On the knee of Galactic cosmic rays in light of sub-TeV spectral hardenings

  • More than fifty years after the discovery of the knee in the cosmic ray (CR) spectra, its physical origin remains a mystery. This is partly due to the ambiguity of the energy spectra of individual components. Recently, direct measurements from several space experiments found significant spectral hardenings of CR nuclei at ~200 GV. A joint modeling of the direct and indirect measurements may help to understand the experimental systematics and the physics of the knee. In this work, we update the phenomenological "poly-gonato" model to include the spectral hardenings, with a changing spectral index of γ + β·logE. This modification gives a reasonable description of the CR spectra in a wide energy range. However, the fits to different data sets give different results. We find that the fit to the AMS-02 and CREAM data slightly favors a relatively low energy knee of the light components. In such a case, the expected all-particle spectra under-shoot the data, which may require an extra component of CRs. The fits to AMS-02 data and the light component (H+He) data from the Tibet ASγ/ARGO-YBJ/WFCTA and KASCADE experiments give consistent results with the all-particle spectra. We further propose a possible physical realization of such a "modified poly-gonato" model of spectral hardenings by means of spatially-dependent diffusion of CRs. We find reasonably good agreement between the model predictions and the data for CR spectra, the secondary-to-primary ratios, and the amplitude of anisotropies.
      PCAS:
  • 加载中
  • [1] G. V. Kulikov and G. B. Kristiansen, J. Exp. Theor. Phys., 35:635 (1958)
    [2] J. R. Hrandel, Astroparticle Physics, 21: 241265 (2004)
    [3] J. R. Hrandel, Astroparticle Physics, 19: 193220 (2003)
    [4] P. O. Lagage and C. J. Cesarsky, Astron. Astrophys., 125: 249257 (1983)
    [5] H. J. Voelk and P. L. Biermann, Astrophys. J. Lett., 333: L65 L68 (1988)
    [6] V. S. Ptuskin, S. I. Rogovaya, V. N. Zirakashvili et al, Astron. Astrophys., 268: 726735 (1993)
    [7] E. G. Berezhko, Astroparticle Physics, 5: 367378 (1996)
    [8] B. Wiebel-Sooth, P. L. Biermann, and H. Meyer, Astron. Astrophys., 330: 389398 (1998)
    [9] S. Karakula and W. Tkaczyk, Astroparticle Physics, 1: 229237 (1993)
    [10] J. Candia, L. N. Epele, and E. Roulet, Astroparticle Physics, 17: 2333 (2002)
    [11] D. Kazanas and A. Nicolaidis, International Cosmic Ray Conference, 5: 1760 (2001)
    [12] H.-B. Hu, Q. Yuan, B. Wang et al, Astrophys. J. Lett., 700:L170L173 (2009)
    [13] B. Wang, Q. Yuan, C. Fan et al, Science China Physics, Mechanics, and Astronomy, 53: 842847 (2010)
    [14] Y.-Q. Guo, Z.-Y. Feng, Q. Yuan, C. Liu, and H.-B. Hu, New Journal of Physics, 15(1): 013053 (2013)
    [15] J. Huang, Primary proton and helium spectra at energy range from 50 TeV to 1PeV observed with (YAC+Tibet-Ⅲ ) hybrid experiment, International Cosmic Ray Conference, 2013
    [16] W. D. Apel, J. C. Arteaga-Velzquez, K. Bekk et al, Astroparticle Physics, 47: 5466 (2013)
    [17] S. M. Mari, P. Montini, and for the ARGO-YBJ Collaboration, Phys. Rev. D, 91: 112017 (2015)
    [18] B. Bartoli, P. Bernardini, X. J. Bi et al, Phys. Rev. D, 92(9):092005 (2015)
    [19] A. DAmone, I. De Mitri, and A. Surdo, Measurement of the cosmic ray all-particle and light-component energy spectra with the ARGO-YBJ experiment, arXiv:1502.04840
    [20] P. Montini and S. M. Mari, The bending of the proton plus helium flux in primary cosmic rays measured by the ARGOYBJ experiment in the energy range from 20 TeV to 5 PeV, arXiv:1608.01389
    [21] M. Shibata, Y. Katayose, J. Huang, and D. Chen, Astrophys. J., 716: 10761083 (2010)
    [22] Y. Zhao, H.-Y. Jia, and F.-R. Zhu, Chinese Physics C, 39(12):125001 (2015)
    [23] S. Thoudam, J. P. Rachen, A. van Vliet et al, Astron. Astrophys., 595: A33 (2016)
    [24] A. D. Panov, J. H. Adams, Jr., H. S. Ahn et al, Bulletin of the Russian Academy of Science, Phys., 71: 494497 (2007)
    [25] H. S. Ahn, P. Allison, M. G. Bagliesi et al, Astrophys. J. Lett., 714: L89L93 (2010)
    [26] O. Adriani, G. C. Barbarino, G. A. Bazilevskaya et al, Science, 332: 69 (2011)
