Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

A pattern for the flavor dependent quark-antiquark interaction

  • A flavor dependent kernel is constructed based on the rainbow-ladder truncation of the Dyson-Schwinger and Bethe-Salpeter equations in quantum chromodynamics. The quark-antiquark interaction is composed of a flavor dependent infrared part and a flavor independent ultraviolet part. Our model gives a successful and unified description of the light, heavy and heavy-light ground state pseudoscalar and vector mesons. Our model shows, for the first time, that the infrared enhanced quark-antiquark interaction is stronger and wider for lighter quarks.
  • [1] M. Tanabashi et al, Phys. Rev. D, 98: 030001 (2018)
    [2] S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, Phys. Rept., 301: 299 (1998), arXiv:hep-ph/9705477 doi: 10.1016/S0370-1573(97)00089-6
    [3] K. G. Wilson, Phys. Rev. D, 10: 2445 (1974)
    [4] P. H. Ginsparg and K. G. Wilson, Phys. Rev. D, 25: 2649 (1982)
    [5] G. G. Batrouni, G. R. Katz, A. S. Kronfeld et al, Phys. Rev. D, 32: 2736 (1985)
    [6] F. J. Dyson, Phys. Rev., 75: 1736 (1949) doi: 10.1103/PhysRev.75.1736
    [7] J. S. Schwinger, Proc. Nat. Acad. Sci., 37: 452 (1951) doi: 10.1073/pnas.37.7.452
    [8] C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Phys., 33: 477 (1994), arXiv:hep-ph/9403224 doi: 10.1016/0146-6410(94)90049-3
    [9] C. Itzykson and J.-B. Zuber, (1980)
    [10] E. Salpeter and H. Bethe, Physical Review, 84: 1232 (1951) doi: 10.1103/PhysRev.84.1232
    [11] L. Chang and C. D. Roberts, Phys. Rev. Lett., 103: 081601 (2009), arXiv:0903.5461 doi: 10.1103/PhysRevLett.103.081601
    [12] S.-X. Qin, L. Chang, Y.-X. Liu et al, Phys. Rev. C, 84: 042202 (2011), arXiv:1108.0603
    [13] D. Binosi, L. Chang, J. Papavassiliou et al, Phys. Lett. B, 742: 183 (2015), arXiv:1412.4782
    [14] P. Maris and C. D. Roberts, Phys. Rev. C, 56: 3369 (1997), arXiv:nucl-th/9708029
    [15] P. Maris, C. D. Roberts, and P. C. Tandy, Phys. Lett. B, 420: 267 (1998), arXiv:nucl-th/9707003
    [16] P. Maris and P. C. Tandy, Phys. Rev. C, 60: 055214 (1999)
    [17] J. Chen, M. Ding, L. Chang et al, Phys. Rev. D, 95: 016010 (2017), arXiv:1611.05960
    [18] S.-X. Qin, C. D. Roberts, and S. M. Schmidt, Phys. Rev. D, 97: 114017 (2018), arXiv:1801.09697
    [19] F. E. Serna, B. El-Bennich, and G. Krein, Phys. Rev. D, 96: 014013 (2017), arXiv:1703.09181
    [20] T. Nguyen, N. A. Souchlas, and P. C. Tandy, AIP Conf. Proc., 1361: 142 (2011), arXiv:1005.3315
    [21] T. Hilger, M. Gómez-Rocha, A. Krassnigg et al, Eur. Phys. J. A, 53: 213 (2017), arXiv:1702.06262
    [22] M. A. Ivanov, Yu. L. Kalinovsky, and C. D. Roberts, Phys. Rev. D, 60: 034018 (1999), arXiv:nucl-th/9812063
    [23] C. D. Roberts, Lect. Notes Phys., 647: 149 (2004), arXiv:nucl-th/0304050
    [24] M. A. Ivanov, J. G. Korner, S. G. Kovalenko et al, Phys. Rev. D, 76: 034018 (2007), arXiv:nucl-th/0703094
    [25] M. Gomez-Rocha, T. Hilger, and A. Krassnigg, Phys. Rev. D, 92: 054030 (2015), arXiv:1506.03686
    [26] M. Gómez-Rocha, T. Hilger, and A. Krassnigg, Phys. Rev. D, 93: 074010 (2016), arXiv:1602.05002
    [27] D. Binosi, L. Chang, M. Ding et al, Phys. Lett. B, 790: 257 (2019), arXiv:1812.05112
    [28] N. Nakanishi, Phys. Rev., 138: B1182 (1965) doi: 10.1103/PhysRev.138.B1182
    [29] M. Ablikim et al, Phys. Rev. Lett., 122: 071802 (2019), arXiv:1811.10890 doi: 10.1103/PhysRevLett.122.071802
    [30] M. S. Bhagwat, L. Chang, Y.-X. Liu et al, Phys. Rev. C, 76: 045203 (2007), arXiv:0708.1118
    [31] M. Ding, K. Raya, A. Bashir et al, Phys. Rev. D, 99: 014014 (2019), arXiv:1810. 12313
