Processing math: 100%

Production mechanism of neutron-rich nuclei around N=126 in the multi-nucleon transfer reaction 132Sn + 208Pb

  • The time-dependent Hartree-Fock approach in three dimensions is employed to study the multi-nucleon transfer reaction 132Sn + 208Pb at various incident energies above the Coulomb barrier. Probabilities for different transfer channels are calculated by using the particle-number projection method. The results indicate that neutron stripping (transfer from the projectile to the target) and proton pick-up (transfer from the target to the projectile) are favored. De-excitation of the primary fragments is treated by using the state-of-art statistical code GEMINI++. Primary and final production cross sections of the target-like fragments (with Z=77 to Z=87) are investigated. The results reveal that fission decay of heavy nuclei plays an important role in the de-excitation process of nuclei with Z>82. It is also found that the final production cross sections of neutron-rich nuclei depend only slightly on the incident energy, while those of neutron-deficient nuclei depend strongly on the incident energy.
      PCAS:
    • 25.70.Hi(Transfer reactions)
    • 24.10.-i(Nuclear reaction models and methods)
  • [1] H. Grawe, K. Langanke, and G. Martnez-Pinedo, Rep. Prog. Phys., 70(9):1525 (2007)
    [2] E. M. Kozulin et al, Phys. Rev. C, 86:044611 (2012)
    [3] Y. X. Watanabe et al, Phys. Rev. Lett., 115:172503 (2015)
    [4] V. I. Zagrebaev and W. Greiner, J. Phys. G:Nucl. Part. Phys., 34(11):2265 (2007)
    [5] V. I. Zagrebaev and W. Greiner, Phys. Rev. Lett., 101:122701 (2008)
    [6] V. I. Zagrebaev and W. Greiner, Phys. Rev. C, 83:044618 (2011)
    [7] L. Zhu, J. Su, W.-J. Xie, and F.-S. Zhang, Phys. Lett. B, 767:437-442 (2017)
    [8] C. Li et al, Phys. Lett. B, 776:278-283 (2018)
    [9] O. Beliuskina et al, Eur. Phys. J. A, 50(10):161 (2014)
    [10] J. S. Barrett et al, Phys. Rev. C, 91:064615 (2015)
    [11] A. Winther, Nucl. Phys. A, 572(1):191-235 (1994)
    [12] Z.-Q. Feng, Phys. Rev. C, 95:024615 (2017)
    [13] L. Zhu, F.-S. Zhang, P.-W. Wen, J. Su, and W.-J. Xie, Phys. Rev. C, 96:024606 (2017)
    [14] N. Wang and L. Guo, Phys. Lett. B, 760:236-241 (2016)
    [15] C. Li, F. Zhang, J.-J. Li, L. Zhu, J.-L. Tian, N. Wang, and F.-S. Zhang, Phys. Rev. C, 93:014618 (2016)
    [16] H. Yao and N. Wang, Phys. Rev. C, 95:014607 (2017)
    [17] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys., 75:121-180 (2003)
    [18] P. A. M. Dirac, Math. Proc. Cambridge, 26:376-385 (1930)
    [19] C. Simenel and Ph. Chomaz, Phys. Rev. C, 68:024302 (2003)
    [20] T. Nakatsukasa and K. Yabana, Phys. Rev. C, 71:024301 (2005)
    [21] A. S. Umar and V. E. Oberacker, Phys. Rev. C, 71:034314 (2005)
    [22] J. A. Maruhn, P. G. Reinhard, P. D. Stevenson, J. Rikovska Stone, and M. R. Strayer, Phys. Rev. C, 71:064328 (2005)
    [23] A. S. Umar and V. E. Oberacker, Eur. Phys. J. A, 39:243-247 (2009)
    [24] C. Simenel, R. Keser, A. S. Umar, and V. E. Oberacker, Phys. Rev. C, 88:024617 (2013)
    [25] X. Jiang, J. A. Maruhn, and S.-W. Yan, Phys. Rev. C, 90:064618 (2014)
    [26] X. Jiang, J. A. Maruhn, and S. W. Yan, EPL (Europhysics Letters), 112(1):12001 (2015)
    [27] A S Umar, V E Oberacker, J A Maruhn, and P-G Reinhard, J. Phys. G:Nucl. Part. Phys., 37(6):064037 (2010)
    [28] P. Goddard, P. Stevenson, and A. Rios, Phys. Rev. C, 92:054610 (2015)
    [29] C. Simenel and A. S. Umar, Phys. Rev. C, 89:031601 (2014)