    [27] M. Aguilar, D. Aisa, B. Alpat et al, Physical Review Letters, 114(17): 171103 (2015)
    [28] M. Aguilar, D. Aisa, B. Alpat et al, Physical Review Letters, 115(21): 211101 (2015)
    [29] V. I. Zatsepin and N. V. Sokolskaya, Astron. Astrophys., 458: 15 (2006)
    [30] Q. Yuan, B. Zhang, and X.-J. Bi, Phys. Rev. D, 84(4): 043002 (2011)
    [31] S. Thoudam and J. R. Hrandel, Mon. Not. Roy. Astron. Soc., 421: 12091214 (2012)
    [32] P. L. Biermann, J. K. Becker, J. Dreyer et al, Astrophys. J., 725: 184187 (2010)
    [33] V. Ptuskin, V. Zirakashvili, and E.-S. Seo, Astrophys. J., 763:47 (2013)
    [34] S. Thoudam and J. R. Hrandel, Astron. Astrophys., 567: A33 (2014)
    [35] N. Tomassetti, Astrophys. J. Lett., 752: L13 (2012)
    [36] D. Gaggero, D. Grasso, A. Marinelli, A. Urbano, and M. Valli, Astrophys. J. Lett., 815: L25 (2015)
    [37] N. Tomassetti, Phys. Rev. D, 92(8): 081301 (2015)
    [38] C. Jin, Y.-Q. Guo, and H.-B. Hu, Chinese Physics C, 40(1):015101 (2016)
    [39] Y. Q. Guo, H. B. Hu, and Z. Tian, Chinese Physics C, 40:115001 (2016)
    [40] Y.-Q. Guo, Z. Tian, and C. Jin, Astrophys. J., 819: 54 (2016)
    [41] J. Feng, N. Tomassetti, and A. Oliva, Phys. Rev. D, 94(12):123007 (2016)
    [42] J. J. Engelmann, P. Ferrando, A. Soutoul, P. Goret, and E. Juliusson, Astron. Astrophys., 233: 96111 (1990)
    [43] Y. S. Yoon, T. Anderson, A. Barrau et al, Astrophys. J., 839:5 (2017)
    [44] M. Ave, P. J. Boyle, F. Gahbauer et al, Astrophys. J., 678: 262273 (2008)
    [45] A. D. Panov, J. H. Adams, H. S. Ahn et al, Bulletin of the Russian Academy of Sciences, Physics, 73: 564567 (2009)
    [46] H. S. Ahn, P. Allison, M. G. Bagliesi et al, Astrophys. J., 707: 593603 (2009)
    [47] M. Amenomori, X. J. Bi, D. Chen et al, Astrophys. J., 678: 11651179 (2008)
    [48] M. Nagano, T. Hara, Y. Hatano et al, Journal of Physics G Nuclear Physics, 10: 12951310 (1984)
    [49] N. Tomassetti, Phys. Rev. D, 92(6): 063001 (2015)
    [50] A. W. Strong, I. V. Moskalenko, and V. S. Ptuskin, Annual Review of Nuclear and Particle Science, 57: 285327 (2007)
    [51] Q. Yuan, S.-J. Lin, K. Fang, and X.-J. Bi, Phys. Rev. D, 95(8):083007 (2017)
    [52] E. S. Seo and V. S. Ptuskin, Astrophys. J., 431: 705714 (1994)
    [53] C. Evoli, D. Gaggero, D. Grasso, and L. Maccione, Journal of Cosmology and Astroparticle Physics, 10: 18 (2008)
    [54] L. J. Gleeson and W. I. Axford, Astrophys. J., 154: 1011 (1968)
    [55] AMS-02 collaboration, Talks at the AMS Days at CERN, 15-17 April, 2015
    [56] O. Adriani, G. C. Barbarino, G. A. Bazilevskaya et al, Physics Reports, 544: 323 (2014)
    [57] A. J. Davis, R. A. Mewaldt, W. R. Binns et al, On the low energy decrease in galactic cosmic ray secondary/primary ratios, In R. A. Mewaldt, J. R. Jokipii, M. A. Lee, E. Mbius, and T. H. Zurbuchen, editors, Acceleration and Transport of Energetic Particles Observed in the Heliosphere, volume 528 of American Institute of Physics Conference Series, pages 421 424, September 2000
    [58] V. A. Derbina, V. I. Galkin, M. Hareyama et al, Astrophys. J. Lett., 628: L41L44 (2005)
    [59] M. Amenomori and et al, International Cosmic Ray Conference, 2015
    [60] M. Ahlers, Deciphering the Dipole Anisotropy of Galactic Cosmic Rays, Physical Review Letters, 117: 151103 (2016)
    [61] T. Thambyahpillai, International Cosmic Ray Conference, 3:383 (1983)
    [62] D. B. Swinson and K. Nagashima, Planet. Space Sci., 33: 10691072 (1985)
    [63] K. Munakata, S. Yasue, S. Mori et al, International Cosmic Ray Conference, 4: 639 (1995)
    [64] K. B. Fenton, A. G. Fenton, and J. E. Humble, International Cosmic Ray Conference, 4: 635 (1995)
    [65] M. Amenomori, S. Ayabe, X. J. Bi et al, Science, 314: 439443 (2006)
    [66] R. Abbasi, Y. Abdou, T. Abu-Zayyad et al, Astrophys. J., 746:33 (2012)
    [67] B. Bartoli, P. Bernardini, X. J. Bi et al, Astrophys. J., 809: 90 (2015)
    [68] T. K. Gaisser, T. Stanev, and S. Tilav, Frontiers of Physics, 8: 748758 (2013)
    [69] CALET Collaboration, Nuclear Physics B Proceedings Supplements, 166: 4349 (2007)
    [70] J. Chang et al, Astropart. Phys., 95: 6 (2017)
    [71] Z. Cao, Chinese Physics C, 34: 249252 (2010)
  • 加载中