    [32] K. Cichy, M. Kalinowski, and M. Wagner, Phys. Rev. D, 94: 094503 (2016), arXiv:1603.06467
    [33] R. J. Dowdall, C. T. H. Davies, T. C. Hammant et al, Phys. Rev. D, 86: 094510 (2012), arXiv:1207.5149
    [34] N. Mathur, M. Padmanath, and S. Mondal, Phys. Rev. Lett., 121: 202002 (2018), arXiv:1806.04151 doi: 10.1103/PhysRevLett.121.202002
    [35] E. Follana, C. T. H. Davies, G. P. Lepage et al, Phys. Rev. Lett., 100: 062002 (2008), arXiv:0706.1726 doi: 10.1103/PhysRevLett.100.062002
    [36] A. Bazavov et al, Phys. Rev. D, 98: 074512 (2018), arXiv:1712.09262
    [37] C. McNeile, C. T. H. Davies, E. Follana et al, Phys. Rev. D, 86: 074503 (2012), arXiv:1207.0994
    [38] B. Colquhoun, C. T. H. Davies, R. J. Dowdall et al, Phys. Rev. D, 91: 114509 (2015), arXiv:1503.05762
    [39] S. Aoki et al, Eur. Phys. J. C, 77: 112 (2017), arXiv:1607.00299
    [40] Z. Fu and L. Wang, Phys. Rev. D, 94: 034505 (2016), arXiv:1608.07478
    [41] J. J. Dudek, R. G. Edwards, C. E. Thomas et al, Phys. Rev. Lett., 113: 182001 (2014), arXiv:1406.4158 doi: 10.1103/PhysRevLett.113.182001
    [42] G. C. Donald, C. T. H. Davies, J. Koponen et al, Phys. Rev. D, 90: 074506 (2014), arXiv:1311.6669
    [43] V. Lubicz, A. Melis, and S. Simula (ETM), Phys. Rev. D, 96: 034524 (2017), arXiv:1707.04529
    [44] G. C. Donald, C. T. H. Davies, R. J. Dowdall et al, Phys. Rev. D, 86: 094501 (2012), arXiv:1208.2855
    [45] B. Colquhoun, R. J. Dowdall, C. T. H. Davies et al, Phys. Rev. D, 91: 074514 (2015), arXiv:1408.5768
    [46] R. Alkofer, C. S. Fischer, F. J. Llanes-Estrada et al, Annals Phys., 324: 106 (2009), arXiv:0804.3042 doi: 10.1016/j.aop.2008.07.001
    [47] R. Williams, Eur. Phys. J. A, 51: 57 (2015), arXiv:1404.2545
    [48] D. Binosi, L. Chang, J. Papavassiliou et al, Phys. Rev. D, 95: 031501 (2017), arXiv:1609.02568
    [49] A. Sternbeck, P.-H. Balduf, A. Kızılersu et al, PoS, LATTICE2016: 349 (2017), arXiv:1702.00612
    [50] O. Oliveira, T. Frederico, W. de Paula et al, Eur. Phys. J. C, 78: 553 (2018), arXiv:1807.00675
    [51] C. D. Roberts, (2000), arXiv:nucl-th/0007054
    [52] S. J. Brodsky and R. Shrock, Phys. Lett. B, 666: 95 (2008), arXiv:0806.1535
  • [1] M. Tanabashi et al, Phys. Rev. D, 98: 030001 (2018)
    [2] S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, Phys. Rept., 301: 299 (1998), arXiv:hep-ph/9705477 doi: 10.1016/S0370-1573(97)00089-6
    [3] K. G. Wilson, Phys. Rev. D, 10: 2445 (1974)
    [4] P. H. Ginsparg and K. G. Wilson, Phys. Rev. D, 25: 2649 (1982)
    [5] G. G. Batrouni, G. R. Katz, A. S. Kronfeld et al, Phys. Rev. D, 32: 2736 (1985)
    [6] F. J. Dyson, Phys. Rev., 75: 1736 (1949) doi: 10.1103/PhysRev.75.1736
    [7] J. S. Schwinger, Proc. Nat. Acad. Sci., 37: 452 (1951) doi: 10.1073/pnas.37.7.452
    [8] C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Phys., 33: 477 (1994), arXiv:hep-ph/9403224 doi: 10.1016/0146-6410(94)90049-3
    [9] C. Itzykson and J.-B. Zuber, (1980)
    [10] E. Salpeter and H. Bethe, Physical Review, 84: 1232 (1951) doi: 10.1103/PhysRev.84.1232
    [11] L. Chang and C. D. Roberts, Phys. Rev. Lett., 103: 081601 (2009), arXiv:0903.5461 doi: 10.1103/PhysRevLett.103.081601
    [12] S.-X. Qin, L. Chang, Y.-X. Liu et al, Phys. Rev. C, 84: 042202 (2011), arXiv:1108.0603
    [13] D. Binosi, L. Chang, J. Papavassiliou et al, Phys. Lett. B, 742: 183 (2015), arXiv:1412.4782
    [14] P. Maris and C. D. Roberts, Phys. Rev. C, 56: 3369 (1997), arXiv:nucl-th/9708029
    [15] P. Maris, C. D. Roberts, and P. C. Tandy, Phys. Lett. B, 420: 267 (1998), arXiv:nucl-th/9707003
    [16] P. Maris and P. C. Tandy, Phys. Rev. C, 60: 055214 (1999)
