-
Since the newly observed resonance
$ Y(4626) $ contains hidden charms and its mass is close to the sum of the masses of$ D^*_s $ and$ \bar D_{s1} $ , where$ D^*_s-\bar D_{s1} $ corresponds to$ D^{*+}_s- D_{s1}^- $ or$ D^{*-}_s- D_{s1}^+ $ , a conjecture about its molecular structures composed of$ D^*_s $ and$ \bar D_{s1} $ is favored. For a state with spin-parity being$ 1^- $ , its spatial wave function is in the S wave. Therefore, there are two possible states, namely,$ Y_1 = \dfrac{1}{\sqrt{2}}( D^{*+}_s D_{s1}^-+ D^{*-}_s D_{s1}^+) $ and$ Y_2 = \dfrac{1}{\sqrt{2}}( D^{*+}_s D_{s1}^- D^{*-}_s D_{s1}^+) $ . We will focus on such an ansatz and try to determine numerical results by solving the relevant B-S equation. -
Based on the effective theory,
$ D^*_s $ and$ \bar D_{s1} $ interact mainly via exchanging$ \eta $ . The Feynman diagram at the leading order is depicted in Fig. 1. To take into account the secondary contribution induced by exchanging other mediate mesons, in Ref. [36], the authors consider a contribution of exchanging$ \sigma $ to the effective interaction. Since there are neither u nor d constituents in$ D^*_s $ and$ \bar D_{s1} $ , their coupling to$ \sigma $ would be very weak; thus, the secondary contribution to the interaction may arise from exchanging$ f_0(980) $ instead. The relevant Feynman diagrams are shown in Fig. 1. In this work, the contributions induced by exchanging$ \eta' $ (Fig. 1) and$ \phi(1020) $ (Fig. 2) are also taken into account. The relations between relative and total momenta of the bound state are defined asFigure 1. (color online) The bound states of
$ D^*_s \bar D_{s1} $ formed by exchanging$ \eta\,(\eta')\,f_0(980) $ .Figure 2. (color online) The bound states of
$ D^*_s \bar D_{s1} $ formed by exchanging$ \phi(1020) $ .$\begin{split}& p = \eta_2p_1 - \eta_1p_2\,,\quad q = \eta_2q_1 - \eta_1q_2\,,\\& P = p_1 + p_2 = q_1 + q_2 \,, \end{split}$
(1) where
$ p_1 $ and$ p_2 $ ($ q_1 $ and$ q_2 $ ) are the momenta of the constituents; p and q are the relative momenta between the two constituents of the bound state at the both sides of the diagram; P is the total momentum of the resonance;$ \eta_i = m_i/(m_1+m_2) $ and$ m_i\, (i = 1,2) $ is the mass of the i-th constituent meson, and k is the momentum of the exchanged mediator.A detailed analysis on the Lorentz structure [26, 28, 29] is used to determine the form of the B-S wave function of the bound state comprising a vector meson and an axial vector meson (
$ D^*_s $ and$ \bar D_{s1} $ ) in$ S- $ wave as the following:$ \langle0|T\phi_a(x_1)\phi_b(x_2)|V\rangle = \frac{\varepsilon_{abcd}}{\sqrt{6}M}\chi^d_P(x_1,x_2)P^c , $
(2) where
$ a, b, c,$ and d are Lorentz indices. The wave function in the momentum space can be obtained by carrying out a Fourier transformation:$\begin{split} \chi^a_P(p_1,p_2) =& \int {\rm d}^4x_1 {\rm d}^4x_2 {\rm e}^{{\rm i}p_1x_1+{\rm i}p_2x_2}\chi^a_P(x_1,x_2) \\=& (2\pi)^4\delta(p_1+p_2+P)\chi^a_P(p). \end{split}$
(3) Using the so-called ladder approximation, one can obtain the B-S equation deduced in earlier references [23-25]:
$\begin{split} \varepsilon_{abcd}\chi^d_P(p)P^c =& \Delta_{1a\alpha}\int{{\rm d}^4{q}\over(2\pi)^4}\,K^{\alpha\beta\mu\nu}(P,p,q)\\&\times \varepsilon_{\mu\nu\omega\sigma}\chi^\sigma_{P}(q)P^\omega\Delta_{2b\beta}\,, \end{split}$
(4) where
$ \Delta_{1a\alpha} $ and$ \Delta_{2b\beta} $ are the propagators of$ D^*_s $ and$ \bar D_{s1} $ respectively, and$ K^{\alpha\beta\mu\nu}(P,p,q) $ is the kernel determined by the effective interaction between two constituents, which can be calculated from the Feynman diagrams in Figs. 1 and 2. In order to solve the B-S equation, we decompose the relative momentum p into the longitudinal component$ p_l $ ($ = p\cdot v $ ) and the transverse one$ p^\mu_t $ ($ = p^\mu-p_lv^\mu $ ) = (0,$ {{p}}_T $ ) with respect to the momentum of the bound state P ($ P = Mv $ ).$ \Delta^{a\alpha}_{1} = \frac{{\rm i}[-g^{a\alpha}+p^a_1p^\alpha_1/ m^2_1]}{(\eta_1M+p_l+\omega_l-{\rm i}\epsilon)(\eta_1M+p_l-\omega_l+{\rm i}\epsilon)}, $
(5) $ \Delta^{b\beta}_{2} = \frac{{\rm i}[-g^{b\beta}+p^b_2p^\beta_2/ m^2_2)]}{(\eta_2M-p_l+\omega_2-{\rm i}\epsilon)(\eta_2M-p_l-\omega_2+{\rm i}\epsilon)}, $
(6) where M is the mass of the bound state
$ Y(4626) $ ,$\omega_i = \sqrt{{ {{p}}_T}^2 + m_i^2}$ .From the Feynman diagrams shown in Figs. 1 and 2, the kernel
$ K^{\alpha\beta\mu\nu}(P,p,q) $ can be written as$ \begin{split} K^{\alpha\beta\mu\nu}(P,p,q) =& {\cal{C}}_1g_{_{D_{s1}D^*_{s}\eta}}g_{_{\bar D_{s1}\bar D^*_{s}\eta}}\left(\sqrt{6}k^\mu k^\alpha-\sqrt{\frac{2}{3}}k^2g^{\mu\alpha}+\sqrt{\frac{2}{3}}k\cdot p_1 k\cdot q_1 g^{\mu\alpha}/m_1/m_1'\right)\times \left(\sqrt{6}k^\beta k^\nu-\sqrt{\frac{2}{3}}k^2g^{\beta\nu}\right.\\&\left.+\sqrt{\frac{2}{3}}k\cdot p_2 k\cdot q_2 g^{\beta\nu}/m_2/m_2'\right)\Delta(k,m_\eta)F^2(k,m_\eta)-\frac{2}{3}{\cal{C}}_2g_{_{D^*_{s}D^*_{s}\eta}}g_{_{\bar D_{s1}\bar D_{s1}\eta}} \varepsilon^{\sigma\mu\alpha\omega}k_\sigma(p_{1\omega}+q_{1\omega}) \varepsilon^{\theta\nu\beta\rho}k_\theta(p_{2\rho}+q_{2\rho})\\&\times\Delta(k,m_\eta)F^2(k,m_\eta) +{\cal{C}}_1g_{_{D_{s1}D^*_{s}\eta'}}g_{_{\bar D_{s1}\bar D^*_{s}\eta'}}\left(\sqrt{6}k^\mu k^\alpha-\sqrt{\frac{2}{3}}k^2g^{\mu\alpha}+\sqrt{\frac{2}{3}}k\cdot p_1 k\cdot q_1 g^{\mu\alpha}/m_1/m_1'\right)\\&\times (\sqrt{6}k^\beta k^\nu-\sqrt{\frac{2}{3}}k^2g^{\beta\nu}+\sqrt{\frac{2}{3}}k\cdot p_2 k\cdot q_2 g^{\beta\nu}/m_2/m_2')\Delta(k,m_\eta')F^2(k,m_\eta')-\frac{2}{3}{\cal{C}}_2g_{_{D^*_{s}D^*_{s}\eta'}}g_{_{\bar D_{s1}\bar D_{s1}\eta'}}\\&\times \varepsilon^{\sigma\mu\alpha\omega}k_\sigma(p_{1\omega}+q_{1\omega}) \varepsilon^{\theta\nu\beta\rho}k_\theta(p_{2\rho}+q_{2\rho})\Delta(k,m_\eta')F^2(k,m_\eta')+{\cal{C}}_2[g_{_{D^*_{s}D^*_{s}\phi}}(q_1+p_1)^\chi g^{\alpha\mu}-2g'_{_{D^*_{s}D^*_{s}\phi}}(k^\alpha g^{\chi\mu}-k^\mu g^{\chi\alpha})]\\&\times(-g_{\chi \gamma }+k_\chi k_\gamma /m^2_{\phi})\Delta(k,m_{\phi})[g_{_{\bar D_{s1}\bar D_{s1}\phi}}(q_1+p_1)^\gamma g^{\beta\nu}-2g'_{_{\bar D_{s1}\bar D_{s1}\phi}}(k^\alpha g^{\gamma\mu}-k^\mu g^{\gamma\alpha})]+{\cal{C}}_1g_{_{D_{s1} D^*_{s}\phi}}g_{_{\bar D_{s1} \bar D^*_{s}\phi}}\\&\times\varepsilon^{\alpha\mu\omega \chi}(p_1+q_1)_\omega\varepsilon^{\beta\nu\rho \gamma }(p_2+q_2)_\rho(-g_{\chi \gamma }+k_\chi k_\gamma /m^2_{\phi})\Delta(k,m_{\phi})+ \frac{2}{3}{\cal{C}}_2g_{_{D^*_{s}D^*_{s}f_0}}g_{_{\bar D_{s1}\bar D_{s1}f_0}}g^{\mu\alpha}g^{\beta\nu} \Delta(k,m_{f_0})F^2(k,m_{f_0}), \end{split} $