Get Citation
Yi-Qing Guo and Qiang Yuan. On the knee of Galactic cosmic rays in light of sub-TeV spectral hardenings[J]. Chinese Physics C, 2018, 42(7): 075103. doi: 10.1088/1674-1137/42/7/075103
Yi-Qing Guo and Qiang Yuan. On the knee of Galactic cosmic rays in light of sub-TeV spectral hardenings[J]. Chinese Physics C, 2018, 42(7): 075103.  doi: 10.1088/1674-1137/42/7/075103 shu
Milestone
Received: 2018-03-14
Fund

    Supported by National Key Research and Development Program of China (2016YFA0400200), the National Natural Science Foundation of China (11635011, 11761141001, 11663006, 11722328) and the 100 Talents program of Chinese Academy of Sciences

Article Metric

Article Views(1768)
PDF Downloads(16)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

On the knee of Galactic cosmic rays in light of sub-TeV spectral hardenings

  • 1. Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China
  • 2. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 3. School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China
Fund Project:  Supported by National Key Research and Development Program of China (2016YFA0400200), the National Natural Science Foundation of China (11635011, 11761141001, 11663006, 11722328) and the 100 Talents program of Chinese Academy of Sciences

Abstract: More than fifty years after the discovery of the knee in the cosmic ray (CR) spectra, its physical origin remains a mystery. This is partly due to the ambiguity of the energy spectra of individual components. Recently, direct measurements from several space experiments found significant spectral hardenings of CR nuclei at ~200 GV. A joint modeling of the direct and indirect measurements may help to understand the experimental systematics and the physics of the knee. In this work, we update the phenomenological "poly-gonato" model to include the spectral hardenings, with a changing spectral index of γ + β·logE. This modification gives a reasonable description of the CR spectra in a wide energy range. However, the fits to different data sets give different results. We find that the fit to the AMS-02 and CREAM data slightly favors a relatively low energy knee of the light components. In such a case, the expected all-particle spectra under-shoot the data, which may require an extra component of CRs. The fits to AMS-02 data and the light component (H+He) data from the Tibet ASγ/ARGO-YBJ/WFCTA and KASCADE experiments give consistent results with the all-particle spectra. We further propose a possible physical realization of such a "modified poly-gonato" model of spectral hardenings by means of spatially-dependent diffusion of CRs. We find reasonably good agreement between the model predictions and the data for CR spectra, the secondary-to-primary ratios, and the amplitude of anisotropies.

    HTML

Reference (71)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return