    [30] J. A. Maruhn, P.-G. Reinhard, P. D. Stevenson, and M. R. Strayer, Phys. Rev. C, 74:027601 (2006)
    [31] N. Loebl, A. S. Umar, J. A. Maruhn, P.-G. Reinhard, P. D. Stevenson, and V. E. Oberacker, Phys. Rev. C, 86:024608 (2012)
    [32] G.-F. Dai, L. Guo, E.-G. Zhao, and S.-G. Zhou, Phys. Rev. C, 90:044609 (2014)
    [33] G.-F. Dai, L. Guo, E.-G. Zhao, and S.-G. Zhou, Sci. China-Phys. Mech. Astron., 57(9):1618-1622 (2014)
    [34] C. Yu and L. Guo, Sci. China-Phys. Mech. Astron., 60(9):092011 (2017)
    [35] L. Guo, C. Simenel, L. Shi, and C. Yu, Phys. Lett. B, 782:401-405 (2018)
    [36] K. Wen, M. C. Barton, A. Rios, and P. D. Stevenson, Phys. Rev. C, 98:014603 (2018)
    [37] A. S. Umar, C. Simenel, and W. Ye, Phys. Rev. C, 96:024625 (2017)
    [38] C. Simenel, Phys. Rev. Lett., 105:192701 (2010)
    [39] K. Sekizawa, Phys. Rev. C, 96:014615 (2017)
    [40] K. Sekizawa, Phys. Rev. C, 96:041601 (2017)
    [41] X. Jiang and S.-W. Yan, Phys. Rev. C, 90:024612 (2014)
    [42] J. W. Negele, Rev. Mod. Phys., 54:913-1015 (1982)
    [43] R.J. Charity et al, Nucl. Phys. A, 483(2):371-405 (1988)
    [44] W. Hauser and H. Feshbach, Phys. Rev., 87:366-373 (1952)
    [45] R. J. Charity, Joint ICTP-AIEA Advanced Workshop on Model Codes for Spallation Reactions, Report INDC(NDC)-0530 (IAEA), 139 (2008)
    [46] R. J. Charity, Phys. Rev. C, 82:014610 (2010)
    [47] D. Mancusi, R. J. Charity, and J. Cugnon, Phys. Rev. C, 82:044610 (2010)
    [48] J. A. Maruhn, P.-G. Reinhard, P. D. Stevenson, and A. S. Umar, Comput. Phys. Commun., 185(7):2195-2216 (2014)
    [49] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A, 635:231-256 (1998)
    [50] P.-G. Reinhard and R.Y. Cusson, Nucl. Phys. A, 378(3):418-442 (1982)
    [51] K. T. R. Davies, H. Flocard, S. Krieger, and M. S. Weiss, Nucl. Phys. A, 342(1):111-123 (1980)
    [52] W. J. Huang, G. Audi, M. Wang, F. G. Kondev, S. Naimi, and X. Xu, Chin. Phys. C, 41(3):030002 (2017)
    [53] M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, Chin. Phys. C, 41(3):030003 (2017)
    [54] P. Mller, A.J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables, 109-110:1-204 (2016)
    [55] V. E. Viola, K. Kwiatkowski, and M. Walker, Phys. Rev. C, 31:1550-1552 (1985)
    [56] D. J. Hinde, D. Hilscher, H. Rossner, B. Gebauer, M. Lehmann, and M. Wilpert, Phys. Rev. C, 45:1229-1259 (1992)
  • [1] H. Grawe, K. Langanke, and G. Martnez-Pinedo, Rep. Prog. Phys., 70(9):1525 (2007)
    [2] E. M. Kozulin et al, Phys. Rev. C, 86:044611 (2012)
    [3] Y. X. Watanabe et al, Phys. Rev. Lett., 115:172503 (2015)
    [4] V. I. Zagrebaev and W. Greiner, J. Phys. G:Nucl. Part. Phys., 34(11):2265 (2007)
    [5] V. I. Zagrebaev and W. Greiner, Phys. Rev. Lett., 101:122701 (2008)
    [6] V. I. Zagrebaev and W. Greiner, Phys. Rev. C, 83:044618 (2011)
    [7] L. Zhu, J. Su, W.-J. Xie, and F.-S. Zhang, Phys. Lett. B, 767:437-442 (2017)
    [8] C. Li et al, Phys. Lett. B, 776:278-283 (2018)
    [9] O. Beliuskina et al, Eur. Phys. J. A, 50(10):161 (2014)
    [10] J. S. Barrett et al, Phys. Rev. C, 91:064615 (2015)
    [11] A. Winther, Nucl. Phys. A, 572(1):191-235 (1994)
    [12] Z.-Q. Feng, Phys. Rev. C, 95:024615 (2017)
    [13] L. Zhu, F.-S. Zhang, P.-W. Wen, J. Su, and W.-J. Xie, Phys. Rev. C, 96:024606 (2017)
    [14] N. Wang and L. Guo, Phys. Lett. B, 760:236-241 (2016)
    [15] C. Li, F. Zhang, J.-J. Li, L. Zhu, J.-L. Tian, N. Wang, and F.-S. Zhang, Phys. Rev. C, 93:014618 (2016)
