×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Transition magnetic moments of JP=(3/2)+ decuplet to JP=(1/2)+ octet baryons in the chiral constituent quark model

  • In light of the developments of the chiral constituent quark model (χCQM) in studying low energy hadronic matrix elements of the ground-state baryons, we extend this model to investigate their transition properties. The magnetic moments of transitions from the JP=(3/2)+ decuplet to JP=(1/2)+ octet baryons are calculated with explicit valence quark spin, sea quark spin and sea quark orbital angular momentum contributions. Since the experimental data is available for only a few transitions, we compare our results with the results of other available models. The implications of other complicated effects such as chiral symmetry breaking and SU(3) symmetry breaking arising due to confinement of quarks are also discussed.
      PCAS:
  • 加载中
  • [1] J. Ashman et al (EMC Collaboration), Phys. Lett. B, 206:364 (1988); J. Ashman et al (EMC Collaboration), Nucl. Phys. B, 328:1 (1989)
    [2] B. Adeva et al (SMC Collaboration), Phys. Rev. D, 58:112001 (1998)
    [3] P.L. Anthony et al (E142 Collaboration), Phys. Rev. Lett., 71:959 (1993); K. Abe et al (E143 Collaboration), Phys. Rev. Lett., 76:587 (1996); K. Abe et al (E154 Collaboration), Phys. Rev. Lett., 79:26 (1997); P. Adams et al, Phys. Rev. D, 56:5330 (1997)
    [4] E.A. Hawker et al (E866/NuSea Collaboration), Phys. Rev. Lett., 80:3715 (1998); J.C. Peng et al, Phys. Rev. D, 58:092004 (1998); R.S. Towell et al, Phys. Rev. D, 64:052002 (2001)
    [5] A. Airapetian et al (HERMES Collaboration), Phys. Rev. D, 71:012003 (2005)
    [6] C. Patrignani et al (Particle Data Group), Chin. Phys. C, 40:100001 (2016)
    [7] D. B. Lichtenberg, Phys. Rev. D, 15:345 (1977); A. L. Choudry and V. Joshi, Phys. Rev. D, 13:3115 (1976)
    [8] M. Gupta, S. K. Sood, and A. N. Mitra, Phys. Rev. D, 16:216 (1977); M. Gupta and A. N. Mitra, Phys. Rev. D, 18:1585 (1978); M. Gupta, S. K. Sood, and A. N. Mitra, Phys. Rev. D, 19:104 (1979); M. Gupta and N. Kaur, Phys. Rev. D, 28:534 (1983); P. N. Pandit, M. P. Khanna, and M. Gupta, J. Phys. G, 11:683 (1985)
    [9] A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Korner, and V. E. Lyubovitskij, Phys. Rev. D, 73:094013 (2006)
    [10] F. Schlumpf, Phys. Rev. D, 48:4478 (1993); B. Julia-Diaz, and D. O. Riska, Nucl. Phys. A, 739:69 (2004); G. Ramalho, K. Tsushima, and F. Gross, Phys. Rev. D, 80:033004 (2009)
    [11] P. Ha, Phys. Rev. D, 58:113003 (1998); C. S. An, Q. B. Li, D. O. Riska, and B. S. Zou, Phys. Rev. C, 74:055205 (2006)
    [12] M.D. Slaughter, Phys. Rev. C, 82:015208 (2010); M. D. Slaughter, Phys. Rev. D, 84:071303 (2011)
    [13] A. Bernotas, and V. Simonis, Phys. Rev. D, 87:074016 (2013)
    [14] B. O. Kerbikov and Y. A. Simonov, Phys. Rev. D, 62:093016 (2000)
    [15] T. M. Aliev, A. Ozpineci, and M. Savci, Phys. Rev. D, 62:053012 (2000); T. M. Aliev, A. Ozpineci, M. Savc, Phys. Rev. D, 65:056008 (2002); T. M. Aliev, K. Azizi, A. Ozpineci, Phys. Rev. D, 77:114006 (2008); T. M. Aliev, K. Azizi, M. Savc, Nucl. Phys. B, 895:59 (2012); T. M. Aliev, K. Azizi, M. Savc, JHEP, 1304:042 (2013); T. M. Aliev, K. Azizi, M. Savc, J. Phys. G, 40:065003 (2013); T. M. Aliev, A. Ozpineci, V.S. Zamiralov, Phys. Atom. Nucl., 73:1754 (2010)
    [16] F. X. Lee, Phys. Rev. D, 57:1801 (1998); S. L. Zhu, W. Y. P. Hwang, and Z. S. P. Yang, Phys. Rev. D, 57:1527 (1998); A. Iqubal, M. Dey, and J. Dey, Phys. Lett. B, 477:125 (2000)
    [17] B. Patel, A. K. Rai, and P. C. Vinodkumar, J. Phys. G, 35:065001 (2008)
    [18] B. Schwesinger and H. Weigel, Nucl. Phys. A, 540:461 (1992); Y. Oh, Phys. Rev. D, 75:074002 (2007)
    [19] T. Ledwig, A. Silva, and M. Vanderhaeghen, Phys. Rev D, 79:094025 (2009)
    [20] H-C. Kim, M. Praszalowicz, and K. Goeke, Phys. Rev. D, 57:2859 (1998); G. S. Yang, H-C. Kim, M. Praszalowicz, and K. Goeke, Phys. Rev. D, 70:114002 (2004); S. Scholl, and H. Weigel, Nucl. Phys. B, 735:163 (2004)
    [21] E. E. Jenkins and A.V. Manohar, Phys. Lett. B, 335:452 (1994); M. A. Luty, J. March-Russell, and M. J. White, Phys. Rev. D, 51:2332 (1995); A. J. Buchmann, J. A. Hester, and R. F. Lebed, Phys. Rev. D, 66:056002 (2002); A. J. Buchmann and R. F. Lebed, Phys. Rev. D, 67:016002 (2003); R. Flores-Mendieta, Phys. Rev. D, 80:094014 (2009); L. S. Geng, J. M. Camalich, and M. J. V. Vacas, Phys. Rev D, 80:034027 (2009)