(7) where
$ m_{\eta(\eta',\phi,f_0)} $ is the mass of the exchanged meson$ \eta(\eta',\phi(1020),f_0(980)) $ ,$ {\cal{C}}_1 $ = 1 for$ Y_1 $ and -1 for$ Y_2 $ ,$ {\cal{C}}_2 $ = 1,$ g_{_{D_{s1}D^*_{s}\eta}} $ ,$ g_{_{\bar D_{s1}\bar D^*_{s}\eta}} $ ,$ g_{_{D^*_{s}D^*_{s}\eta}} $ ,$ g_{_{\bar D_{s1}\bar D_{s1}\eta}} $ ,$ g_{_{D_{s1}D^*_{s}\eta'}} $ ,$ g_{_{\bar D_{s1}\bar D^*_{s}\eta'}} $ ,$ g_{_{D^*_{s}D^*_{s}\eta'}} $ ,$ g_{_{\bar D_{s1}\bar D_{s1}\eta'}} $ ,$ g_{_{D_{s1}D^*_{s}\phi}} $ ,$ g_{_{\bar D_{s1}\bar D^*_{s}\phi}} $ ,$ g_{_{D^*_{s}D^*_{s}\phi}} $ ,$ g_{_{\bar D_{s1}\bar D_{s1}\phi}} $ ,$ g'_{_{D^*_{s}D^*_{s}\phi}} $ ,$ g'_{_{\bar D_{s1}\bar D_{s1}\phi}} $ ,$ g_{_{D^*_{s}D^*_{s}f_0}} $ and$ g_{_{\bar D_{s1}\bar D_{s1}f_0}} $ are the concerned coupling constants and$\Delta(k,m) = {\rm i}/(k^2-m^2)$ . Due to the small coupling constants at the vertices, the contribution of$ f_0(980) $ in Fig. 1(b) is suppressed compared with that in Fig. 1(a), so that we ignore the contribution of$ f_0(980) $ in Eq. (7). All the effective interactions are summarized and listed in the Appendix.Since the two constituents of the molecular state are not on-shell, at each interaction vertex a form factor should be introduced to compensate the off-shell effect. The form factor is employed in many Refs. [42-45], even though it has different forms. Here we set it as:
$ F(k,m) = {\Lambda^2 - m^2 \over \Lambda^2 + {{k}}^2}, $
(8) where
$ {{k}} $ is the three-momentum of the exchanged meson and$ \Lambda $ is a cutoff parameter. Indeed, the form factor is introduced phenomenologically and there lacks any reliable knowledge on the value of the cutoff parameter$ \Lambda $ .$ \Lambda $ is often parameterized to be$ \lambda\Lambda_{\rm QCD}+m_s $ with$ \Lambda_{\rm QCD} = 220 $ MeV, which is adopted in some Refs. [42-45]. As suggested, the order of magnitude of the dimensionless parameter$ \lambda $ should be close to 1. In our subsequent numerical computations, we set it to be within a wider range of$ 0\sim 4 $ .The wave function can be written as
$ \chi^d_{{P}}({ p}) = f({ p})\epsilon^d, $
(9) where
$ \epsilon $ is the polarization vector of the bound state and$ f({ p}) $ is the radial wave function. The three-dimension spatial wave function is obtained after integrating over$ p_l $ $ f({ |{{p_T}}|}) = \int\frac{{\rm d}p_l}{2\pi}f({ p}). $
(10) Substituting Eqs. (7) and (9) into Eq. (4) and multiplying
$ \varepsilon_{abfg}\chi^{*g}_P(x_1,x_2)P^f $ on both sides, one can sum over the polarizations of both sides. Employing the so-called covariant instantaneous approximation [46]$ q_l = p_l ,$ i.e., using$ p_l $ to replace$ q_l $ in$ K(P,p,q) $ , the kernel$ K(P,p,q) $ does not depend on$ q_1 $ any longer. Then, we follow a typical procedure: integrating over$ q_l $ on the right side of Eq. (4), multiplying$ \int\dfrac{{\rm d}p_l}{(2\pi)} $ on both sides of Eq. (4), and integrating over$ p_l $ on the left side, to reduce the expression into a compact form. Finally, we obtain$\begin{split} 6M^2f\Big(|{{p}}_T|\Big) =& \int\frac{{\rm d}p_l} {(2\pi)}\int\frac{{\rm d}^3{{q}}_T}{(2\pi)^3}\frac{ f\Big(|{{q}}_T|\Big)} {\Big[(\eta_1M+p_l)^2-\omega^2_1+{\rm i}\epsilon][(\eta_2M-p_l)^2-\omega^2_2+{\rm i}\epsilon)\Big]}\\&\times \left[{\cal{C}}_1g_{_{D_{s1}D^*_{s}\eta}}g_{_{\bar D_{s1}\bar D^*_{s}\eta}}F^2(k,m_\eta)\frac{C_0+C_1\,{{p}}_T\cdot{{q}}_T +C_2({{p}}_T\cdot{{q}}_T)^2+C_3({{p}}_T\cdot{{q}}_T)^3+C_4({{p}}_T\cdot{{q}}_T)^4}{-({{p}}_T-{{q}}_T)^2-m_\eta^2}, \right. \end{split} $
$\begin{split} \quad\quad\quad &-{\cal{C}}_2g_{_{D^*_{s}D^*_{s}\eta}}g_{_{\bar D_{s1}\bar D_{s1}\eta}}F^2(k,m_\eta)\frac{C'_0+C'_1\,{{p}}_T\cdot{{q}}_T }{-({{p}}_T-{{q}}_T)^2-m_{\eta}^2}+\frac{{\cal{C}}_2g_{_{D^*_{s}D^*_{s}f_0}}g_{_{\bar D_{s1}\bar D_{s1}f_0}}C_{S0} }{-({{p}}_T-{{q}}_T)^2-m_{f_0}^2}F^2(k,m_{f_0})\\&+{\cal{C}}_1g_{_{D_{s1}D^*_{s}\eta'}}g_{_{\bar D_{s1}\bar D^*_{s}\eta'}}F^2(k,m_\eta') \frac{C_0+C_1\,{{p}}_T\cdot{{q}}_T +C_2({{p}}_T\cdot{{q}}_T)^2+C_3({{p}}_T\cdot{{q}}_T)^3+C_4({{p}}_T\cdot{{q}}_T)^4}{-({{p}}_T-{{q}}_T)^2-m_{\eta'}^2} \\&-{\cal{C}}_2g_{_{D^*_{s}D^*_{s}\eta'}}g_{_{\bar D_{s1}\bar D_{s1}\eta'}}F^2(k,m_{\eta'})\frac{C'_0+C'_1\,{{p}}_T\cdot{{q}}_T }{-({{p}}_T-{{q}}_T)^2-m_{\eta'}^2}+{\cal{C}}_2F^2(k,m_{\phi})\frac{C'_{V0}+C'_{V1}\,{{p}}_T\cdot{{q}}_T+C'_{V2}\,({{p}}_T\cdot{{q}}_T)^2 }{-({{p}}_T-{{q}}_T)^2-m_{\phi}^2}\\&\left.+{\cal{C}}_1g_{_{D_{s1}D^*_{s}\phi}}g_{_{\bar D_{s1}\bar D^*_{s}\phi}}F^2(k,m_\phi) \frac{C_{V0}+C_{V1}\,{{p}}_T\cdot{{q}}_T +C_{V2}({{p}}_T\cdot{{q}}_T)^2}{-({{p}}_T-{{q}}_T)^2-m_{\phi}^2}\right], \end{split} $
(11) with
$\begin{split} C_0 =& 4M^2{\left( {{{{p}}_T}}^2 + {{{{q}}_T}}^2 \right) }^2+\frac{2M^2\left( {{m_1}}^2 + {{m_2}}^2 \right) {{{{p}}_T}}^2 \left( 4{{{{p}}_T}}^4 + 5{{{{p}}_T}}^2{{{{q}}_T}}^2 + {{{{q}}_T}}^4 \right) }{3{{m_1}}^2{{m_2}}^2} \\&+\frac{2M^2{{{{p}}_T}}^4{{{{q}}_T}}^2\left( -6{m_1}{m_2}{{{{q}}_T}}^2 + {{m_1}}^2\left( -2{{{{p}}_T}}^2 + {{{{q}}_T}}^2 \right) + {{m_2}}^2\left( -2{{{{p}}_T}}^2 + {{{{q}}_T}}^2 \right) \right) } {3{{m_1}}^3{{m_2}}^3}-\frac{4M^2\left( {{m_1}}^2 + {{m_2}}^2 \right) {{{{p}}_T}}^6{{{{q}}_T}}^4}{3{{m_1}}^4{{m_2}}^4} , \\C_1 =& -16M^2\left( {{{{p}}_T}}^2 + {{{{q}}_T}}^2 \right)+\frac{-4M^2\left( {{m_1}}^2 + {{m_2}}^2 \right) {{{{p}}_T}}^2\left( 8{{{{p}}_T}}^2 + 5{{{{q}}_T}}^2 \right) } {3{{m_1}}^2{{m_2}}^2}\\&+\frac{2M^2{{{{p}}_T}}^2\left[ 12{m_1}{m_2}{{{{q}}_T}}^2\left( {{{{p}}_T}}^2 + {{{{q}}_T}}^2 \right) + ({{m_1}}^2+ {{m_2}}^2)\left( 2{{{{p}}_T}}^4 + 5{{{{p}}_T}}^2{{{{q}}_T}}^2 - {{{{q}}_T}}^4 \right)\right ]}{3{{m_1}}^3 {{m_2}}^3}\frac{8M^2\left( {{m_1}}^2 + {{m_2}}^2 \right) {{{{p}}_T}}^4{{{{q}}_T}}^2\left( {{{{p}}_T}}^2 + {{{{q}}_T}}^2 \right) } {3{{m_1}}^4{{m_2}}^4} ,\\ C_2 =& \frac{2M^2\left( {{m_2}}^2\left( 19{{{{p}}_T}}^2 + 3{{{{q}}_T}}^2 \right) + {{m_1}}^2\left( 24{{m_2}}^2 + 19{{{{p}}_T}}^2 + 3{{{{q}}_T}}^2 \right) \right) }{3{{m_1}}^2{{m_2}}^2}\\& -\frac{4M^2\left[ ({{m_1}}^2+{{m_2}}^2){{{{p}}_T}}^2\left( {{{{p}}_T}}^2 + {{{{q}}_T}}^2 \right) + {m_1}{m_2}\left( {{{{p}}_T}}^4 + 4{{{{p}}_T}}^2{{{{q}}_T}}^2 + {{{{q}}_T}}^4 \right) \right] }{{{m_1}}^3 {{m_2}}^3}\\&-\frac{4M^2\left( {{m_1}}^2 + {{m_2}}^2 \right) {{{{p}}_T}}^2 \left( {{{{p}}_T}}^4 + 4{{{{p}}_T}}^2{{{{q}}_T}}^2 + {{{{q}}_T}}^4 \right) }{3{{m_1}}^4{{m_2}}^4},\\ C_3 = & 4M^2\left( -{{m_1}}^{-2} - {{m_2}}^{-2} \right)+\frac{2M^2\left[ 12{m_1}{m_2}\left( {{{{p}}_T}}^2 + {{{{q}}_T}}^2 \right) + ({{m_1}}^2+{{m_2}}^2)\left( 