    [17] J. Chen, M. Ding, L. Chang et al, Phys. Rev. D, 95: 016010 (2017), arXiv:1611.05960
    [18] S.-X. Qin, C. D. Roberts, and S. M. Schmidt, Phys. Rev. D, 97: 114017 (2018), arXiv:1801.09697
    [19] F. E. Serna, B. El-Bennich, and G. Krein, Phys. Rev. D, 96: 014013 (2017), arXiv:1703.09181
    [20] T. Nguyen, N. A. Souchlas, and P. C. Tandy, AIP Conf. Proc., 1361: 142 (2011), arXiv:1005.3315
    [21] T. Hilger, M. Gómez-Rocha, A. Krassnigg et al, Eur. Phys. J. A, 53: 213 (2017), arXiv:1702.06262
    [22] M. A. Ivanov, Yu. L. Kalinovsky, and C. D. Roberts, Phys. Rev. D, 60: 034018 (1999), arXiv:nucl-th/9812063
    [23] C. D. Roberts, Lect. Notes Phys., 647: 149 (2004), arXiv:nucl-th/0304050
    [24] M. A. Ivanov, J. G. Korner, S. G. Kovalenko et al, Phys. Rev. D, 76: 034018 (2007), arXiv:nucl-th/0703094
    [25] M. Gomez-Rocha, T. Hilger, and A. Krassnigg, Phys. Rev. D, 92: 054030 (2015), arXiv:1506.03686
    [26] M. Gómez-Rocha, T. Hilger, and A. Krassnigg, Phys. Rev. D, 93: 074010 (2016), arXiv:1602.05002
    [27] D. Binosi, L. Chang, M. Ding et al, Phys. Lett. B, 790: 257 (2019), arXiv:1812.05112
    [28] N. Nakanishi, Phys. Rev., 138: B1182 (1965) doi: 10.1103/PhysRev.138.B1182
    [29] M. Ablikim et al, Phys. Rev. Lett., 122: 071802 (2019), arXiv:1811.10890 doi: 10.1103/PhysRevLett.122.071802
    [30] M. S. Bhagwat, L. Chang, Y.-X. Liu et al, Phys. Rev. C, 76: 045203 (2007), arXiv:0708.1118
    [31] M. Ding, K. Raya, A. Bashir et al, Phys. Rev. D, 99: 014014 (2019), arXiv:1810. 12313
    [32] K. Cichy, M. Kalinowski, and M. Wagner, Phys. Rev. D, 94: 094503 (2016), arXiv:1603.06467
    [33] R. J. Dowdall, C. T. H. Davies, T. C. Hammant et al, Phys. Rev. D, 86: 094510 (2012), arXiv:1207.5149
    [34] N. Mathur, M. Padmanath, and S. Mondal, Phys. Rev. Lett., 121: 202002 (2018), arXiv:1806.04151 doi: 10.1103/PhysRevLett.121.202002
    [35] E. Follana, C. T. H. Davies, G. P. Lepage et al, Phys. Rev. Lett., 100: 062002 (2008), arXiv:0706.1726 doi: 10.1103/PhysRevLett.100.062002
    [36] A. Bazavov et al, Phys. Rev. D, 98: 074512 (2018), arXiv:1712.09262
    [37] C. McNeile, C. T. H. Davies, E. Follana et al, Phys. Rev. D, 86: 074503 (2012), arXiv:1207.0994
    [38] B. Colquhoun, C. T. H. Davies, R. J. Dowdall et al, Phys. Rev. D, 91: 114509 (2015), arXiv:1503.05762
    [39] S. Aoki et al, Eur. Phys. J. C, 77: 112 (2017), arXiv:1607.00299
    [40] Z. Fu and L. Wang, Phys. Rev. D, 94: 034505 (2016), arXiv:1608.07478
    [41] J. J. Dudek, R. G. Edwards, C. E. Thomas et al, Phys. Rev. Lett., 113: 182001 (2014), arXiv:1406.4158 doi: 10.1103/PhysRevLett.113.182001
    [42] G. C. Donald, C. T. H. Davies, J. Koponen et al, Phys. Rev. D, 90: 074506 (2014), arXiv:1311.6669
    [43] V. Lubicz, A. Melis, and S. Simula (ETM), Phys. Rev. D, 96: 034524 (2017), arXiv:1707.04529
    [44] G. C. Donald, C. T. H. Davies, R. J. Dowdall et al, Phys. Rev. D, 86: 094501 (2012), arXiv:1208.2855
    [45] B. Colquhoun, R. J. Dowdall, C. T. H. Davies et al, Phys. Rev. D, 91: 074514 (2015), arXiv:1408.5768
    [46] R. Alkofer, C. S. Fischer, F. J. Llanes-Estrada et al, Annals Phys., 324: 106 (2009), arXiv:0804.3042 doi: 10.1016/j.aop.2008.07.001
    [47] R. Williams, Eur. Phys. J. A, 51: 57 (2015), arXiv:1404.2545
    [48] D. Binosi, L. Chang, J. Papavassiliou et al, Phys. Rev. D, 95: 031501 (2017), arXiv:1609.02568
    [49] A. Sternbeck, P.-H. Balduf, A. Kızılersu et al, PoS, LATTICE2016: 349 (2017), arXiv:1702.00612
    [50] O. Oliveira, T. Frederico, W. de Paula et al, Eur. Phys. J. C, 78: 553 (2018), arXiv:1807.00675
    [51] C. D. Roberts, (2000), arXiv:nucl-th/0007054
    [52] S. J. Brodsky and R. Shrock, Phys. Lett. B, 666: 95 (2008), arXiv:0806.1535
  • 加载中