    [16] H. Yao and N. Wang, Phys. Rev. C, 95:014607 (2017)
    [17] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys., 75:121-180 (2003)
    [18] P. A. M. Dirac, Math. Proc. Cambridge, 26:376-385 (1930)
    [19] C. Simenel and Ph. Chomaz, Phys. Rev. C, 68:024302 (2003)
    [20] T. Nakatsukasa and K. Yabana, Phys. Rev. C, 71:024301 (2005)
    [21] A. S. Umar and V. E. Oberacker, Phys. Rev. C, 71:034314 (2005)
    [22] J. A. Maruhn, P. G. Reinhard, P. D. Stevenson, J. Rikovska Stone, and M. R. Strayer, Phys. Rev. C, 71:064328 (2005)
    [23] A. S. Umar and V. E. Oberacker, Eur. Phys. J. A, 39:243-247 (2009)
    [24] C. Simenel, R. Keser, A. S. Umar, and V. E. Oberacker, Phys. Rev. C, 88:024617 (2013)
    [25] X. Jiang, J. A. Maruhn, and S.-W. Yan, Phys. Rev. C, 90:064618 (2014)
    [26] X. Jiang, J. A. Maruhn, and S. W. Yan, EPL (Europhysics Letters), 112(1):12001 (2015)
    [27] A S Umar, V E Oberacker, J A Maruhn, and P-G Reinhard, J. Phys. G:Nucl. Part. Phys., 37(6):064037 (2010)
    [28] P. Goddard, P. Stevenson, and A. Rios, Phys. Rev. C, 92:054610 (2015)
    [29] C. Simenel and A. S. Umar, Phys. Rev. C, 89:031601 (2014)
    [30] J. A. Maruhn, P.-G. Reinhard, P. D. Stevenson, and M. R. Strayer, Phys. Rev. C, 74:027601 (2006)
    [31] N. Loebl, A. S. Umar, J. A. Maruhn, P.-G. Reinhard, P. D. Stevenson, and V. E. Oberacker, Phys. Rev. C, 86:024608 (2012)
    [32] G.-F. Dai, L. Guo, E.-G. Zhao, and S.-G. Zhou, Phys. Rev. C, 90:044609 (2014)
    [33] G.-F. Dai, L. Guo, E.-G. Zhao, and S.-G. Zhou, Sci. China-Phys. Mech. Astron., 57(9):1618-1622 (2014)
    [34] C. Yu and L. Guo, Sci. China-Phys. Mech. Astron., 60(9):092011 (2017)
    [35] L. Guo, C. Simenel, L. Shi, and C. Yu, Phys. Lett. B, 782:401-405 (2018)
    [36] K. Wen, M. C. Barton, A. Rios, and P. D. Stevenson, Phys. Rev. C, 98:014603 (2018)
    [37] A. S. Umar, C. Simenel, and W. Ye, Phys. Rev. C, 96:024625 (2017)
    [38] C. Simenel, Phys. Rev. Lett., 105:192701 (2010)
    [39] K. Sekizawa, Phys. Rev. C, 96:014615 (2017)
    [40] K. Sekizawa, Phys. Rev. C, 96:041601 (2017)
    [41] X. Jiang and S.-W. Yan, Phys. Rev. C, 90:024612 (2014)
    [42] J. W. Negele, Rev. Mod. Phys., 54:913-1015 (1982)
    [43] R.J. Charity et al, Nucl. Phys. A, 483(2):371-405 (1988)
    [44] W. Hauser and H. Feshbach, Phys. Rev., 87:366-373 (1952)
    [45] R. J. Charity, Joint ICTP-AIEA Advanced Workshop on Model Codes for Spallation Reactions, Report INDC(NDC)-0530 (IAEA), 139 (2008)
    [46] R. J. Charity, Phys. Rev. C, 82:014610 (2010)
    [47] D. Mancusi, R. J. Charity, and J. Cugnon, Phys. Rev. C, 82:044610 (2010)
    [48] J. A. Maruhn, P.-G. Reinhard, P. D. Stevenson, and A. S. Umar, Comput. Phys. Commun., 185(7):2195-2216 (2014)
    [49] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A, 635:231-256 (1998)
    [50] P.-G. Reinhard and R.Y. Cusson, Nucl. Phys. A, 378(3):418-442 (1982)
    [51] K. T. R. Davies, H. Flocard, S. Krieger, and M. S. Weiss, Nucl. Phys. A, 342(1):111-123 (1980)
    [52] W. J. Huang, G. Audi, M. Wang, F. G. Kondev, S. Naimi, and X. Xu, Chin. Phys. C, 41(3):030002 (2017)
    [53] M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, Chin. Phys. C, 41(3):030003 (2017)
    [54] P. Mller, A.J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables, 109-110:1-204 (2016)
    [55] V. E. Viola, K. Kwiatkowski, and M. Walker, Phys. Rev. C, 31:1550-1552 (1985)
    [56] D. J. Hinde, D. Hilscher, H. Rossner, B. Gebauer, M. Lehmann, and M. Wilpert, Phys. Rev. C, 45:1229-1259 (1992)
  • 加载中