7{{{{p}}_T}}^2 + 3{{{{q}}_T}}^2 \right) \right] }{3{{m_1}}^3{{m_2}}^3}+\frac{8M^2\left( {{m_1}}^2 + {{m_2}}^2 \right) {{{{p}}_T}}^2\left( {{{{p}}_T}}^2 + {{{{q}}_T}}^2 \right) } {3{{m_1}}^4{{m_2}}^4} ,\\ C_4 =& \frac{-2M^2\left[ 3{{m_1}}^3{m_2} + 3{m_1}{{m_2}}^3 + 2{{m_2}}^2{{{{p}}_T}}^2 + 2{{m_1}}^2\left( 3{{m_2}}^2 + {{{{p}}_T}}^2 \right) \right] }{3{{m_1}}^4{{m_2}}^4}, \\C'_0 =& \frac{-16M^2\left( \eta_2M -p_l \right) \left( \eta_1M +p_l \right) \left( {{p}}_T^2 + {{q}}_T^2 \right) }{3m_1m_2},\\ C'_1 =& \frac{32M^2\left( \eta_2M -p_l \right) \left( \eta_1M +p_l \right) }{3m_1m_2},\\C_{S0} = & \frac{-2\,M^2\,\left( {{m_1}}^2 + {{m_2}}^2 \right) \,{{pt}}^2\,}{{{m_1}}^2\,{{m_2}}^2}-6\,M^2,\\ C_{V0} =& -2M^2\left( 12{\eta_1}M\left( {\eta_2}M - {p_l} \right) + 12{\eta_2}M{p_l} - 12{{p_l}}^2 + {{{{p}}_T}}^2 + {{{{q}}_T}}^2 \right)-\frac{8M^2\left( {\eta_2}M - {p_l} \right) \left( {\eta_1}M + {p_l} \right) \left( {{{{p}}_T}}^2 + {{{{q}}_T}}^2 \right) }{{{m_v}}^2} \\&- \frac{M^2{{{{p}}_T}}^2\left[ 4{\eta_1}M\left( {\eta_2}M - {p_l} \right) + 4{\eta_2}M{p_l} - 4{{p_l}}^2 + {{{{q}}_T}}^2 \right] }{{{m_1}}^2} - \frac{M^2{{{{p}}_T}}^2\left[ 4{\eta_1}M\left( {\eta_2}M - {p_l} \right) + 4{\eta_2}M{p_l} - 4{{p_l}}^2 + {{{{q}}_T}}^2 \right] }{{{m_2}}^2} , \end{split} $
$\begin{split} C_{V1} =& -4M^2+\frac{16M^2\left( {\eta_2}M - {p_l} \right) \left( {\eta_1}M + {p_l} \right) }{{{m_v}}^2}+\frac{4M^2\left( {\eta_2}M - {p_l} \right) \left( {\eta_1}M + {p_l} \right) }{{{m_1}}^2}+\frac{4M^2\left( {\eta_2}M - {p_l} \right) \left( {\eta_1}M + {p_l} \right) }{{{m_2}}^2},\\ C_{V2} = &M^2\left( {{m_1}}^{-2} + {{m_2}}^{-2} \right), \\ C_{V0}' =& \frac{8(g'_{_{D^*D^*\phi}}g_{_{\bar D_{s1}\bar D_{s1}\phi}}m_2^2-g_{_{D^*D^*\phi}}g'_{_{\bar D_{s1}\bar D_{s1}\phi}}m_1^2)M^2\left( {\eta_2}M - {p_l} \right) \left( {\eta_1}M + {p_l} \right) {{{{p}}_T}}^2} {{{m_1}}^2m_2^2}\\&+\frac{-4g'_{_{D^*D^*\phi}}g'_{_{\bar D_{s1}\bar D_{s1}\phi}}M^2\left[({{m_1}}^2+ {{m_2}}^2){{{{p}}_T}}^2\left( 2{{{{p}}_T}}^2 + {{{{q}}_T}}^2 \right) + 4 {{m_1}}^2{{m_2}}^2\left( {{{{p}}_T}}^2 + {{{{q}}_T}}^2 \right) \right] }{{{m_1}}^2{{m_2}}^2}\\&+6g_{_{D^*D^*\phi}}g_{_{\bar D_{s1}\bar D_{s1}\phi}}M^2\left[ 4{\eta_1}M\left( {\eta_2}M - {p_l} \right) + 4{\eta_2}M{p_l} - 4{{p_l}}^2 + {{{{p}}_T}}^2 + {{{{q}}_T}}^2 \right]+ \frac{6g_{_{D^*D^*\phi}}g_{_{\bar D_{s1}\bar D_{s1}\phi}}M^2{\left( {{{{p}}_T}}^2 - {{{{q}}_T}}^2 \right) }^2}{{{m_v}}^2} \\& +\frac{2g_{_{D^*D^*\phi}}g_{_{\bar D_{s1}\bar D_{s1}\phi}}M^2{{{{p}}_T}}^2\left[ 4{\eta_1}M\left( {\eta_2}M - {p_l} \right) + 4{\eta_2}M{p_l} - 4{{p_l}}^2 + {{{{p}}_T}}^2 + {{{{q}}_T}}^2 \right]({{m_1}}^2+{{m_2}}^2) }{{{m_1}}^2{{m_2}}^2} \\&+\frac{2g_{_{D^*D^*\phi}}g_{_{\bar D_{s1}\bar D_{s1}\phi}}M^2{{{{p}}_T}}^2{\left( {{{{p}}_T}}^2 - {{{{q}}_T}}^2 \right) }^2({{m_1}}^2+{{m_2}}^2)}{{{m_1}}^2{{m_2}}^2{{m_v}}^2}, \\C_{V1}' =& \frac{8(g_{_{D^*D^*\phi}}g'_{_{\bar D_{s1}\bar D_{s1}\phi}}m_1^2-g'_{_{D^*D^*\phi}}g_{_{\bar D_{s1}\bar D_{s1}\phi}}m_2^2)M^2\left( {\eta_2}M - {p_l} \right) \left( {\eta_1}M + {p_l} \right) }{m_1^2{{m_2}}^2} \\&+4g_{_{D^*D^*\phi}}g_{_{\bar D_{s1}\bar D_{s1}\phi}}M^2\left( 3 + \frac{{{{{p}}_T}}^2}{{{m_1}}^2} + \frac{{{{{p}}_T}}^2}{{{m_2}}^2} \right)+16g'_{_{D^*D^*\phi}}g'_{_{\bar D_{s1}\bar D_{s1}\phi}}M^2\left( 2 + \frac{{{{{p}}_T}}^2}{{{m_1}}^2} + \frac{{{{{p}}_T}}^2}{{{m_2}}^2} \right), \\ C_{V2}' =& \frac{-4g'_{_{D^*D^*\phi}}g'_{_{\bar D_{s1}\bar D_{s1}\phi}}M^2\left( {{m_1}}^2 + {{m_2}}^2 \right) }{{{m_1}}^2{{m_2}}^2}. \end{split} $
While we integrate over
$ p_l $ on the right side of Eq. (11), there exist four poles that are located at$ -\eta_1M-\omega_1+{\rm i}\epsilon $ ,$ -\eta_1M+\omega_1-{\rm i}\epsilon $ ,$ \eta_2M+\omega_2-{\rm i}\epsilon $ and$ \eta_2M-\omega_2+{\rm i}\epsilon $ . By choosing an appropriate contour, we only need to evaluate the residuals at$ p_l = -\eta_1M-\omega_1+{\rm i}\epsilon $ and$ p_l = \eta_2M-\omega_2+{\rm i}\epsilon $ .Here, since
${\rm d}^3{{q}}_T = {{q}}_T^2{\rm{sin}}(\theta){\rm d}|{{q}}_T|{\rm d}\theta {\rm d}\phi$ and$ {{p}}_T\cdot {{q}}_T = |{{p}}_T||{{q}}_T|$ ${\rm{cos}}(\theta) $ , one can integrate the azimuthal part, and then, Eq. (11) is reduced into a one-dimensional integral equation:$ \begin{split} f(|{{p}}_T|) =& \int{\frac{|{{q}}_T|^2f(|{{q}}_T|)}{12M^2(2\pi)^2}{\rm d}|{{q}}_T|}\{ \frac{{\cal{C}}_1g_{_{D_{s1}D^*_{s}\eta}}g_{_{\bar D_{s1}\bar D^*_{s}\eta}}(\omega_1+\omega_2)}{\omega_1\omega_2[M^2-(\omega_1+\omega_2)^2]}[C_0J_0(m_\eta)+C_1\,J_1(m_\eta)+C_2J_2(m_\eta)+C_3J_3(m_\eta)+C_4J_4(m_\eta)]\\ &-\frac{{\cal{C}}_2g_{_{D^*_{s}D^*_{s}\eta}}g_{_{\bar D_{s1}\bar D_{s1}\eta}}} {\omega_1[(M+\omega_1)^2-\omega_2^2]} [C'_0J_0(m_\eta)+C'_1\,J_1(m_\eta)]|_{p_l = -\eta_1M-\omega_1}-\frac{{\cal{C}}_2g_{_{D^*_{s}D^*_{s}\eta}}g_{_{\bar D_{s1}\bar D_{s1}\eta}}} {\omega_2[(M-\omega_2)^2-\omega_1^2]} [C'_0J_0(m_\eta)+C'_1\,J_1(m_\eta)]|_{p_l = \eta_2M-\omega_2} \\&+\frac{{\cal{C}}_2g_{_{D^*_{s}D^*_{s}f_0}}g_{_{\bar D_{s1}\bar D_{s1}f_0}}(\omega_1+\omega_2)}{\omega_1\omega_2[M^2-(\omega_1+\omega_2)^2]}C_{S0}J_0(m_{f_0})+ \frac{{\cal{C}}_1g_{_{D_{s1}D^*_{s}\eta'}}g_{_{\bar D_{s1}\bar D^*_{s}\eta'}}(\omega_1+\omega_2)}{\omega_1\omega_2[M^2-(\omega_1+\omega_2)^2]}[C_0J_0(m_\eta')+C_1\,J_1(m_\eta') +C_2J_2(m_\eta')+C_3J_3(m_\eta')\\&+C_4J_4(m_\eta')] -\frac{{\cal{C}}_2g_{_{D^*_{s}D^*_{s}\eta'}}g_{_{\bar D_{s1}\bar D_{s1}\eta'}}} {\omega_1[(M+\omega_1)^2-\omega_2^2]} [C'_0J_0(m_\eta)+C'_1\,J_1(m_\eta')]|_{p_l = -\eta_1M-\omega_1}-\frac{{\cal{C}}_2g_{_{D^*_{s}D^*_{s}\eta'}}g_{_{\bar D_{s1}\bar D_{s1}\eta'}}} {\omega_2[(M-\omega_2)^2-\omega_1^2]}\\&\times [C'_0J_0(m_\eta')+C'_1\,J_1(m_\eta')]|_{p_l = \eta_2M-\omega_2}+\frac{{\cal{C}}_1g_{_{D_{s1}D^*_{s}\phi}}g_{_{\bar D_{s1}\bar D^*_{s}\phi}}} {\omega_1[(M+\omega_1)^2-\omega_2^2]} [C_{V0}J_0(m_\phi)+C_{V1}\,J_1(m_\phi)+C_{V2}\,J_2(m_\phi)]|_{p_l = -\eta_1M-\omega_1} \\&+\frac{{\cal{C}}_1g_{_{D^*_{s}D^*_{s}\phi}}g_{_{\bar D_{s1}\bar D_{s1}\phi}}} {\omega_2[(M-\omega_2)^2-\omega_1^2]} [C_{V0}J_0(m_\phi)+C_{V1}\,J_1(m_\phi)+C_{V2}\,J_2(m_\phi)]|_{p_l = \eta_2M-\omega_2}\\&+\frac{{\cal{C}}_2} {\omega_1[(M+\omega_1)^2-\omega_2^2]} [C'_{V0}J_0(m_\phi)+C'_{V1}\,J_1(m_\phi)+C'_{V2}\,J_2(m_\phi)]|_{p_l = -\eta_1M-\omega_1} \\&+\frac{{\cal{C}}_2} {\omega_2[(M-\omega_2)^2-\omega_1^2]} [C'_{V0}J_0(m_\phi)+C'_{V1}\,J_1(m_\phi)+C'_{V2}\,J_2(m_\phi)]|_{p_l = \eta_2M-\omega_2} \}, \end{split} $
(12) with