Cited by

1. Gao, F., Miramontes, A.S., Papavassiliou, J. et al. Heavy-light mesons from a flavour-dependent interaction[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2025. doi: 10.1016/j.physletb.2025.139384
2. Shi, C., Liu, P., Du, Y.-L. et al. Heavy flavor-asymmetric pseudoscalar mesons on the light front[J]. Physical Review D, 2024, 110(9): 094010. doi: 10.1103/PhysRevD.110.094010
3. Pandya, B., Gurjar, B., Chakrabarti, D. et al. Mixing effects on spectroscopy and partonic observables of heavy mesons with logarithmic confining potential in a light-front quark model[J]. Physical Review D, 2024, 110(9): 094021. doi: 10.1103/PhysRevD.110.094021
4. Xu, Y.-Z.. The electromagnetic form factors of heavy-light pseudo-scalar and vector mesons[J]. Journal of High Energy Physics, 2024, 2024(7): 118. doi: 10.1007/JHEP07(2024)118
5. Paredes-Torres, G., Gutiérrez-Guerrero, L.X., Bashir, A. et al. First radial excitations of mesons and diquarks in a contact interaction[J]. Physical Review D, 2024, 109(11): 114006. doi: 10.1103/PhysRevD.109.114006
6. de Sousa, W.F., Braghin, F.L. U(5) Nambu–Jona–Lasinio model with flavor dependent coupling constants: pseudoscalar and scalar mesons masses[J]. European Physical Journal A, 2023, 59(11): 271. doi: 10.1140/epja/s10050-023-01190-6
7. Le˜ao, J., de Melo, J.P.B.C. Pseudoscalar current and covariance with the light-front approach[J]. Revista Mexicana de Fisica, 2023, 69(6): 060801. doi: 10.31349/RevMexFis.69.060801
8. Xu, Z.-N., Yao, Z.-Q., Qin, S.-X. et al. Bethe–Salpeter kernel and properties of strange-quark mesons[J]. European Physical Journal A, 2023, 59(3): 39. doi: 10.1140/epja/s10050-023-00951-7
9. Ding, M., Roberts, C.D., Schmidt, S.M. Emergence of Hadron Mass and Structure[J]. Particles, 2023, 6(1): 57-120. doi: 10.3390/particles6010004
10. Da Silveira, R.C., Serna, F.E., El-Bennich, B. Strong two-meson decays of light and charmed vector mesons[J]. Physical Review D, 2023, 107(3): 034021. doi: 10.1103/PhysRevD.107.034021
11. Sun, C., Ni, R.-H., Chen, M. Decay constants of B*c (nS) and (nS)[J]. Chinese Physics C, 2023, 47(2): 023101. doi: 10.1088/1674-1137/ac9dea
12. Chen, M.. Radial excited heavy mesons[J]. Chinese Physics C, 2021, 45(12): 123104. doi: 10.1088/1674-1137/ac2a1a
13. Moita, R.M., De Melo, J.P.B.C., Tsushima, K. et al. Exploring the flavor content of light and heavy-light pseudoscalars[J]. Physical Review D, 2021, 104(9): 096020. doi: 10.1103/PhysRevD.104.096020
14. Braghin, F.L.. Flavor-dependent U(3) Nambu-Jona-Lasinio coupling constant[J]. Physical Review D, 2021, 103(9): 094028. doi: 10.1103/PhysRevD.103.094028
15. Chang, L., Ding, M. Rainbow modified-ladder approximation and degenerate pion[J]. Physical Review D, 2021, 103(7): 074001. doi: 10.1103/PhysRevD.103.074001
16. Zhu, Z., Raya, K., Chang, L. Extracting a model quark propagator's spectral density[J]. Physical Review D, 2021, 103(3): 034005. doi: 10.1103/PhysRevD.103.034005
17. Chang, L., Chen, M., Liu, Y.-X. Excited Bc states via the Dyson-Schwinger equation approach of QCD[J]. Physical Review D, 2020, 102(7): 074010. doi: 10.1103/PhysRevD.102.074010
18. Serna, F.E., da Silveira, R.C., Cobos-Martínez, J.J. et al. Distribution amplitudes of heavy mesons and quarkonia on the light front[J]. European Physical Journal C, 2020, 80(10): 955. doi: 10.1140/epjc/s10052-020-08517-3
19. Qin, P., Qin, S.-X., Liu, Y.-X. Heavy-light mesons beyond the ladder approximation[J]. Physical Review D, 2020, 101(11): 114014. doi: 10.1103/PhysRevD.101.114014
20. Chen, M., Chang, L., Liu, Y.-X. Bc meson spectrum via Dyson-Schwinger equation and Bethe-Salpeter equation approach[J]. Physical Review D, 2020, 101(5): 056002. doi: 10.1103/PhysRevD.101.056002

Figures(2) / Tables(3)