Cited by

1. Zhu, S.H., Zhao, T.L., Bao, X.J. Theoretical study of mass distribution in multinucleon transfer reactions[J]. Physical Review C, 2024, 110(5): 054601. doi: 10.1103/PhysRevC.110.054601
2. Le, X.-K., Fan, K., Xing, F.-Z. et al. Angular distribution of products in multinucleon transfer reactions[J]. Chinese Physics C, 2024, 48(10): 104103. doi: 10.1088/1674-1137/ad5e66
3. Kayaalp, A., Arik, M., Ocal, S.E. et al. A quantal diffusion approach for multinucleon transfer in heavy-ion collisions[J]. Nuclear Physics A, 2024. doi: 10.1016/j.nuclphysa.2024.122916
4. Ma, X.-R., Sun, S., An, R. et al. Correlation between the charge radii difference in mirror partner nuclei and thesymmetry energy slope[J]. Chinese Physics C, 2024, 48(8): 084104. doi: 10.1088/1674-1137/ad47a8
5. Ma, S.-B., Sheng, L.-N., Zhang, X.-H. et al. Opportunities for production and property research of neutron-rich nuclei around N = 126 at HIAF[J]. Nuclear Science and Techniques, 2024, 35(6): 97. doi: 10.1007/s41365-024-01454-w
6. Zhu, L.. New model based on coupling the Master and Langevin equations in the study of multinucleon transfer reactions[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2024. doi: 10.1016/j.physletb.2023.138423
7. Manjunatha, H.C., Sowmya, N., Damodara Gupta, P.S. et al. Delving into uncharted isotones demonstrating neutron shell closure at N = 1 2 6[J]. Modern Physics Letters A, 2024. doi: 10.1142/S0217732324501827
8. Feng, Z.-Q.. Effect of cluster transfer on the production of neutron-rich nuclides near N=126 in multinucleon-transfer reactions[J]. Physical Review C, 2023, 108(5): L051601. doi: 10.1103/PhysRevC.108.L051601
9. Chen, P.-H., Geng, C., Yang, Z.-X. et al. Production of neutron-rich actinide isotopes in isobaric collisions via multinucleon transfer reactions[J]. Nuclear Science and Techniques, 2023, 34(10): 160. doi: 10.1007/s41365-023-01314-z
10. Liao, Z., Zhu, L., Gao, Z. et al. Optimal detection angles for producing N=126 neutron-rich isotones in multinucleon transfer reactions[J]. Physical Review Research, 2023, 5(2): L022021. doi: 10.1103/PhysRevResearch.5.L022021
11. Li, J.-J., Tang, N., Zhang, Y.-H. et al. Progress on production cross-sections of unknown nuclei in fusion evaporation reactions and multinucleon transfer reactions[J]. International Journal of Modern Physics E, 2023, 32(1): 2330002. doi: 10.1142/S0218301323300023
12. Peng, C., Feng, Z.-Q. Production of neutron-rich heavy nuclei around N= 162 in multinucleon transfer reactions[J]. European Physical Journal A, 2022, 58(9): 162. doi: 10.1140/epja/s10050-022-00819-2
13. Chen, P.-H., Niu, F., Xu, X.-X. et al. Rare isotope formation in complete fusion and multinucleon transfer reactions in collisions of Ca 48 + Cm 248 near Coulomb barrier energies[J]. Physical Review C, 2022, 105(3): 034610. doi: 10.1103/PhysRevC.105.034610
14. Wu, Z., Guo, L., Liu, Z. et al. Production of proton-rich nuclei in the vicinity of 100Sn via multinucleon transfer reactions[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022. doi: 10.1016/j.physletb.2022.136886
15. Bao, X.J., Guo, S.Q., Chen, P.H. Production of new neutron-rich isotopes with 92=Z=100 in multinucleon transfer reactions[J]. Physical Review C, 2022, 105(2): 024610. doi: 10.1103/PhysRevC.105.024610
16. Bao, X.J.. Possibilities for synthesis of new transfermium isotopes in multinucleon transfer reactions[J]. Physical Review C, 2021, 104(3): 034604. doi: 10.1103/PhysRevC.104.034604
17. Wang, X., Bao, X. Multinucleon transfer reactions in the nearly symmetric reaction systems 204Hg+208Pb and 204Hg+198Pt[J]. Nuclear Physics A, 2021. doi: 10.1016/j.nuclphysa.2021.122196
18. Cheng, Z., Bao, X.J. Influence of entrance channel on multinucleon transfer cross sections[J]. Physical Review C, 2021, 103(6): 064613. doi: 10.1103/PhysRevC.103.064613
19. Guo, S., Bao, X., Wang, N. Selection of the optimal condition for the production of light neutron-rich isotopes in multinucleon transfer reactions[J]. Physical Review C, 2021, 103(3): 034613. doi: 10.1103/PhysRevC.103.034613