$ \begin{split} J_0(m) =& \int^\pi_0\frac{{\rm{sin}}\theta\,{\rm {\rm d}}\theta}{-({{p}}_T-{{q}}_T)^2-m^2}F^2(k,m), \\ J_1(m) =& \int^\pi_0\frac{|{{p}}_T||{{q}}_T|{\rm{sin}}\theta{\rm{cos}}\theta\,{\rm d}\theta}{-({{p}}_T-{{q}}_T)^2-m^2}F^2(k,m),\\ J_2(m) =& \int^\pi_0\frac{|{{p}}_T|^2|{{q}}_T|^2{\rm{sin}}\theta{{\rm{cos}}^2}\theta\,{\rm d}\theta}{-({{p}}_T-{{q}}_T)^2-m^2}F^2(k,m), \\J_3(m) =& \int^\pi_0\frac{|{{p}}_T|^3|{{q}}_T|^3{\rm{sin}}\theta{{\rm{cos}}^3}\theta\,{\rm d}\theta}{-({{p}}_T-{{q}}_T)^2-m^2}F^2(k,m), \end{split} $
$ \begin{split} J_4(m) =& \int^\pi_0\frac{|{{p}}_T|^4|{{q}}_T|^4{\rm{sin}}\theta{{\rm{cos}}^4}\theta\,{\rm d}\theta}{-({{p}}_T-{{q}}_T)^2-m^2}F^2(k,m). \end{split} $
-
Analogous to the cases in Refs. [28, 29], the normalization condition for the B-S wave function of a bound state should be
$ \frac{\rm i}{6}\int \frac{{\rm d}^4p{\rm d}^4q}{(2\pi)^8}\varepsilon_{abcd}\bar\chi^d_P(p)\frac{P^c}{M}\frac{\partial}{\partial P_0}[I^{ab\alpha\beta}(P,p,q)+K^{ab\alpha\beta}(P,p,q)]\varepsilon_{\alpha\beta\mu\nu}\chi^\nu_P(q)\frac{P^\mu}{M} = 1, $
(13) where
$ P_0 $ is the energy of the bound state, which is equal to its mass M in the center of mass frame.$ I(P,p,q) $ is a product of reciprocals of two free propagators with a proper weight.$ I^{ab\alpha\beta}(P,p,q) = (2\pi)^4\delta^4(p-q)(\Delta^{a\alpha}_1)^{-1}(\Delta^{b\beta}_2)^{-1}. $
(14) In our earlier work [31], we found that the term
$ K^{ab\alpha\beta}(P,p,q) $ in brackets is negligible; hence, we ignore it as done in Ref. [47].To reduce the singularity of the problem, we ignore the second item in the numerators of the propagators (Eq. (5) and (6)) and
$ (\Delta^{a\alpha}_1)^{-1} = -{\rm i}g^{a\alpha}(p_1^2-m_1^2) $ ,$ (\Delta^{b\beta}_1)^{-1} = $ $ -{\rm i}g^{b\beta}(p_2^2-m_2^2)$ . Then, the normalization condition is$ {\rm i}\int \frac{{\rm d}^4p{\rm d}^4q}{(2\pi)^8}f^*(p)\frac{\partial}{\partial P_0}[(2\pi)^4\delta^4(p-q)(p_1^2+m_1^2)(p_2^2+m_2^2)]f(q) = 2M. $
(15) After performing some manipulations, we obtain the normalization of the radial wave function as the following:
$ \frac{1}{2M}\int \frac{{\rm d}^3 {{p_T}}}{(2\pi)^3}f^2(|{{p_T}}|)\frac{M\omega_1\omega_2}{\omega_1+\omega_2} = 1. $
(16) -
Next, we investigate the strong decays of
$ Y(4626) $ using the effective interactions, which only includes contributions induced by exchanging$ \eta $ and$ \eta' $ . Subsequently, we will discuss this issue further. -
The relevant Feynman diagram is depicted in Fig. 3(a) where
$ \bar D_{s0} $ represents$ \bar D_{s0}(2317) $ . The amplitude is,$ \begin{split} {\cal{A}}_{a} =& g_{_{D^*_{s}D^*_{s}\eta}}g_{_{\bar D_{s1}\bar D_{s0}\eta}}\int\frac{{\rm d}^4p}{(2\pi)^4}\frac{2}{3}k_{\nu}\epsilon_{1\mu}\varepsilon^{\nu\mu a\beta}\left(\frac{p_{1\beta}}{m_1}+ \frac{q_{1\beta}}{m'_1}\right)\\&\times\bar \chi^d(p)\varepsilon_{abcd}\frac{P^c}{M}k_b\Delta(k,m_\eta)F^2(k,m_\eta)\\&+{\rm {a\,\,\,\, term\,\,\,\, with}}\,\,\,\, \eta'\,\,\,\, {\rm {replacing}} \,\,\,\,\eta , \end{split} $
(17) where
$ k = p-(\eta_2 q_1-\eta_1 q_2) $ , and$ \epsilon_1 $ is the polarization vector of$ D^*_s $ . We still consider the approximation$ k_0 = 0 $ to perform the calculation.The amplitude can be parameterized as [48]
$ {\cal{A}}_a = g_0M\epsilon_1\cdot \epsilon^*+\frac{g_2}{M}\left(q\cdot \epsilon_1 q\cdot \epsilon^*-\frac{1}{3}q^2\epsilon_1\cdot \epsilon^*\right). $
(18) The factors
$ g_0 $ and$ g_2 $ are extracted from the expressions of$ {\cal{A}}_a $ .Then, the partial width is expressed as
$ {\rm d}\Gamma_a = \frac{1}{32\pi^2}|{\cal{A}}_a|^2\frac{|q_2|}{M^2}{\rm d}\Omega. $
(19) -
The corresponding Feynman diagram is depicted in Fig. 3(b) where
$ \bar D'_{s1} $ denotes$ D_s(2460) $ in the rest of the manuscript. Then, the amplitude can be defined as$ \begin{split} {\cal{A}}_{b} =& g_{_{D^*_{s}D_{s}\eta}}g_{_{\bar D_{s1}\bar D_{s(2460)}\eta}}\int\frac{{\rm d}^4p}{(2\pi)^4}\frac{2}{3}k^{a}\bar \chi^d(p)\varepsilon_{abcd}\frac{P^c}{M}\\&\times\epsilon_{2\mu}\varepsilon^{\nu\mu b\omega}\left(\frac{p_{1\omega}}{m_1}+ \frac{q_{1\omega}}{m'_1}\right)k_\nu\Delta(k,m_\eta)F^2(k,m_\eta)\\&+{\rm {a\,\,\,\, term\,\,\,\, with}}\,\,\,\, \eta'\,\,\,\, {\rm {replacing}} \,\,\,\,\eta . \end{split} $
(20) The amplitude can also be parameterized as
$ {\cal{A}}_b = g'_0M\epsilon_2\cdot \epsilon^*+\frac{g'_2}{M}\left(q\cdot \epsilon_2 q\cdot \epsilon^*-\frac{1}{3}q^2\epsilon_2\cdot \epsilon^*\right), $
(21) where
$ \epsilon_2 $ is the polarizations of$ \bar D_s(2460) $ . The factors$ g'_0 $ and$ g'_2 $ can be extracted from the expressions of$ {\cal{A}}_b $ . -
The Feynman diagram for the process of
$ Y(4626)\to $ $ D_s(2460)(1^+)+\bar D^*_s(1^-) $ is depicted in Fig. 3(c). Then, the amplitude is given as$ \begin{split} {\cal{A}}_{c} =& g_{_{D^*_{s}D_{s(2460)}\eta}}g_{_{\bar D_{s1}\bar D^*_{s}\eta}}\int\frac{{\rm d}^4p}{(2\pi)^4}\frac{2}{3}{\rm i}k_{\omega}\left(\frac{p^\omega_1}{m1}+ \frac{q^\omega_1}{m'_1}\right)\\&\times\epsilon^a_{1}\bar \chi^d(p)\varepsilon_{abcd}\frac{P^c}{M}\\&\times(-3k^b k^\nu+k^2g^{b\nu}-k\cdot p_2 k\cdot q_2 g^{b\nu}/m_2/m_2')\\&\times\epsilon_{2\nu}\Delta(k,m_\eta)F^2(k,m_\eta)\\&+{\rm {a\,\,\,\, term\,\,\,\, with}}\,\,\,\, \eta'\,\,\,\, {\rm {replacing}} \,\,\,\,\eta, \end{split}$
(22) where
$ \epsilon_1 $ and$ \epsilon_2 $ are the polarization vectors of$ D_s(2460) $ and$ \bar D^*_s $ , respectively. The total amplitude can be parameterized as [48]$ \begin{split} {\cal{A}}_c = & g_{10}\varepsilon^{\mu\nu\alpha\beta}P_\mu\epsilon_{1\nu}\epsilon_{2\alpha}\epsilon^*_\beta +\frac{g_{11}}{M^2}\varepsilon^{\mu\nu\alpha\beta}P_\mu q_\nu\epsilon_{1\alpha}\epsilon_{2\beta} q\cdot \epsilon^*\\&+\frac{g_{12}}{M^2}\varepsilon^{\mu\nu\alpha\beta}P_\mu q_\nu\epsilon_{1\alpha}\epsilon^*_{\beta} q\cdot \epsilon_2. \end{split}$
(23) The factors
$ g_{10} $ ,$ g_{11} $ and$ g_{12} $ are extracted from the expressions of$ {\cal{A}}_c $ . -
The Feynman diagram for
$ Y(4626)\to D^*_s(1^-)+$ $\bar D_s(2460)(1^+) $ is depicted in Fig. 3(d). The amplitude is$ \begin{split} {\cal{A}}_{d} =& g_{_{D^*_{s}D^*_{s}\eta}}g_{_{\bar D_{s1}\bar D_{s(2460)}\eta}}\int\frac{{\rm d}^4p}{(2\pi)^4}\frac{2}{3}k_{\sigma}\epsilon_{1\mu}\\&\times\varepsilon^{\sigma a\mu\gamma}\left(\frac{p^\gamma_1}{m_1}+ \frac{q^\gamma_2}{m'_2}\right)\bar \chi^d(p)\varepsilon_{abcd}\frac{P^c}{M}\\&\times k_\omega\epsilon_{2\nu}\varepsilon^{\omega\nu b \theta}\left(\frac{p_{2\theta}}{m_2}+ \frac{q_{1\theta}}{m'_1}\right)\Delta(k,m_\eta)F^2(k,m_\eta)\\&+{\rm {a \,\,\,\, term\,\,\,\, with}}\,\,\,\, \eta'\,\,\,\, {\rm {replacing}} \,\,\,\,\eta, \end{split}$