Get Citation
Muyang Chen and Lei Chang. A pattern for the flavor dependent quark-antiquark interaction[J]. Chinese Physics C, 2019, 43(11): 114103. doi: 10.1088/1674-1137/43/11/114103
Muyang Chen and Lei Chang. A pattern for the flavor dependent quark-antiquark interaction[J]. Chinese Physics C, 2019, 43(11): 114103.  doi: 10.1088/1674-1137/43/11/114103 shu
Milestone
Received: 2019-07-19
Article Metric

Article Views(2899)
PDF Downloads(35)
Cited by(20)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

A pattern for the flavor dependent quark-antiquark interaction

    Corresponding author: Lei Chang, leichang@nankai.edu.cn
  • School of Physics, Nankai University, Tianjin 300071, China

Abstract: A flavor dependent kernel is constructed based on the rainbow-ladder truncation of the Dyson-Schwinger and Bethe-Salpeter equations in quantum chromodynamics. The quark-antiquark interaction is composed of a flavor dependent infrared part and a flavor independent ultraviolet part. Our model gives a successful and unified description of the light, heavy and heavy-light ground state pseudoscalar and vector mesons. Our model shows, for the first time, that the infrared enhanced quark-antiquark interaction is stronger and wider for lighter quarks.

    HTML

    1.   Introduction
    • Hadrons, subatomic particles that are composed of quarks and gluons, cover a large spectrum of masses: the lightest hadron, the pion, has a mass Mπ0.14GeV, while the heavy hadrons are heavier than 10GeV [1]. It is expected that the underling theory, quantum chromodynamics (QCD) [2], can explain the hadron spectrum and unify the description of light and heavy hadrons. QCD is a non-Abelian local gauge field theory of strong interaction and is consistent with experimental observations. Due to the phenomena that emerge at the hadronic scale, i.e. confinement and dynamical chiral symmetry breaking (DCSB), non-perturbative QCD is an important part of the Standard Model.

      Confinement provides an intrinsic wavelength, λc0.5fm, for the propagation of quarks and gluons. They behave like partons for r<λc , and show different propagation mode for r>λc.

      The propagation of quarks and gluons is certainly affected by the finite size of hadrons. Studying hadron physics with QCD needs non-perturbative methods. As a well-established non-perturbative approach, the lattice QCD (lQCD) [35], a lattice gauge theory formulated on a grid, has achieved many successes in hadron physics. While lQCD resorts to brute force calculation, functional methods like the Dyson-Schwinger and Bethe-Salpeter equations (DSBSE) [68] are complementary to lQCD.

      In this work, we aim at unifying the description of light, heavy and heavy-light mesons via the DSBSE approach. In the Poincaré covariant framework, the quark propagator is presented by the Gap equation [68],

      S1f(k)=Z2(iγk+Zmmf)+43ˉg2Z1ΛdqDμν(l)γμSf(q)Γfν(k,q),

      (1)

      where f={u,d,s,c,b,t} represents the quark flavor, l=kq, Sf is the quark propagator, mf the current quark mass, Γfν the quark-gluon vertex, Dμν the gluon propagator, ˉg the coupling constant. Z1, Z2, Zm are the renormalization constants of the quark-gluon vertex, the quark field and the quark mass, respectively. Λdq=Λd4q/(2π)4 stands for the Poincaré invariant regularized integration, with Λ the regularization scale. A meson corresponds to a pole in the quark-antiquark scattering kernel [9]. The Bethe-Salpeter amplitude (BSA), Γfg(k;P), where k and P are the relative and total momentum of the meson, P2=M2 , and M the meson mass, is solved by the Bethe-Salpeter equation (BSE) [810],

      [Γfg(k;P)]αβ=Λdq[Kfg(k,q;P)]αδσβ[χfg(q;P)]σδ,

      (2)

      where Kfg(k,q;P) is the quark-antiquark scattering kernel, and α, β, σ and δ are the Dirac indexes. χfg(q;P)=Sf(q+)Γfg(q;P)Sg(q) is the wave function, q+=q+ιP/2, q=q(1ι)P/2. ι is the partitioning parameter describing the momentum partition between the quark and antiquark, and does not affect the physical observables.

      A promising and consistent way to solve the problem of meson spectrum is to build a quark-gluon vertex and construct a scattering kernel. The form of the quark-gluon vertex and of the scattering kernel have been investigated in [11], and the most widely used and technically simplest is the rainbow-ladder (RL) approximation,

      ˉg2Z1Dμν(l)Γfν(k,q)[Z2]2˜Dfμν(l)γν,

      (3)

      [Kfg(k,q;P)]αδσβ43[Z2]2˜Dfgμν(l)[γμ]ασ[γν]δβ,

      (4)

      where ˜Dfgμν(l)=(δμνlμlνl2)Gfg(l2) and ˜Dfμν(l)=(δμνlμlνl2)Gf(l2) are the effective quark-antiquark interactions. In the original RL approximation, Gfg=Gf is flavor symmetrical and modeled by [12]

      Gf(s)=GfIR(s)+GUV(s),

      (5)

      GfIR(s)=8π2D2fω4fes/ω2f,

      (6)

      GUV(s)=8π2γmF(s)ln[τ+(1+s/Λ2QCD)2],

      (7)

      where s=l2. GfIR(s) is the infrared interaction responsible for DCSB, with D2fωf expressing the interaction strength and ωf the interaction width in momentum space. The form in Eq. (6) is used as it enables a natural extraction of a monotonic running-coupling and gluon mass [12], whose relation to QCD can be traced [13]. GUV(s) keeps the one-loop perturbative QCD limit in the ultraviolet. F(s)=[1exp(s2/[4m4t])]/s, γm=12/(332Nf), with mt=1.0GeV, τ=e101, Nf=5, and ΛQCD=0.21 GeV. The values of mt and τ are chosen different from Ref. [12] so that GUV(s) is well suppressed in the infrared, and the dressed function GfgIR(s) is qualitatively correct in the limit mf or mg.