    [22] S. Boinepalli, D. B. Leinweber, P. J. Moran, A. G. Williams, J. M. Zanotti, and J. B. Zhang, Phys. Rev. D, 80:054505 (2009); C. Aubin, K. Orginos, V. Pascalutsa, and M. Vanderhaeghen, Phys. Rev. D, 79:051502 (2009); P. E. Shanahan et al (CSSM and QCDSF/UKQCD Collaborations), Phys. Rev. D, 89:074511 (2014)
    [23] F. X. Lee, R. Kelly, L. Zhou, and W. Wilcox, Phys. Lett. B, 627:71 (2005)
    [24] A. J. Buchmann, E. Hernandez, and A. Faessler, Nucl. Phys. A, 569:661 (1994); G. Wagner, A. J. Buchmann, and A. Faessler, Phys. Lett. B, 359:288 (1995); A. J. Buchmann, E. Hernandez, and A. Faessler, Phys. Rev. C, 55:448 (1997); G. Wagner, A. J. Buchmann, and A. Faessler, Phys. Rev. C, 58:3666 (1998); G. Wagner, A. J. Buchmann, and A. Faessler, J. Phys. G, 26:267 (2000); A. J. Buchmann and E. M. Henley, Phys. Rev. C, 63:015202 (2000); A. J. Buchmann, Phys. Rev. Lett., 93:212301 (2004)
    [25] M. N. Butler, M. J. Savage and R. P. Springer, Phys. Lett. B, 304:353 (1993); H-S. Li, Z-W. Liu, X-L. Chen, W-Z. Deng, and S-L. Zhu, arXiv:1706.06458
    [26] T. M. Aliev, A. Ozpineci, and M. Savc, Phys. Rev. D, 65:096004 (2002)
    [27] E. E. Jenkins, Phys. Rev. D, 85:065007 (2012)
    [28] R. F. Lebed and D. R. Martin, Phys. Rev. D, 70:016008 (2004)
    [29] G. Ramalho and K. Tsushima, Phys. Rev. D, 87:093011 (2013)
    [30] G. Kaelbermann and J. M. Eisenberg, Phys. Rev. D, 28:71 (1983); K. Bermuth, D. Drechsel, L. Tiator, and J. B. Seaborn, Phys. Rev. D, 37:89 (1988); D. H. Lu, A. W. Thomas and A. G. Williams, Phys. Rev. C, 55:3108 (1997)
    [31] A. Wirzba and W. Weise, Phys. Lett. B, 188:6 (1987); A. Abada, H. Weigel, and H. Reinhardt, Phys. Lett. B, 366:26 (1996); H. Walliser and G. Holzwarth, Z. Phys. A, 357:317 (1997)
    [32] S. T. Hong, Phys. Rev. D, 76:094029 (2007)
    [33] L. Wang and F. X. Lee, AIP Conf. Proc., 1182:532 (2009)
    [34] D. B. Leinweber, T. Draper and R.M. Woloshyn, Phys. Rev. D, 48:2230 (1993); C. Alexandrou et al, Phys. Rev. D, 69:114506 (2004); C. Alexandrou, P. de Forcrand, H. Neff, J. W. Negele, W. Schroers, and A. Tsapalis, Phys. Rev. Lett., 94:021601 (2005); G. Ramalho and M. T. Pena, Phys. Rev. D, 80:013008 (2009)
    [35] H. C. Kim, M. Polyakov, M. Praszalowicz, G. S. Yang, and K. Goeke, Phys. Rev. D, 71:094023 (2005)
    [36] R. Dhir and R. C. Verma, Eur. Phys. J. A, 42:243 (2009)
    [37] G. Ramalho and K. Tsushima, Phys. Rev. D, 88:053002 (2013)
    [38] D. Keller and K. Hicks, Eur. Phys. J. A, 49:53 (2013)
    [39] S. Weinberg, Physica A, 96:327 (1979); A. Manohar and H. Georgi, Nucl. Phys. B, 234:189 (1984)
    [40] E. J. Eichten, I. Hinchliffe, and C. Quigg, Phys. Rev. D, 45:2269 (1992)
    [41] T. P. Cheng and L. F. Li, Phys. Rev. Lett., 74:2872 (1995); T. P. Cheng and L. F. Li, Phys. Rev. D, 57:344 (1998); T. P. Cheng and L. F. Li, Phys. Rev. Lett., 80:2789 (1998)
    [42] J. Linde, T. Ohlsson, and H. Snellman, Phys. Rev. D, 57:452 (1998); J. Linde, T. Ohlsson, and H. Snellman, Phys. Rev. D, 57:5916 (1998)
    [43] X. Song, J. S. McCarthy, and H. J. Weber, Phys. Rev. D, 55:2624 (1997); X. Song, Phys. Rev. D, 57:4114 (1998)
    [44] H. Dahiya and M. Gupta, Phys. Rev. D, 64:014013 (2001); H. Dahiya and M. Gupta, Int. Jol. of Mod. Phys. A, 19(29):5027 (2004); H. Dahiya, M. Gupta and J. M. S. Rana, Int. Jol. of Mod. Phys. A, 21(21):4255 (2006); H. Dahiya and M. Randhawa, Phys. Rev. D, 90:074001 (2014)
    [45] H. Dahiya and M. Gupta, Eur. Phys. J. C, 52:571 (2007); H. Dahiya and M. Gupta, Phys. Rev. D, 78:014001 (2008)
    [46] N. Sharma, H. Dahiya, P.K. Chatley, and M. Gupta, Phys. Rev. D, 79:077503 (2009); N. Sharma, H. Dahiya and P. K. Chatley, Eur. Phys. J. A, 44:125 (2010); N. Sharma and H. Dahiya, Phys. Rev. D, 81:114003 (2010)
    [47] H. Dahiya and M. Randhawa, Phys. Rev. D, 93:114030 (2016)
    [48] H. Dahiya and M. Randhawa, Int. Jol. of Mod. Phys. A, 32(31):1750185 (2017)
    [49] N. Sharma and H. Dahiya, Pramana,, 81:449 (2013); N. Sharma and H. Dahiya, Pramana, 80:237 (2013)
    [50] H. Dahiya and M. Gupta, Phys. Rev. D, 66:051501(R) (2002)
    [51] A. Girdhar, H. Dahiya and M. Randhawa, Phys. Rev. D, 92:033012 (2015)
    [52] N. Sharma, A. M. Torres, K. P. Khemchandani, and H. Dahiya, Eur. Jol. Phys. A, 49:11 (2013)
    [53] A. M. Torres, K. P. Khemchandani, N. Sharma, and H. Dahiya, Eur. Jol. Phys. A, 48:185 (2012)
    [54] A. Le Yaouanc, L. Oliver, O. Pene, and J. C. Raynal, Phys. Rev. D, 12:2137 (1975); A. Le Yaouanc, L. Oliver, O. Pene, and J.C. Raynal, Phys. Rev. D, 15:844 (1977)
  • 加载中