20. Cheng, Z., Bao, X.J. Formation of heavy neutron-rich nuclei by Ca 48 -induced multinucleon transfer reactions[J]. Physical Review C, 2021, 103(2): 024613. doi: 10.1103/PhysRevC.103.024613
21. Bao, X.J.. Influence of the incident energy of the projectile and of different targets on the production of neutron-rich nuclei[J]. Physical Review C, 2020, 102(6): 064604. doi: 10.1103/PhysRevC.102.064604
22. Bao, X.J.. Role of neutron excess in the projectile for the production of heavy neutron-rich nuclei[J]. Physical Review C, 2020, 102(5): 054613. doi: 10.1103/PhysRevC.102.054613
23. Sekizawa, K., Ayik, S. Quantal diffusion approach for multinucleon transfer processes in the Ni 58,64 + Pb 208 reactions: Toward the production of unknown neutron-rich nuclei[J]. Physical Review C, 2020, 102(1): 014620. doi: 10.1103/PhysRevC.102.014620
24. Chen, P.-H., Niu, F., Feng, Z.-Q. Production mechanism of proton-rich actinide isotopes in fusion reactions and via multinucleon transfer processes[J]. Physical Review C, 2020, 102(1): 014621. doi: 10.1103/PhysRevC.102.014621
25. Niu, F., Chen, P.-H., Cheng, H.-G. et al. Multinucleon transfer dynamics in nearly symmetric nuclear reactions[J]. Nuclear Science and Techniques, 2020, 31(6): 59. doi: 10.1007/s41365-020-00770-1
26. Zhu, L., Li, C., Guo, C.-C. et al. Theoretical progress on production of isotopes in the multinucleon transfer process[J]. International Journal of Modern Physics E, 2020, 29(4): 2030004. doi: 10.1142/S0218301320300040
27. Wu, Z.J., Guo, L. Production of proton-rich actinide nuclei in the multinucleon transfer reaction 58Ni+232Th[J]. Science China: Physics, Mechanics and Astronomy, 2020, 63(4): 242021. doi: 10.1007/s11433-019-1484-0
28. Jiang, X., Wang, N. Predictions of New Neutron-Rich Isotopes at N = 126 in the Multinucleon Transfer Reaction 136Xe + 194Ir[J]. Frontiers in Physics, 2020. doi: 10.3389/fphy.2020.00038
29. Chen, P.-H., Niu, F., Zuo, W. et al. Approaching the neutron-rich heavy and superheavy nuclei by multinucleon transfer reactions with radioactive isotopes[J]. Physical Review C, 2020, 101(2): 024610. doi: 10.1103/PhysRevC.101.024610
30. Jiang, X., Wang, N. Probing the production mechanism of neutron-rich nuclei in multinucleon transfer reactions[J]. Physical Review C, 2020, 101(1): 014604. doi: 10.1103/PhysRevC.101.014604
31. Li, X.Y., Wu, Z.J., Guo, L. Entrance-channel dynamics in the reaction 40Ca+208Pb[J]. Science China: Physics, Mechanics and Astronomy, 2019, 62(12): 122011. doi: 10.1007/s11433-019-9435-x
32. Guo, S.Q., Bao, X.J., Zhang, H.F. et al. Effect of dynamical deformation on the production distribution in multinucleon transfer reactions[J]. Physical Review C, 2019, 100(5): 054616. doi: 10.1103/PhysRevC.100.054616
33. Wu, Z., Guo, L. Microscopic studies of production cross sections in multinucleon transfer reaction Ni 58 + Sn 124[J]. Physical Review C, 2019, 100(1): 014612. doi: 10.1103/PhysRevC.100.014612
34. Zhu, L.. Theoretical study on production of exotic nuclei near the neutron-drip line in multinucleon transfer reactions[J]. Journal of Physics G: Nuclear and Particle Physics, 2019, 46(6): 065102. doi: 10.1088/1361-6471/ab0bf1
35. Sekizawa, K.. TDHF theory and its extensions for the multinucleon transfer reaction: A mini review[J]. Frontiers in Physics, 2019, 7(MAR): 20. doi: 10.3389/fphy.2019.00020
36. Zhang, S., Wang, J.C., Bonasera, A. et al. Triple α -particle resonances in the decay of hot nuclear systems[J]. Chinese Physics C, 2019, 43(6): 064102. doi: 10.1088/1674-1137/43/6/064102
Get Citation
Xiang Jiang and Nan Wang. Production mechanism of neutron-rich nuclei around N=126 in the multi-nucleon transfer reaction 132Sn + 208Pb[J]. Chinese Physics C, 2018, 42(10): 104105. doi: 10.1088/1674-1137/42/10/104105
Xiang Jiang and Nan Wang. Production mechanism of neutron-rich nuclei around N=126 in the multi-nucleon transfer reaction 132Sn + 208Pb[J]. Chinese Physics C, 2018, 42(10): 104105.  doi: 10.1088/1674-1137/42/10/104105 shu
Milestone
Received: 2018-07-10
Fund

