-
Abstract:
We generalize several well known quantum equations to a Tsallis' q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schrödinger, q-Klein-Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118, 61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle. These q-fields are meaningful at very high energies (TeV scale) for q=1.15, high energies (GeV scale) for q=1.001, and low energies (MeV scale) for q=1.000001[Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields' logarithms.
-
-
References
[1]
|
F. D. Nobre, M. A. Rego-Monteiro, and C. Tsallis, Phys. Rev. Lett., 106:140601(2011) |
[2]
|
A. Plastino and M. C. Rocca, EPL, 116:41001(2016) |
[3]
|
A. Plastino and M. C. Rocca, EPL, 118:61004(2017) |
[4]
|
A. Plastino and M. C. Rocca, PLA, 370:2690(2015) |
[5]
|
F. D. Nobre and A. R. Plastino, EPJ C, 76:343(2016) |
[6]
|
F. D. Nobre, M. A. Rego-Monteiro, and C. Tsallis, EPL, 97:41001(2012) |
[7]
|
A. Plastino and M. Rocca, Nuc. Phys. A, 948:19(2016) |
[8]
|
A. Plastino, M. C. Rocca, G. L. Ferri, and D. J. Zamora, Nuc. Phys. A, 955:16(2016) |
[9]
|
F. Barile et al (ALICE Collaboration), EPJ Web Conferences, 60:13012(2013); B. Abelev et al (ALICE Collaboration), Phys. Rev. Lett., 111:222301(2013); Yu. V. Kharlov (ALICE Collaboration), Physics of Atomic Nuclei, 76:1497(2013); ALICE Collaboration, Phys. Rev. C, 91:024609(2015); ATLAS Collaboration, New J. Physics, 13:053033(2011); CMS Collaboration, J. High Energy Phys., 05:064(2011); CMS Collaboration, Eur. Phys. J. C, 74:2847(2014) |
[10]
|
C. H. Bennett, D. Leung, G. Smith, and J. A. Smolin, Phys. Rev. Lett., 103:170502(2009) |
[11]
|
A. R. Plastino and C. Zander, in A Century o f Relativity Physics:XXVⅢ Spanish Relativity Meeting, edited by L. Mornas and J. D. Alonso, AIP Conf. Proc. No. 841(AIP, Melville, NY, 2006), pp. 570-573 |
[12]
|
L. P. Pitaevskii and S. Stringari, Bose Einstein Condensation (Clarendon Press, Oxford, 2003) |
-
[1] |
Tetsuaki Moriguchi
, Momo Mukai
, Naoto Kaname
, Akira Ozawa
, Shinji Suzuki
, Yasushi Abe
, Hiroki Arakawa
, Tomoya Fujii
, Daiki Hamakawa
, Sakumi Harayama
, Shun Hosoi
, Yasuto Inada
, Kumi Inomata
, Reo Kagesawa
, Daisuke Kajiki
, Daiki Kamioka
, Masanori Kanda
, Atsushi Kitagawa
, Takaaki Kobayashi
, Daisuke Nagae
, Sarah Naimi
, Kunimitsu Nishimuro
, Shunichiro Omika
, Misaki Otsu
, Mamoru Sakaue
, Shinji Sato
, Hibiki Seki
, Naru Shinozaki
, Takeshi Suzuki
, Keisuke Tomita
, Takayuki Yamaguchi
, Yoshitaka Yamaguchi
, Asahi Yano
, Kenjiro Yokota
. Improvements of time-of-flight detector utilizing a thin foil and crossed static electric and magnetic fields. Chinese Physics C,
2025, 49(10): 104001.
doi: 10.1088/1674-1137/ade95b
|
[2] |
Xufen Zhang
, De-Cheng Zou
, Chao-Ming Zhang
, Ming Zhang
, Rui-Hong Yue
. Perturbations of massless external fields on magnetically charged black holes in string-inspired Euler-Heisenberg theory. Chinese Physics C,
2025, 49(10): 105109.
doi: 10.1088/1674-1137/ade661
|
[3] |
Chen Zhongqiu
, Shao Changgui
, Ma Weichuan
. Calculation of Wilson Loop Functionals for Classical and Quantum Gravities. Chinese Physics C,
1998, 22(3): 217-224. |
[4] |
Yang Jianjun
, Ma Boqiang
, Li Guanglie
. Non-perturbative Quark Propagator and the Study of the Non-trivial Q2 Dependence in the Nucleon Structure Functions. Chinese Physics C,
1997, 21(2): 146-156. |
-
Access
-
-