Get Citation
Harleen Dahiya. Transition magnetic moments of JP=(3/2)+ decuplet to JP=(1/2)+ octet baryons in the chiral constituent quark model[J]. Chinese Physics C, 2018, 42(9): 093102. doi: 10.1088/1674-1137/42/9/093102
Harleen Dahiya. Transition magnetic moments of JP=(3/2)+ decuplet to JP=(1/2)+ octet baryons in the chiral constituent quark model[J]. Chinese Physics C, 2018, 42(9): 093102.  doi: 10.1088/1674-1137/42/9/093102 shu
Milestone
Received: 2018-05-10
Article Metric

Article Views(1778)
PDF Downloads(20)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Transition magnetic moments of JP=(3/2)+ decuplet to JP=(1/2)+ octet baryons in the chiral constituent quark model

  • 1. Department of Physics, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, 144011, India

Abstract: In light of the developments of the chiral constituent quark model (χCQM) in studying low energy hadronic matrix elements of the ground-state baryons, we extend this model to investigate their transition properties. The magnetic moments of transitions from the JP=(3/2)+ decuplet to JP=(1/2)+ octet baryons are calculated with explicit valence quark spin, sea quark spin and sea quark orbital angular momentum contributions. Since the experimental data is available for only a few transitions, we compare our results with the results of other available models. The implications of other complicated effects such as chiral symmetry breaking and SU(3) symmetry breaking arising due to confinement of quarks are also discussed.

    HTML

Reference (54)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return