(24) where
$ \epsilon_1 $ and$ \epsilon_2 $ are the polarization vectors of$ D^*_s $ and$ \bar D_s(2460) $ , respectively.The total amplitude for the strong decay of
$ Y(4626)\to D^*_s(1^-)+\bar D_s(2460)(1^+) $ can also be expressed as$\begin{split} {\cal{A}}_d = & g'_{10}\varepsilon^{\mu\nu\alpha\beta}P_\mu\epsilon_{1\nu}\epsilon_{2\alpha}\epsilon^*_\beta +\frac{g'_{11}}{M^2}\varepsilon^{\mu\nu\alpha\beta}P_\mu q_\nu\epsilon_{1\alpha}\epsilon_{2\beta} q\cdot \epsilon^*\\&+\frac{g'_{12}}{M^2}\varepsilon^{\mu\nu\alpha\beta}P_\mu q_\nu\epsilon_{1\alpha}\epsilon^*_{\beta} q\cdot \epsilon_2. \end{split}$
(25) The factors
$ g'_{10} $ ,$ g'_{11} $ and$ g'_{12} $ are extracted from the expressions of$ {\cal{A}}_d $ . -
The Feynman diagram is depicted in Fig. 3(e) where
$ \bar D_{s2} $ represents$ \bar D_s(2572) $ . Then, the amplitude is defined as follows:$ \begin{split} {\cal{A}}_{e} =& g_{_{D^*_{s}D_{s}\eta}}g_{_{D_{s1}D_{s2}\eta}}\int\frac{{\rm d}^4p}{(2\pi)^4}\frac{2}{3}k^{a}\bar \chi^d(p)\\&\times\varepsilon_{abcd}\frac{P^c}{M}k_\mu\epsilon_{2}^{b\mu}\Delta(k,m_s)F^2(k,m_s)\\&+{\rm {a\,\,\,\, term\,\,\,\, with}}\,\,\,\, \eta'\,\,\,\, {\rm {replacing}} \,\,\,\,\eta, \end{split} $
(26) where
$ \epsilon_2 $ is the polarization tensor of$ \bar D_s(2572)(2^+) $ .The total amplitude is written as
$ {\cal{A}}_e = \frac{g_{20}}{M^2}\varepsilon^{\mu\nu\alpha\beta}P_\mu\epsilon_{2\nu\sigma}q_{\alpha}\epsilon^*_\beta q^\sigma. $
(27) The factors
$ g_{20} $ can be extracted from the expressions of$ {\cal{A}}_e $ . -
The Feynman diagram is depicted in Fig. 3(f) where
$ \bar D_{s1} $ represents$ \bar D_s(2536) $ . The amplitude is then given as$ \begin{split} {\cal{A}}_{f} =& g_{_{D^*_{s}D_{s}\eta}}g_{_{\bar D_{s1}\bar D_{s1}\eta}}\int\frac{{\rm d}^4p}{(2\pi)^4}\frac{2}{3}k^{a}\bar \chi^d(p)\varepsilon_{abcd}\frac{P^c}{M}\epsilon_{2\mu}\\&\times\varepsilon^{\nu\mu b\omega}\left(\frac{p_{2\omega}}{m_2}+ \frac{q_{2\omega}}{m'_2}\right)k_\nu\Delta(k,m_\eta)F^2(k,m_\eta)\\&+{\rm {a\,\,\,\, item\,\,\,\, with}}\,\,\,\, \eta'\,\,\,\, {\rm {replacing }}\,\,\,\,\eta, \end{split}$
(28) where
$ \epsilon_2 $ is the polarization vector of$ D_s(2536) $ .The amplitude is still written as
$ {\cal{A}}_b = g''_0M\epsilon_2\cdot \epsilon^*+\frac{g''_2}{M}\left(q\cdot \epsilon_2 q\cdot \epsilon^*-\frac{1}{3}q^2\epsilon_2\cdot \epsilon^*\right). $
(29) The factors
$ g''_0 $ and$ g''_2 $ are extracted from the expressions of$ {\cal{A}}_f $ . -
Before we numerically solve the B-S equation, all necessary parameters should be priori determined as accurately as possible. The masses
$ m_{D^*_s} $ ,$ m_{D_{s0}} $ ,$ m_{D_{s1}} $ ,$ m_{D'_{s1}} $ ,$ m_{D_{s2}} $ ,$ m_\eta $ ,$ m_{\eta'} $ ,$ m_{f_0(980)} $ and$ m_\phi $ are obtained from the databook [49]. The coupling constants in the effective interactions$ g_{_{D_{s1}D^*_{s}\eta}} $ ,$ g_{_{\bar D_{s1}\bar D^*_{s}\eta}} $ ,$ g_{_{D^*_{s}D^*_{s}\eta}} $ ,$ g_{_{\bar D_{s1}\bar D_{s1}\eta}} $ ,$ g_{_{D_{s1}D^*_{s}\eta'}} $ ,$ g_{_{\bar D_{s1}\bar D^*_{s}\eta'}} $ ,$ g_{_{D^*_{s}D^*_{s}\eta'}} $ ,$ g_{_{\bar D_{s1}\bar D_{s1}\eta'}} $ ,$ g_{_{D_{s1}D^*_{s}\phi}} $ ,$ g_{_{\bar D_{s1}\bar D^*_{s}\phi}} $ ,$ g_{_{D^*_{s}D^*_{s}\phi}} $ ,$ g_{_{\bar D_{s1}\bar D_{s1}\phi}} $ ,$ g'_{_{D^*_{s}D^*_{s}\phi}} $ ,$ g'_{_{\bar D_{s1}\bar D_{s1}\phi}} $ ,$ g_{_{D^*_{s}D^*_{s}f_0}} $ and$ g_{_{\bar D_{s1}\bar D_{s1}f_0}} $ are taken from the relevant literature and their values and related references are summarized in the Appendix.With these input parameters, the B-S equation Eq. (12) can be solved numerically. Since it is an integral equation, an efficient way for solving it is by discretizing it and then in turn, solving the integral equation to an algebraic equation group. Effectively, we let the variables
$ {{|p_T|}} $ and$ {{|q_T|}} $ be discretized into n values$ Q_1 $ ,$ Q_2 $ ,...$ Q_n $ (when$ n>100,$ the solution is stable enough, and we set n = 129 in our calculation) and the equal gap between two adjacent values as$ \dfrac{Q_n-Q_1}{n-1} $ . Here, we set$ Q_1 $ = 0.001 GeV and$ Q_n $ = 2 GeV. The n values of$ f(|{{p}_T}|) $ constitute a column matrix on the left side of the equation and the n elements$ f({{|q_T|}}) $ constitute another column matrix on the right side of the equation as shown below. In this case, the functions in the curl bracket of Eq. (12) multiplied by$ {\dfrac{|{{q}}_T|^2}{12M^2(2\pi)^2}} $ would be an effective operator acting on$ f({{|q_T|}}) $ . It is specially noted that because of discretizing the equation, even$ {\dfrac{|{{q}}_T|^2} {12M^2(2\pi)^2}} $ turns from a continuous integration variable into n discrete values that are involved in the$ n\times n $ coefficient matrix. Substituting the n pre-set$ Q_i $ values into those functions, the operator transforms into an$ n\times n $ matrix that associates the two column matrices. It is noted that$ Q_1 $ ,$ Q_2 $ ,...$ Q_n $ should assume sequential values.$ \left(\begin{array}{c} f(Q_1) \\... \\f(Q_{129}) \end{array}\right) = A(\Delta E, \lambda)\left(\begin{array}{c} f(Q_1) \\... \\f(Q_{129})) \end{array}\right). $
As is well known, if a homogeneous equation possesses non-trivial solutions, the necessary and sufficient condition is that det
$ |A(\Delta E,\lambda)-I| = 0 $ (I is the unit matrix), where$ A(\Delta E,\lambda) $ is simply the aforementioned coefficient matrix. Thus, solving the integral equation simplifies into an eigenvalue searching problem, which is a familiar concept in quantum mechanics; in particular, the eigenvalue is required to be a unit in this problem. Here,$ A(\Delta E,\lambda) $ is a function of the binding energy$ \Delta E = m_1+m_2-M $ and parameter$ \lambda $ . The following procedure is slightly tricky. Inputting a supposed$ \Delta E $ , we vary$ \lambda $ to make det$ |A(\Delta E,\lambda)-I| = 0 $ hold. One can note that the matrix equation$ (A(\Delta E,\lambda)_{ij})(f(j)) = \beta (f(i)) $ is exactly an eigenequation. Using the values of$ \Delta E $ and$ \lambda $ , we seek all possible "eigenvalues"$ \beta $ . Among them, only$ \beta = 1 $ is the solution we expect. In the process of solving the equation group, the value of$ \lambda $ is determined, and effectively, it is the solution of the equation group with$ \beta = 1 $ . Meanwhile, using the obtained$ \lambda $ , one obtains the corresponding wavefunction$ f(Q_1),f(Q_2)...f(Q_{129}) $ which is simply the solution of the B-S equation.Generally,
