Tsallis' quantum q-fields

  • We generalize several well known quantum equations to a Tsallis' q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schrödinger, q-Klein-Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118, 61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle. These q-fields are meaningful at very high energies (TeV scale) for q=1.15, high energies (GeV scale) for q=1.001, and low energies (MeV scale) for q=1.000001[Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields' logarithms.
      PCAS:
  • 加载中
  • [1] F. D. Nobre, M. A. Rego-Monteiro, and C. Tsallis, Phys. Rev. Lett., 106:140601(2011)
    [2] A. Plastino and M. C. Rocca, EPL, 116:41001(2016)
    [3] A. Plastino and M. C. Rocca, EPL, 118:61004(2017)
    [4] A. Plastino and M. C. Rocca, PLA, 370:2690(2015)
    [5] F. D. Nobre and A. R. Plastino, EPJ C, 76:343(2016)
    [6] F. D. Nobre, M. A. Rego-Monteiro, and C. Tsallis, EPL, 97:41001(2012)
    [7] A. Plastino and M. Rocca, Nuc. Phys. A, 948:19(2016)
    [8] A. Plastino, M. C. Rocca, G. L. Ferri, and D. J. Zamora, Nuc. Phys. A, 955:16(2016)
    [9] F. Barile et al (ALICE Collaboration), EPJ Web Conferences, 60:13012(2013); B. Abelev et al (ALICE Collaboration), Phys. Rev. Lett., 111:222301(2013); Yu. V. Kharlov (ALICE Collaboration), Physics of Atomic Nuclei, 76:1497(2013); ALICE Collaboration, Phys. Rev. C, 91:024609(2015); ATLAS Collaboration, New J. Physics, 13:053033(2011); CMS Collaboration, J. High Energy Phys., 05:064(2011); CMS Collaboration, Eur. Phys. J. C, 74:2847(2014)
    [10] C. H. Bennett, D. Leung, G. Smith, and J. A. Smolin, Phys. Rev. Lett., 103:170502(2009)
    [11] A. R. Plastino and C. Zander, in A Century o f Relativity Physics:XXVⅢ Spanish Relativity Meeting, edited by L. Mornas and J. D. Alonso, AIP Conf. Proc. No. 841(AIP, Melville, NY, 2006), pp. 570-573
    [12] L. P. Pitaevskii and S. Stringari, Bose Einstein Condensation (Clarendon Press, Oxford, 2003)
  • 加载中

Get Citation
A. Plastino and M. C. Rocca. Tsallis' quantum q-fields[J]. Chinese Physics C, 2018, 42(5): 053102. doi: 10.1088/1674-1137/42/5/053102
A. Plastino and M. C. Rocca. Tsallis' quantum q-fields[J]. Chinese Physics C, 2018, 42(5): 053102.  doi: 10.1088/1674-1137/42/5/053102 shu
Milestone
Received: 2017-12-16
Revised: 2018-02-21
Article Metric

Article Views(1635)
PDF Downloads(15)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Tsallis' quantum q-fields

  • 1. Departamento de Fí
  • 2. Consejo Nacional de Investigaciones Cientí
  • 3. SThAR-EPFL, Lausanne, Switzerland
  • 4. Departamento de Matemá
  • 5. Consejo Nacional de Investigaciones Cientí

Abstract: We generalize several well known quantum equations to a Tsallis' q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schrödinger, q-Klein-Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118, 61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle. These q-fields are meaningful at very high energies (TeV scale) for q=1.15, high energies (GeV scale) for q=1.001, and low energies (MeV scale) for q=1.000001[Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields' logarithms.

    HTML

Reference (12)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return