phys. Rev. C, 93:014618 (2016)
    [16] H. Yao and N. Wang, Phys. Rev. C, 95:014607 (2017)
    [17] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys., 75:121-180 (2003)
    [18] P. A. M. Dirac, Math. Proc. Cambridge, 26:376-385 (1930)
    [19] C. Simenel and Ph. Chomaz, Phys. Rev. C, 68:024302 (2003)
    [20] T. Nakatsukasa and K. Yabana, Phys. Rev. C, 71:024301 (2005)
    [21] A. S. Umar and V. E. Oberacker, Phys. Rev. C, 71:034314 (2005)
    [22] J. A. Maruhn, P. G. Reinhard, P. D. Stevenson, J. Rikovska Stone, and M. R. Strayer, Phys. Rev. C, 71:064328 (2005)
    [23] A. S. Umar and V. E. Oberacker, Eur. Phys. J. A, 39:243-247 (2009)
    [24] C. Simenel, R. Keser, A. S. Umar, and V. E. Oberacker, Phys. Rev. C, 88:024617 (2013)
    [25] X. Jiang, J. A. Maruhn, and S.-W. Yan, Phys. Rev. C, 90:064618 (2014)
    [26] X. Jiang, J. A. Maruhn, and S. W. Yan, EPL (Europhysics Letters), 112(1):12001 (2015)
    [27] A S Umar, V E Oberacker, J A Maruhn, and P-G Reinhard, J. Phys. G:Nucl. Part. Phys., 37(6):064037 (2010)
    [28] P. Goddard, P. Stevenson, and A. Rios, Phys. Rev. C, 92:054610 (2015)
    [29] C. Simenel and A. S. Umar, Phys. Rev. C, 89:031601 (2014)
    [30] J. A. Maruhn, P.-G. Reinhard, P. D. Stevenson, and M. R. Strayer, Phys. Rev. C, 74:027601 (2006)
    [31] N. Loebl, A. S. Umar, J. A. Maruhn, P.-G. Reinhard, P. D. Stevenson, and V. E. Oberacker, Phys. Rev. C, 86:024608 (2012)
    [32] G.-F. Dai, L. Guo, E.-G. Zhao, and S.-G. Zhou, Phys. Rev. C, 90:044609 (2014)
    [33] G.-F. Dai, L. Guo, E.-G. Zhao, and S.-G. Zhou, Sci. China-Phys. Mech. Astron., 57(9):1618-1622 (2014)
    [34] C. Yu and L. Guo, Sci. China-Phys. Mech. Astron., 60(9):092011 (2017)
    [35] L. Guo, C. Simenel, L. Shi, and C. Yu, Phys. Lett. B, 782:401-405 (2018)
    [36] K. Wen, M. C. Barton, A. Rios, and P. D. Stevenson, Phys. Rev. C, 98:014603 (2018)
    [37] A. S. Umar, C. Simenel, and W. Ye, Phys. Rev. C, 96:024625 (2017)
    [38] C. Simenel, Phys. Rev. Lett., 105:192701 (2010)
    [39] K. Sekizawa, Phys. Rev. C, 96:014615 (2017)
    [40] K. Sekizawa, Phys. Rev. C, 96:041601 (2017)
    [41] X. Jiang and S.-W. Yan, Phys. Rev. C, 90:024612 (2014)
    [42] J. W. Negele, Rev. Mod. Phys., 54:913-1015 (1982)
    [43] R.J. Charity et al, Nucl. Phys. A, 483(2):371-405 (1988)
    [44] W. Hauser and H. Feshbach, Phys. Rev., 87:366-373 (1952)
    [45] R. J. Charity, Joint ICTP-AIEA Advanced Workshop on Model Codes for Spallation Reactions, Report INDC(NDC)-0530 (IAEA), 139 (2008)
    [46] R. J. Charity, Phys. Rev. C, 82:014610 (2010)
    [47] D. Mancusi, R. J. Charity, and J. Cugnon, Phys. Rev. C, 82:044610 (2010)
    [48] J. A. Maruhn, P.-G. Reinhard, P. D. Stevenson, and A. S. Umar, Comput. Phys. Commun., 185(7):2195-2216 (2014)
    [49] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A, 635:231-256 (1998)
    [50] P.-G. Reinhard and R.Y. Cusson, Nucl. Phys. A, 378(3):418-442 (1982)
    [51] K. T. R. Davies, H. Flocard, S. Krieger, and M. S. Weiss, Nucl. Phys. A, 342(1):111-123 (1980)
    [52] W. J. Huang, G. Audi, M. Wang, F. G. Kondev, S. Naimi, and X. Xu, Chin. Phys. C, 41(3):030002 (2017)
    [53] M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, Chin. Phys. C, 41(3):030003 (2017)
    [54] P. Mller, A.J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables, 109-110:1-204 (2016)
    [55] V. E. Viola, K. Kwiatkowski, and M. Walker, Phys. Rev. C, 31:1550-1552 (1985)
    [56] D. J. Hinde, D. Hilscher, H. Rossner, B. Gebauer, M. Lehmann, and M. Wilpert, Phys. Rev. C, 45:1229-1259 (1992)
  • 加载中

Get Citation
Xiang Jiang and Nan Wang. Production mechanism of neutron-rich nuclei around N=126 in the multi-nucleon transfer reaction 132Sn + 208Pb[J]. Chinese Physics C, 2018, 42(10): 104105. doi: 10.1088/1674-1137/42/10/104105
Xiang Jiang and Nan Wang. Production mechanism of neutron-rich nuclei around N=126 in the multi-nucleon transfer reaction 132Sn + 208Pb[J]. Chinese Physics C, 2018, 42(10): 104105.  doi: 10.1088/1674-1137/42/10/104105 shu
Milestone
Received: 2018-07-10
Fund

    Supported by National Natural Science Foundation of China (11705118, 11475115, 11647026) and Natural Science Foundation of SZU (2016017).

Article Metric

Article Views(1788)
PDF Downloads(27)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Production mechanism of neutron-rich nuclei around N=126 in the multi-nucleon transfer reaction 132Sn + 208Pb

    Corresponding author: Nan Wang,
  • 1. College of Physics and Energy, Shenzhen University, Shenzhen 518060, China
Fund Project:  Supported by National Natural Science Foundation of China (11705118, 11475115, 11647026) and Natural Science Foundation of SZU (2016017).

Abstract: The time-dependent Hartree-Fock approach in three dimensions is employed to study the multi-nucleon transfer reaction 132Sn + 208Pb at various incident energies above the Coulomb barrier. Probabilities for different transfer channels are calculated by using the particle-number projection method. The results indicate that neutron stripping (transfer from the projectile to the target) and proton pick-up (transfer from the target to the projectile) are favored. De-excitation of the primary fragments is treated by using the state-of-art statistical code GEMINI++. Primary and final production cross sections of the target-like fragments (with Z=77 to Z=87) are investigated. The results reveal that fission decay of heavy nuclei plays an important role in the de-excitation process of nuclei with Z>82. It is also found that the final production cross sections of neutron-rich nuclei depend only slightly on the incident energy, while those of neutron-deficient nuclei depend strongly on the incident energy.

    HTML

Reference (56)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return