$ \lambda $ should be within the range that is around the order of the unit. In Ref. [42], the authors fixed the value of$ \lambda $ to be 3. In our earlier paper [45], the value of$ \lambda $ varied from 1 to 3. In Ref. [35], we set the value of$ \lambda $ within a range of$ 0\sim 4,$ by which (as believed), a bound state of two hadrons can be formed. When the obtained$ \lambda $ is much beyond this range, one would conclude that the molecular bound state may not exist, or at least it is not a stable state. However, it must be noted that the form factor is phenomenologically introduced and the parameter$ \lambda $ is usually fixed via fitting the data, i.e., neither the form factor nor the value of$ \lambda $ are derived from an underlying theory, but based on our intuition (or say, a theoretical guess). Since the concerned processes are dominated by the non-perturbative QCD effects whose energy scale is approximately 200 MeV, we have a reason to believe that the cutoff should fall within a range around a few hundreds of MeV to 1 GeV, and by this allegation, one can guess that the value of$ \lambda $ should be close to unity. However, from another aspect, this guess does not have a solid support, and further phenomenological studies and a better understanding on low energy field theory are needed to obtain more knowledge on the form factor and the value of$ \lambda $ . Thus far, even though we believe this range for$ \lambda $ that sets a criterion to draw our conclusion, we cannot absolutely rule out the possibility that some other values of$ \lambda $ beyond the designated region may hold. Therefore, we proceed further to compute the decay rates of$ Y(4626) $ based on the molecule postulate (see the below numerical results for clarity of this point).Based on our strategy, for the state
$ Y_2 $ , we let$ \Delta E = 0.021 $ GeV, which is the binding energy of the molecular state as$ M_{D^*_s}+M_{D_{s1}(2536)}-M_{Y(4626)} $ . Then, we try to solve the equation$ |A(\Delta E,\Lambda)-I| = 0 $ by varying$ \lambda $ within a reasonable range. In other words, we are trying to determine a value of$ \lambda $ that falls in the range of 0 to 4 as suggested in literature, to satisfy the equation.As a result, we have searched for a solution of
$ \lambda $ within a rather large region, but unfortunately, we find that there is no solution that can satisfy the equation.However, for the
$ Y_1 $ state, if one still keeps$ \Delta E = 0.021 $ GeV but sets$ \lambda = 10.59 $ ②, the equation$ |A(\Delta E,\lambda)-I| = 0 $ holds, while the contributions induced by exchanging$ \eta $ ,$ \eta' $ ,$ f_0(980) $ and$ \phi $ are included. Instead, if the contribution of exchanging$ f_0(980) $ (Fig. 2) is ignored, with the same$ \Delta E,$ one could obtain a value 10.46 of$ \lambda ,$ which is very close to that without the contribution of$ f_0(980) $ . It means that the contribution from exchanging$ f_0(980) $ is very small and can be ignored safely. On this basis, we continue to ignore the contribution from exchanging$ \phi $ and we fix$ \lambda = 10.52 $ , which means that the contribution of$ \phi $ is negligible. Therefore, we will only consider the contributions from exchanging$ \eta $ and$ \eta' $ in subsequent calculations. Meanwhile, by solving the eigen equation, we obtain the wavefunction$ f(Q_1), f(Q_2)...f(Q_{129}) $ . The normalized wavefunction is depicted in Fig. 4 with different$ \Delta E $ .Due to the existence of an error tolerance on measurements of the mass spectrum, we are allowed to vary
$ \Delta E $ within a reasonable range to fix the values of$ \lambda $ again, and for the$ D_{s1}\bar D^*_s $ system, the results are presented in Table 1. Apparently, for a reasonable$ \Delta E ,$ any$ \lambda $ value that is obtained by solving the discrete B-S equation is far beyond 4. At this point, we ask ourselves the following question: Does the result imply that$ D_{s1}\bar D^*_s $ fails to form a bound state? We will further discuss its physical significance in the next section.$ \Delta E $ /MeV5 10 15 21 26 $ \lambda $ 10.14 10.28 10.39 10.52 10.61 Table 1. The cutoff parameter
$ \lambda $ and the corresponding binding energy$ \Delta E $ for the bound state$ D^*_s \bar D_{s1}. $ A new resonance
$ Y(4626) $ has been experimentally observed [1], and it is the fact that is widely acknowledged, but determining its composition demands a theoretical interpretation. The molecular state explanation is favored by an intuitive observation. However, our theoretical study does not support the allegation that$ Y(4626) $ is the molecule of$ D^*_s\bar D_{s1} $ .In another respect, the above conclusion is based on a requirement:
$ \lambda $ must fall in a range of 0$ \sim $ 4, which is determined by phenomenological studies carried out by many researchers. However,$ \lambda $ being in 0$ \sim $ 4 is by no means a mandatory condition because it is not deduced form an underlying principle and lacks a definite foundation. Therefore, even though our result does not favor the molecular structure for$ Y(4626) $ , we still proceed to study the transitions$ Y(4626)\to D^*_{s}\bar D_{s}(2317) $ ,$ Y(4626)\to D_{s} \bar D_{s}(2460) $ ,$ Y(4626)\to D_{s}(2460)\bar D^*_{s} $ ,$ Y(4626)\!\to\! D^*_{s}\bar D_{s}(2460) $ ,$ Y(4626)\!\to\! D_{s}\bar D_{s2}(2573) $ and$ Y\to D_{s}\bar D_{s1}(2536) $ under the assumption of the molecular composition of$ D^*_s\bar D_{s1} $ .Using the wave function, we calculate the form factors
$ g_0 $ ,$ g_2 $ ,$ g'_0 $ ,$ g'_2 $ ,$g_{10} $ ,$ g_{11} $ ,$ g_{12} $ ,$ g'_{10} $ ,$ g'_{11} $ ,$ g' _{12} $ ,$ g_{20} $ ,$ g''_0 $ ,$ g''_2 $ defined in Eqs. (18, 21, 23, 25, 27 and 29). With these form factors, we obtain the decay widths of$ Y(4626)\to D^*_{s}\bar D_{s}(2317) $ ,$ Y(4626)\!\to\! D_{s}\bar D_{s}(2460) $ ,$ Y(4626)\!\to\! D_{s}(2460)\bar D^*_{s} $ ,$ Y(4626)\to D^*_{s}\bar D_{s}(2460) $ ,$ Y(4626)\to D_{s}\bar D_{s1}(2573) $ and$ Y(4626)\to D_{s}\bar D_{s2}(2536) $ , which are denoted as$ \Gamma_a, \Gamma_b, \Gamma_c, \Gamma_d, \Gamma_e ,$ and$ \Gamma_f $ presented in Table 2. The theoretical uncertainties originate from the experimental errors, i.e., the theoretically predicted curve expands to a band.$ \Gamma_{a} $ $ \Gamma_{b} $ $ \Gamma_{c} $ $ \Gamma_{d} $ $ \Gamma_{e} $ $ \Gamma_{f} $ 60.6 $ \sim $ 189127 $ \sim $ 34297.8 $ \sim $ 10221.2 $ \sim $ 23.17.89 $ \sim $ 8.3661.9 $ \sim $ 70.1Table 2. The decay widths (in units of keV) for the transitions.