    Supported by National Natural Science Foundation of China (11705118, 11475115, 11647026) and Natural Science Foundation of SZU (2016017).

Article Metric

Article Views(2490)
PDF Downloads(27)
Cited by(36)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Production mechanism of neutron-rich nuclei around N=126 in the multi-nucleon transfer reaction 132Sn + 208Pb

    Corresponding author: Nan Wang,
  • 1. College of Physics and Energy, Shenzhen University, Shenzhen 518060, China
Fund Project:  Supported by National Natural Science Foundation of China (11705118, 11475115, 11647026) and Natural Science Foundation of SZU (2016017).

Abstract: The time-dependent Hartree-Fock approach in three dimensions is employed to study the multi-nucleon transfer reaction 132Sn + 208Pb at various incident energies above the Coulomb barrier. Probabilities for different transfer channels are calculated by using the particle-number projection method. The results indicate that neutron stripping (transfer from the projectile to the target) and proton pick-up (transfer from the target to the projectile) are favored. De-excitation of the primary fragments is treated by using the state-of-art statistical code GEMINI++. Primary and final production cross sections of the target-like fragments (with Z=77 to Z=87) are investigated. The results reveal that fission decay of heavy nuclei plays an important role in the de-excitation process of nuclei with Z>82. It is also found that the final production cross sections of neutron-rich nuclei depend only slightly on the incident energy, while those of neutron-deficient nuclei depend strongly on the incident energy.

    HTML

Reference (56)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return