      A nontrivial property of Γfν is its dependence on the quark flavor due to the dressing effect. By the same token, Kfg depends on the flavors of scattered quark and antiquark. For a unified description of the system with different quarks, the flavor dependence of Γfν and Kfg should be taken into account properly, whatever model is used. The RL approximation is phenomenologically successful for pseudoscalar and vector mesons [12, 1416]. The best parameters are (D2fωf)1/3=0.8GeV and ωf=0.5GeV for light mesons [12], and (D2fωf)1/3[0.6,0.7]GeV and ωf=0.8GeV for heavy mesons [17, 18]. The strength decreases and ωf increases for an increasing quark mass, indicating that heavy-flavor quarks probe shorter distances than light-flavor quarks at the corresponding quark-gluon vertexes [19]. The RL approximation fails to describe heavy-light mesons due to the lack of flavor asymmetry in Eq. (5)-Eq. (7). The spectrum has a larger error than for quarkonia and the decay constants are incorrect [20, 21]. The heavy-light meson problem has been studied for 20 years in this approach [2227], but no satisfactory solution has been found yet.

    2.   The model
    • To introduce flavor asymmetry, one should consider the axial-vector Ward-Takahashi identity (av-WTI), which guarantees that the ground state pseudoscalar mesons are Goldstone bosons of DCSB [14, 15],

      PμΓfg5μ(k;P)=S1f(k+)iγ5+iγ5S1g(k)i[mf+mg]Γfg5(k;P),

      (8)

      where Γfg5μ and Γfg5 are the axial-vector and pseudoscalar vertexes, respectively. Considering the equations for Sf,g, Γfg5μ and Γfg5 in the RL approximation, Eq. (8) leads to

      ΛdqGfg(s)γα[Sf(q+)iγ5+iγ5Sg(q)]γβ=Λdqγα[Gf(s)Sf(q+)iγ5+Gg(s)iγ5Sg(q)]γβ.

      (9)

      Eq. (9) says that Gfg(s) is a median value of Gf(s) and Gg(s). Considering the scalar part of the propagator, Sf(q)=iqσfv(q2)+σfs(q2), we get Gfg(s)=(σfs(q2+)Gf(s)+(σfs(q2+)Gf(s)+σgs(q2)Gg(s))/(σfs(q2+)+σgs(q2)). It is well known that the infrared value of σfs(q2) is proportional to the inverse of the interaction strength, and the width of σfs(q2) is proportional to ωf. Thus, we assume Gfg(s) to be

      Gfg(s)=GfgIR(s)+GUV(s),

      (10)

      GfgIR(s)=8π2Dfω2fDgω2ges/(ωfωg).

      (11)

      GUV(s) is unchanged from Eq. (7), and as we are dealing with 5 active quarks, GUV(s) is independent of the quark flavor. The effective interaction ˜Dfgμν represents the total dressing effect of the gluon propagator and of the two quark-gluon vertexes. Eq. (11) means that quarks and antiquarks contribute equally to the interaction strength and width.

      The preservation of av-WTI can be checked numerically by the Gell-Mann-Oakes-Renner (GMOR) relation, which is equivalent to av-WTI [14, 15],

      ˜f0:=(mf+mg)ρ0/M20=f0,

      (12)

      where M0 is the mass of the pseudoscalar meson, and f0 the leptonic decay constant. f0 and ρ0 are defined by

      f0Pμ:=Z2NctrΛdkγ5γμSf(k+)Γfg0(k;P)Sg(k),

      (13)

      ρ0:=Z4NctrΛdkγ5Sf(k+)Γfg0(k;P)Sg(k),

      (14)

      where Z4=Z2Zm, Nc is the color number, tr the trace of the Dirac index, and Γfg0 is BSA of pseudoscalar mesons. BSA is normalized by [28]

      2Pμ=NcPμΛdqtr[Γ(q;K)×S(q+)Γ(q;K)S(q)]|P2=K2=M2,

      (15)

      where Nc=3 is the color number. Before discussing the details and results, we first demonstrate the preservation of av-WTI by comparing f0 and ˜f0 in Fig. 1. The two deviate by not more than 3% for all pseudoscalar mesons considered. We conclude that av-WTI is perfectly preserved in our approach.

      Figure 1.  (color online) Decay constants of the ground state pseudoscalar mesons: f0 is given by Eq. (13), and ˜f0 by Eq. (12) and Eq. (14). flQCD are the lattice QCD data given in Table 1.