Certainly, exchanging two
$ \eta $ ($ \eta' $ ) mesons can also induce a potential as the next-to-leading order (NLO) contribution, but it undergoes a loop suppression. Therefore, we do not consider this contribution i.e., a one-boson-exchange model is employed in our whole scenario. -
The effective interactions can be found in [36-41]:
$ \begin{split} {\cal{L}}_{_{D^*D_1P}} =& g_{_{D^*D_1P}}[3D^\mu_{1b}(\partial_\mu\partial_\nu {\cal{M}})_{ba}D^{*\nu\dagger}_a-D^\mu_{1b}(\partial^\nu\partial_\nu {\cal{M}})_{ba}D^{*\dagger}_{a\mu}\\&+\frac{1}{m_{D^*}m_{D_1}}\partial^\nu D^\mu_{1b}(\partial_\nu\partial_\tau {\cal{M}})_{ba}\partial^\tau D^{*\dagger}_{a\mu}]+g_{_{\bar D^*\bar D_1P}}\\&\times[3\bar D^\mu_{1b}(\partial_\mu\partial_\nu {\cal{M}})_{ba}\bar D^{*\nu\dagger}_a-\bar D^\mu_{1b}(\partial^\nu\partial_\nu {\cal{M}})_{ba}\bar D^{*\dagger}_{a\mu}\\&+\frac{1}{m_{D^*}m_{D_1}}\partial^\nu \bar D^\mu_{1b}(\partial_\nu\partial_\tau {\cal{M}})_{ba}\partial^\tau \bar D^{*\dagger}_{a\mu}]+c.c., \end{split}\tag{A1}$
(A1) $ \tag{A2} {\cal{L}}_{_{D_0D_1P}} = g_{_{D_0D_1P}}D^\mu_{1b}(\partial_\mu {\cal{M}})_{ba}D^{\dagger}_{0a}+g_{_{\bar D_0\bar D_1P}}\bar D^\mu_{1b}(\partial_\mu {\cal{M}})_{ba}\bar D^{\dagger}_{0a}+c.c., $
(A2) $\begin{split} {\cal{L}}_{_{D^*D^*P}} =& g_{_{D^*D^*P}}(D^{*\mu}_{b}\stackrel{\leftrightarrow}{\partial}^{\beta} D^{*\alpha\dagger}_{a})(\partial^\nu {\cal{M}})_{ba}\varepsilon_{\nu\mu\alpha\beta}\\&+g_{_{\bar D^*\bar D^*P}}(\bar D^{*\mu}_{b}\stackrel{\leftrightarrow}{\partial}^{\beta} \bar D^{*\alpha\dagger}_{a})(\partial^\nu {\cal{M}})_{ba}\varepsilon_{\nu\mu\alpha\beta}+c.c., \end{split}\tag{A3}$
(A3) $ \begin{split} {\cal{L}}_{_{D_{1}D_{1}P}} =& g_{_{D_1D_1P}}(D^{\mu}_{1b}\stackrel{\leftrightarrow}{\partial}^{\beta} D^{\alpha\dagger}_{1a})(\partial^\nu {\cal{M}})_{ba}\varepsilon_{\mu\nu\alpha\beta}\\ &+g_{_{\bar D_1\bar D_1P}}(\bar D^{\mu}_{1b}\stackrel{\leftrightarrow}{\partial}^{\beta} \bar D^{\alpha\dagger}_{1a})(\partial^\nu {\cal{M}})_{ba}\varepsilon_{\mu\nu\alpha\beta}+c.c., \end{split} \tag{A4}$
(A4) $ \begin{split} {\cal{L}}_{_{DD^*P}} =& g_{_{DD^*P}}D_{b}(\partial_\mu {\cal{M}})_{ba}D^{*\mu\dagger}_{a}+g_{_{DD^*P}}D^{*\mu}_{b}(\partial_\mu {\cal{M}})_{ba}D^{\dagger}_{a}\\&+g_{_{\bar D\bar D^*P}}\bar D_{b}(\partial_\mu {\cal{M}})_{ba}\bar D^{*\mu\dagger}_{a}+g_{_{\bar D\bar D^*P}}\bar D^{*\mu}_{b}(\partial_\mu {\cal{M}})_{ba}\bar D^{\dagger}_{a}+c.c., \end{split}\tag{A5}$
(A5) $ \begin{split} {\cal{L}}_{_{D^*D'_1P}} =& {\rm i}g_{_{D^*D'_1P}}[ \frac{\partial^\alpha D^{*\mu}_{b}(\partial_\alpha {\cal{M}})_{ba}D'^\dagger_{1a\nu}}{M_{D_1}}- \frac{D^{*\mu}_{b}(\partial_\alpha {\cal{M}})_{ba}\partial^\alpha D'^\dagger_{1a\nu}}{M_{D^*}}]\\&+{\rm i}g_{_{\bar D^*\bar D'_1P}}[ \frac{\partial^\alpha \bar D^{*\mu}_{b}(\partial_\alpha {\cal{M}})_{ba}\bar D'^\dagger_{1a\nu}}{M_{D_1}}- \frac{\bar D^{*\mu}_{b}(\partial_\alpha {\cal{M}})_{ba}\partial^\alpha \bar D'^\dagger_{1a\nu}}{M_{D^*}}]+c.c., \end{split} \tag{A6}$
(A6) $ \begin{split} {\cal{L}}_{_{D_{1}D'_{1}P}} =& g_{_{D_1D'_1P}}(\frac{{\partial}^{\beta}D^{\mu}_{1b} D^{\alpha\dagger}_{1a}}{m_{D_1}}-\frac{D^{\mu}_{1b} {\partial}^{\beta}D^{\alpha\dagger}_{1a}}{m_{D'_1}})(\partial^\nu {\cal{M}})_{ba}\varepsilon_{\mu\nu\alpha\beta}\\&+ g_{_{\bar D_1\bar D'_1P}}(\frac{{\partial}^{\beta}\bar D^{\mu}_{1b} \bar D^{\alpha\dagger}_{1a}}{m_{D_1}}-\frac{\bar D^{\mu}_{1b} {\partial}^{\beta}\bar D^{\alpha\dagger}_{1a}}{m_{D'_1}})(\partial^\nu {\cal{M}})_{ba}\varepsilon_{\mu\nu\alpha\beta}+c.c., \end{split}\tag{A7}$
(A7) $ \begin{split} {\cal{L}}_{_{D_{1}D_{2}P}} = g_{_{D_1D_2P}}(D_{1a\mu})(\partial_\nu{\cal{M}})_{ba}D_{2a}^{\dagger\mu\nu} +g_{_{\bar D_1\bar D_2P}}(\bar D_{1a\mu})(\partial_\nu{\cal{M}})_{ba}\bar D_{2a}^{\dagger\mu\nu}+c.c.,\end{split} \tag{A8} $
(A8) $ {\cal{L}}_{_{D_{1}D_{1}f_0}} = g_{_{D_1D_1f_0}}(D^\mu_{1a})D{\dagger}_{1a\mu}f_0+g_{_{\bar D_1\bar D_1f_0}}(\bar D^\mu_{1a})\bar D{\dagger}_{1a\mu}f_0+c.c., \tag{A9}$
(A9) $ {\cal{L}}_{_{D^*D^*f_0}} = g_{_{D^*D^*f_0}}(D^{*\mu}_{a})D^{*\dagger}_{a\mu}f_0+g_{_{\bar D^*\bar D^*f_0}}(\bar D^{*\mu}_{a})\bar D^{*\dagger}_{a\mu}f_0+c.c., \tag{A10}$
(A10) $\begin{split} {\cal{L}}_{_{D_{1}D^*f_0}} =& {\rm i}g_{D_{1}D^*f_0}\varepsilon_{\mu\alpha\nu\beta} (D^{\mu}_{1a}\stackrel{\leftrightarrow}{\partial}^{\alpha} D^{*\nu\dagger}_{a}\partial^\beta f_0+D^{*\mu\dagger}_{a}\stackrel{\leftrightarrow}{\partial}^{\alpha} D^{\nu}_{1a}\partial^\beta f_0\\&+\bar D^{\mu}_{b} \stackrel{\leftrightarrow}{\partial}^{\alpha}\bar D^{*\nu\dagger}_{a}\partial^\beta f_0+\bar D^{*\mu\dagger}_{b}\stackrel{\leftrightarrow}{\partial}^{\alpha} \bar D^{\nu}_{a}\partial^\beta f_0)+c.c., \end{split}\tag{A11}$
