Band head spin assignment of superdeformed bands in Hg isotopes through power index formula

  • The power index formula has been used to obtain the band head spin (I0) of all the superdeformed (SD) bands in Hg isotopes. A least squares fitting approach is used. The root mean square deviations between the determined and the observed transition energies are calculated by extracting the model parameters using the power index formula. Whenever definite spins are available, the determined and the observed transition energies are in accordance with each other. The computed values of dynamic moment of inertia J(2) obtained by using the power index formula and its deviation with the rotational frequency is also studied. Excellent agreement is shown between the calculated and the experimental results for J(2) versus the rotational frequency. Hence, the power index formula works very well for all the SD bands in Hg isotopes expect for 195Hg(2, 3, 4).
      PCAS:
  • 加载中
  • [1] V. M. Strutinsky, Nucl. Phys. A, 122:1-33(1968)
    [2] P. J. Twin, B. M. Nyako, A. H. Nelson et al, Phys. Rev. Lett., 57:811(1986)
    [3] I. Ragnarsson, S. G. Nilsson, and R. K. Sheline, Phys. Rev., 45:1(1978)
    [4] N. Sharma, H. M. Mittal, S. Kumar et al, Phys. Rev. C, 87:024322(2013)
    [5] J. A. Becker, E. A. Henry, A. Kuhnert et al, Phys. Rev. C, 46:889(1992)
    [6] J. Y. Zeng, J. Meng, C. S. Wu et al, Phys. Rev. C, 44:R1745(1991)
    [7] R. Piepenbring and K. V. Protasov, Z. Phys. A, 345:7(1993)
    [8] F. R. Xu and J. M. Hu, Phys. Rev. C, 49:1449(1994)
    [9] T. L. Khoo, M. P. Carpenter, T. Lauritsen et al, Phys. Rev. Lett., 76:1583(1996)
    [10] K. Hauschild, L. A. Bernstein, J. A. Becker et al, Phys. Rev. C, 55:2819(1997)
    [11] A. Lopez-Martens, F. Hannachi, A. Korichi et al, Phys. Lett. B, 380:18(1996)
    [12] M. J. Brinkman, J. A. Becker, I. Y. Lee et al, Phys. Rev. C, 53:R1461(1996)
    [13] G. Hackman, T. L. Khoo, M. P. Carpenter et al, Phys. Rev. Lett., 79:4100(1997)
    [14] A. Atac, M. Piiparinen, B. Herskind et al, Phys. Rev. Lett., 70:1069(1993)
    [15] C. H. Yu, C. Baktash, J. Dobaczewski et al, Phys. Rev. C, 60:031305(R) (1999)
    [16] C. E. Svensson, D. Rudolph, C. Baktash et al, Phys. Rev. Lett., 82:3400(1999)
    [17] M. A. Riley, D. M. Cullen, A. Alderson et al, Nucl. Phys. A, 512:178-188(1990)
    [18] M. W. Drigert, M. P. Carpenter, R. V. F. Janssens et al, Nucl. Phys. A, 530:452-474(1991)
    [19] E. F. Moore, R. V. F. Janssens, R. R. Chasman et al, Phys. Rev. Lett., 63:360(1989)
    [20] J. A. Becker, N. Roy, E. A. Henry et al, Phys. Rev. C, 41:R9(R) (1990)
    [21] D. Ye, R. V. F. Janssens, M. P. Carpenter et al, Phys. Rev. C, 41:R13(R) (1990)
    [22] P. H. Heenen, P. Bonche, H. Flocard et al, Nucl. Phys. A, 588:490-500(1995)
    [23] C. W. Beausang, E. A. Henry, J. A. Becker et al, Z. Phys. A, 335:325-330(1990)
    [24] B. Cederwall, R. V. F. Janssens, M. J. Brinkman et al, Phys. Rev. Lett., 72:3150(1994)
    [25] G. Hackman, R. Krucken, R. V. F. Janssens et al, Phys. Rev. C, 55:148(1997)
    [26] J. Meng, C. S. Wu and J. Y. Zeng, Phys. Rev. C, 44:2545(1991)
    [27] C. S. Wu, J. Y. Zeng, Z. Xing et al, Phys. Rev. C, 45:261(1992)
    [28] S. X. Liu and J. Y. Zeng, Phys. Rev. C, 58:3266(1998)
    [29] D. Bonastsos, S. B. Drenska, P. P. Raychev et al, J. Phys. G:Nucl. Part. Phys., 17:L67(1991)
    [30] Y. Liu, J. Song, H. Z. Sun et al, J. Phys. G:Nucl. Part. Phys., 24:117-124(1998)
    [31] A. M. Khalaf, K. E. Abdelmageed, and E. Saber, International Journal of Theoretical and Applied Sciences, 6:47-56(2014)
    [32] A. M. Khalaf, N. Mansour, M. M. Taha et al, Journal of Applied Phys., 7:1-11(2015)
    [33] V. S. Uma, A. Goel, A. Yadav et al, Pramana Journal of Phys., 86:185-190(2016)
    [34] A. S. Shalaby, Commun. Theor. Phys., (Beijing, China) 41:454(2004)
    [35] H. M. Mittal and A. Dadwal, Proceedings of the DAE-BRNS Symp. on Nucl. Phys., 60:132-133(2015)
    [36] H. Sharma and H. M. Mittal, Chinese Physics C, 41:124105(2017)
    [37] J. B. Gupta, A. K. Kavathekar, and R. Sharma, Phys. Scr., 51:316(1995)
    [38] X. L. Han and C. L. Wu, At. Data Nucl. Data Tables, 73:43(1999)
    [39] B. Singh, R. Zywina, and R. B. Firestone, Nuclear Data Sheets, 97:241-592(2002)
  • 加载中

Get Citation
Honey Sharma and H. M. Mittal. Band head spin assignment of superdeformed bands in Hg isotopes through power index formula[J]. Chinese Physics C, 2018, 42(5): 054104. doi: 10.1088/1674-1137/42/5/054104
Honey Sharma and H. M. Mittal. Band head spin assignment of superdeformed bands in Hg isotopes through power index formula[J]. Chinese Physics C, 2018, 42(5): 054104.  doi: 10.1088/1674-1137/42/5/054104 shu
Milestone
Received: 2018-01-18
Article Metric

Article Views(1649)
PDF Downloads(51)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Band head spin assignment of superdeformed bands in Hg isotopes through power index formula

    Corresponding author: H. M. Mittal,
  • 1. Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, 144011, India

Abstract: The power index formula has been used to obtain the band head spin (I0) of all the superdeformed (SD) bands in Hg isotopes. A least squares fitting approach is used. The root mean square deviations between the determined and the observed transition energies are calculated by extracting the model parameters using the power index formula. Whenever definite spins are available, the determined and the observed transition energies are in accordance with each other. The computed values of dynamic moment of inertia J(2) obtained by using the power index formula and its deviation with the rotational frequency is also studied. Excellent agreement is shown between the calculated and the experimental results for J(2) versus the rotational frequency. Hence, the power index formula works very well for all the SD bands in Hg isotopes expect for 195Hg(2, 3, 4).

    HTML

Reference (39)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return