    3.   Results of the model
    • In Eq. (11), Df,g and ωf,g express the flavor dependent quark-antiquark interaction. However, the flavor dependence of these parameters is a priori unknown. Here, we treat Df and ωf for each flavor as free parameters. Working in the isospin symmetry limit, we have 4 independent quarks up to the b quark mass: u (or d), s, c and b. There are 3 parameters for each flavor: Df, ωf and mf. In total there are 12 parameters. ωu is treated as an independent variable, the other 11 parameters are dependent variables, which are fitted by 11 observables: the masses and decay constants of π, K, ηc and ηb, and the masses of D, Ds and B. All masses and decay constants of the ground state pseudoscalar mesons (except η and η), and all the ground state vector mesons are predicted.

      The masses and decay constants of the ground state pseudoscalar mesons are listed in Table 1. Our results are quite stable when ωu varies by 10% around 0.5GeV. With ωu[0.45,0.55]GeV, the masses are almost unchanged and the decay constants vary within 1.2%. Our result for MB±s deviates from the experimental value by only 0.01GeV, which is impossible to get in the original RL truncated DSBSE. The flavor dependence of the quark gluon interaction has even a significant effect on Bc meson. MBc given by the original RL truncated DSBSE is 0.11GeV larger than the experimental value [18]. Here, the error is reduced to less than 0.02GeV. Our results for fD, fD±s, fB, fB±s and fBc are all consistent with the lattice QCD, with deviations of less than 6%. Note that our fD±s is also in good agreement with the recent experimental measurement [29]. The only mesons absent in Table 1 are η and η, which are affected by the axial anomaly [30, 31] and beyond our present study.

      herein lQCD expt. herein lQCD
      Mπ 0.138_ 0.138(1)_ fπ 0.0093_ 0.0093(1)_
      MK 0.496_ 0.496(1)_ fK 0.111_ 0.111(1)_
      MD 1.867_ 1.865(3) 1.867(1)_ fD 0.151(1) 0.150(1)
      MD±s 1.968_ 1.968(3) 1.968(1)_ fD±s 0.181(1) 0.177(1)
      Mηc 2.984_ 2.984(1)_ fηc 0.278_ 0.278(2)_
      MB 5.279_ 5.283(8) 5.279(1)_ fB 0.141(2) 0.134(1)
      MB±s 5.377(1) 5.366(8) 5.367(1) fB±s 0.168(2) 0.163(1)
      MBc 6.290(3) 6.276(7) 6.275(1) fBc 0.312(1) 0.307(10)
      Mηb 9.399_ 9.399(2)_ fηb 0.472_ 0.472(5)_

      Table 1.  Masses and decay constants of the ground state pseudoscalar mesons (in GeV). We use the convention fπ=0.093GeV. The lQCD data are taken from: MD and MDs - Ref. [32]; MB and MBs - Ref. [33]; MBc - Ref. [34]; fπ and fK - Ref. [35]; fD, fDs, fB and fBs - Ref. [36]; fηc and fηb - Ref. [37]; fBc - Ref. [38]. Mπ, MK, Mηc, Mηb in this table and MΥ in Table 2 are usually used to fit the quark masses in lQCD calculations [39], so there are no lQCD predictions for these quantities. The experimental data are taken from Ref. [1]. Note that we work in the isospin symmetry limit, so that the average value among or between the isospin multiplets is cited for π, K, D and B mesons. All data are cited with an accuracy of 0.001GeV. In our calculations, the underlined values are used to fit the 11 dependent variables, and the others are our results with the uncertainty corresponding to ωu[0.45,0.55]GeV. The decay constants are fitted to the lQCD data because an accurate and complete experimental estimate is still lacking.

      A further confirmation of our model is given by vector mesons. Our predictions of the static vector meson masses and decay constants are listed in Table 2. The decay constants are defined in analogy to Eq. (13)

      herein lQCD expt. herein lQCD
      Mρ 0.724(2) 0.780(16) 0.775(1) fρ 0.149(1)
      MK 0.924(2) 0.933(1) 0.896(1) fK 0.160(2)
      Mϕ 1.070(1) 1.032(16) 1.019(1) fϕ 0.191(1) 0.170(13)
      MD 2.108(4) 2.013(14) 2.009(1) fD 0.174(4) 0.158(6)
      MD±s 2.166(7) 2.116(11) 2.112(1) fD±s 0.206(2) 0.190(5)
      MJ/ψ 3.132(2) 3.098(3) 3.097(1) fJ/ψ 0.304(1) 0.286(4)
      MB 5.369(5) 5.321(8) 5.325(1) fB 0.132(3) 0.131(5)
      MB±s 5.440(1) 5.411(5) 5.415(2) fB±s 0.152(2) 0.158(4)
      MBc 6.357(3) 6.331(7) fBc 0.305(5) 0.298(9)
      MΥ 9.454(1) 9.460(1) fΥ 0.442(3) 0.459(22)

      Table 2.  Masses and decay constants of the ground state vector mesons (in GeV). The lQCD data are taken from: Mρ - Ref. [40]; MK - Ref. [41]; Mϕ and fϕ - Ref. [42]; MD, fD, MD±s, fD±s, MB, fB, MB±s and fB±s - Ref. [43]; MJ/ψ and fJ/ψ - Ref. [44]; MBc - Ref. [34]; fBc - Ref. [38]; fΥ - Ref. [45]. The experimental data are taken from Ref. [1], the average value for the isospin multiplet is cited for MD. Bc meson has not been discovered experimentally. All data are cited with an accuracy of 0.001GeV. The uncertainties of our results correspond to ωu[0.45,0.55]GeV.

      f1M1=Z2NctrΛdkγμSf(k+)Γμ,fg1(k;P)Sg(k),

      (16)

      where M1 is the vector meson, and Γμ,fg1 the vector meson BSA. Vector mesons also show a weak dependence on ωu[0.45,0.55]GeV. The deviation from experimental or lQCD values decreases as the mass increases. The mass deviation is about 6% for ρ meson, decreasing to about 1% for heavy mesons. The deviation of the decay constant is about 12% for ϕ meson, decreasing to less than 7% for heavy mesons. This deviation is attributed to the systematic error of RL truncation [16]. The success of the pattern of flavor dependent interaction, Eq. (10,11,7), is demonstrated by the fact that the deviation is of the same order for open-flavor mesons and quarkonia. We can see again that the flavor dependence has a significant effect on Bc mesons. While MBc6.54GeV and fBc0.43GeV in the original RL truncated DSBSE [18], our result MBc6.357GeV and fBc0.305GeV is more consistent with the lQCD predictions. Bc has not been discovered experimentally, and both our and lQCD predictions wait for experimental verification.

      Finally, we investigate the flavor dependence of the quark-antiquark interaction. In the heavy quark limit, the dressing of the quark-gluon vertex may be ignored and the interaction we have adopted is in agreement with QCD [13], and should saturate Gff(l2)mf4παsZ(l2)l2, where αs is the strong-interaction constant, and Z(l2) the dressing function of the gluon propagator defined by Δμν(l)=(δμνlμlνl2)Z(l2)l2, with Δμν(l) the dressed gluon propagator. As we fix Nf=5, both αs and Z(l2) are independent of the interacting quarks. Phenomenologically, the parameters Df and ωf should become constant as the quark mass increases. In the chiral limit, the interaction is enhanced because of the dressing of the quark-gluon vertex [4650], which is necessary to trigger chiral symmetry breaking. The potential is properly defined by the Fourier transform of the interaction. For the interesting infrared part of our model we have

      VffIR(r)=d3lGffIR(l2)elr/ω2fer2/R2f

      (17)

      where r is the space coordinate, and Rf=2/ωf expresses the radius of the quark-gluon interaction. Additionally, we adopt the following quantity to describe the interaction strength [51]:

      σf=14π(10ΛQCD)2Λ2QCDdsGff(s)s.

      (18)

      The dependence of σf and Rf on the quark mass is depicted in Fig. 2. The interaction strength and radius reduce as the quark mass increases, which is expected since the effect of quark-gluon vertex dressing decreases as the quark mass increases [47]. The interaction radius, 2/ωfωg, also expresses the fact that quarks and gluons have a maximum wavelength of the size of a hadron [52].

      Figure 2.  (color online) Dependence of the interaction strength σf and radius Rfon the quark mass. The lines are drawn to guide the eye.

    4.   Summary and conclusion
    • The flavor dependence of the full quark-antiquark interaction is an intrinsic property of QCD and crucial for a unified description of light and heavy hadrons. While a perfect quark-gluon vertex that has the proper flavor dependence of QCD has not been found, we constructed a flavor dependent kernel based on the RL truncation of DSBSE. The quark-antiquark interaction is composed of a flavor dependent infrared part and a flavor independent ultraviolet part. With the parameters fixed by physical observables, our model takes into account not only the flavor dependence, but also the hadron size. Our model, with perfectly preserved av-WTI, provides a successful unified description of light, heavy and heavy-light ground state pseudoscalar and vector mesons. Our model shows, for the first time, that the infrared enhanced quark-antiquark interaction is stronger and wider for lighter quarks. This flavor dependence pattern is universal, and is supposed to be applicable to baryons, for example, the double charm baryons in the Faddeev approach. Our approach also provides a proper description of the inner structure of heavy-light mesons, which can be used to calculate scattering processes, such as the B to π transition form factor.

      Work supported by: the Chinese Government’s Thousand Talents Plan for Young Professionals.

    5.   Appendix A
    • The fit parameters corresponding to ωu=0.45,0.50,0.55GeV are listed in Table A1. The quark mass ˉmζf is defined by

      ˉmζf=ˆmf/[12Lnζ2Λ2QCD]γm,

      ˆmf=lim

      where \zeta is the renormalization scale, \hat{m}_f the renormalization group invariant current quark mass, and M_f(p^2) the quark mass function, S_f(p) = \frac{Z_f(p^2,\zeta^2)}{i\gamma\cdot p + M_f(p^2)} .

      flavor \bar{m}_f^{\zeta=2\;{\rm GeV}} w_f D_f^2 w_f D_f^2 w_f D_f^2
      u 0.0049 0.450 1.133 0.500 1.060 0.550 1.014
      s 0.112 0.490 1.090 0.530 1.040 0.570 0.998
      c 1.17 0.690 0.645 0.730 0.599 0.760 0.570
      b 4.97 0.722 0.258 0.766 0.241 0.792 0.231

      Table A1.  Fitted parameters correspond to \omega_u = 0.45, 0.50, 0.55 \;{\rm GeV}. \bar{m}_f^{\zeta = 2\;{\rm GeV}}, \omega_f and D_f are all measured in GeV.

Reference (52)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return