(A11) $ \begin{split} {\cal{L}}_{_{D_{1}D_{1}V}} =& {\rm i}g_{_{D_1D_1V}}(D^{\nu}_{1b}\stackrel{\leftrightarrow}{\partial}_{\mu} D^{\dagger}_{1a\nu})( {\cal{V}})_{ba}^\mu+{\rm i}g'_{_{D_1D_1V}}(D^{\mu}_{1b} D^{\nu\dagger}_{1a}\\&-D^{\mu\dagger}_{1b} D^{\nu}_{1a})( \partial_\mu{\cal{V}}_\nu-\partial_\nu{\cal{V}}_\mu)_{ba}+{\rm i}g_{_{\bar D_1\bar D_1V}}(\bar D^{\nu}_{1b}\stackrel{\leftrightarrow}{\partial}_{\mu} \bar D^{\dagger}_{1a\nu})( {\cal{V}})_{ba}^\mu\\&+{\rm i}g'_{_{\bar D_1\bar D_1V}}(\bar D^{\mu}_{1b} \bar D^{\nu\dagger}_{1a}-\bar D^{\mu\dagger}_{1b} \bar D^{\nu}_{1a})( \partial_\mu{\cal{V}}_\nu-\partial_\nu{\cal{V}}_\mu)_{ba}+c.c., \end{split}\tag{A12} $
(A12) $ \begin{split} {\cal{L}}_{_{D^*D^*V}} =& {\rm i}g_{_{D^*D^*V}}(D^{*\nu}_{b}\stackrel{\leftrightarrow}{\partial}_{\mu} D^{*\dagger}_{a\nu})( {\cal{V}})_{ba}^\mu+{\rm i}g'_{_{D^*D^*V}}(D^{*\mu}_{b} D^{*\nu\dagger}_{a}\\&-D^{*\mu\dagger}_{b} D^{*\nu}_{a})( \partial_\mu{\cal{V}}_\nu-\partial_\nu{\cal{V}}_\mu)_{ba} +{\rm i}g_{_{\bar D^*\bar D^*V}}(\bar D^{*\nu}_{b}\stackrel{\leftrightarrow}{\partial}_{\mu} \bar D^{*\dagger}_{a\nu})( {\cal{V}})_{ba}^\mu\\&+{\rm i}g'_{_{\bar D^*\bar D^*V}}(\bar D^{*\mu}_{b} \bar D^{*\nu\dagger}_{a}-\bar D^{*\mu\dagger}_{b} \bar D^{*\nu}_{a})( \partial_\mu{\cal{V}}_\nu-\partial_\nu{\cal{V}}_\mu)_{ba}+c.c. \end{split}\tag{A13}$
(A13) $ \begin{split} {\cal{L}}_{_{D_{1}D^*V}} =& {\rm i}g_{D_{1}D^*V}\varepsilon_{\mu\nu\alpha\beta} (D^{\mu}_{1b}\stackrel{\leftrightarrow}{\partial}^{\alpha} D^{*\nu\dagger}_{a}+D^{*\mu\dagger}_{b}\stackrel{\leftrightarrow}{\partial}^{\alpha} D^{\nu}_{1a}+\bar D^{\mu}_{1b} \stackrel{\leftrightarrow}{\partial}^{\alpha}\bar D^{*\nu\dagger}_{a}\\&+\bar D^{*\mu\dagger}_{b}\stackrel{\leftrightarrow}{\partial}^{\alpha} \bar D^{\nu}_{1a})( {\cal{V}}^\beta)_{ba}+g'_{D_{1}D^*V}\varepsilon_{\mu\nu\alpha\beta} (D^{\mu}_{1b} D^{*\nu\dagger}_{a}+D^{*\mu\dagger}_{b} D^{\nu}_{1a}\\&+\bar D^{\mu}_{1b} \bar D^{*\nu\dagger}_{a}+\bar D^{*\mu\dagger}_{b} \bar D^{\nu}_{1a})( \partial^\alpha{\cal{V}}^\beta)_{ba}+c.c., \end{split}\tag{A14}$
(A14) where
$ c.c. $ is the complex conjugate term, a and b represent the flavors of light quarks, and$ f_0 $ denotes$ f_0(980) $ . In Ref. [36]$ {\cal{M}} $ and$ {\cal{V}} $ are$ 3\times 3 $ hermitian and traceless matrices$ \left( {\begin{array}{*{20}{c}} \frac{\pi^0}{\sqrt{2}}+\frac{\eta}{\sqrt{6}} &\pi^+ &K^+ \\ \pi^- & -\frac{\pi^0}{\sqrt{2}}+\frac{\eta}{\sqrt{6}}&K^0\\ K^-& \bar{K^0} & -\sqrt{\frac{2}{3}}\eta \end{array}} \right) $ and$ \left( {\begin{array}{*{20}{c}} \frac{\rho^0}{\sqrt{2}}+\frac{\omega}{\sqrt{2}} &\rho^+ &K^{*+} \\ \rho^- & \frac{\rho^0}{\sqrt{2}}+\frac{\omega}{\sqrt{2}}&K^{*0}\\ K^{*-}& \bar{K^{*0}} & \phi \end{array}} \right) $ respectively. Next, in order to study the coupling of$ \eta' $ with$ D^*_S $ and$ D_{s1} $ , by following Ref. [50], we need to extend$ {\cal{M}} $ to$ \left( {\begin{array}{*{20}{c}} \frac{\pi^0}{\sqrt{2}}+\frac{\eta_8}{\sqrt{6}}+\frac{\eta_0}{\sqrt{3}} &\pi^+ &K^+ \\ \pi^- & -\frac{\pi^0}{\sqrt{2}}+\frac{\eta_8}{\sqrt{6}}+\frac{\eta_0}{\sqrt{3}}&K^0\\ K^-& \bar{K^0} & -\sqrt{\frac{2}{3}}\eta_8+\frac{\eta_0}{\sqrt{3}} \end{array}} \right) $ , where$ \eta_8 $ and$ \eta_0 $ are$ SU(3) $ octet and singlet, respectively. The physical states$ \eta $ and$ \eta' $ are the mixtures of$ \eta_8 $ and$ \eta_0 $ :$ \eta = {\rm{cos\theta}}\eta_8-{\rm{sin\theta}}\eta_0 $ and$ \eta' = {\rm{sin\theta}}\eta_8+{\rm{cos\theta}}\eta_0 $ . In order to keep the derived interactions involving$ \eta $ unchangedcompared with those formulae given in references [37-39], we set the mixing angle$ \theta $ to 0 so that$ {\cal{M}} = \left( {\begin{array}{*{20}{c}} \frac{\pi^0}{\sqrt{2}}+\frac{\eta}{\sqrt{6}}+\frac{\eta'}{\sqrt{3}} &\pi^+ &K^+ \\ \pi^- & -\frac{\pi^0}{\sqrt{2}}+\frac{\eta}{\sqrt{6}}+\frac{\eta'}{\sqrt{3}}&K^0\\ K^-& \bar{K^0} & -\sqrt{\frac{2}{3}}\eta+\frac{\eta'}{\sqrt{3}} \end{array}} \right) $ . In Ref. [50], the authors estimated$ \theta $ and obtained it as$ -18.9^\circ $ , and hence, the approximation holds roughly.In the chiral and heavy quark limit, the above coupling constants are
$\begin{split} g_{_{D^*_sD_{s1}\eta}} =& g_{_{\bar D^*_s\bar D_{s1}\eta}} = -\sqrt{2}g_{_{D^*_sD_{s1}\eta'}} = -\sqrt{2}g_{_{\bar D^*_s\bar D_{s1}\eta'}} \\=& -\frac{\sqrt{6}}{3}\frac{h_1+h_2}{\Lambda_{\chi}f_{\pi}}\sqrt{M_{D^*_{s}}M_{D_{s1}}}, \end{split}$
$ \begin{split} g_{_{D_{s0}D_{s1}\eta}} =& g_{_{\bar D_{s0}\bar D_{s1}\eta}} = -\sqrt{2}g_{_{D_{s0}D_{s1}\eta'}} = -\sqrt{2}g_{_{\bar D_{s0}\bar D_{s1}\eta'}}\\ =& -\frac{2\sqrt{6}}{3}\frac{\tilde{h}}{f_{\pi}}\sqrt{M_{D_{s0}}M_{D_{s1}}}, \end{split}$
$ g_{_{D^*_sD^*_s\eta}} = g_{_{\bar D^*_s\bar D^*_s\eta}} = -\sqrt{2}g_{_{D^*_sD^*_s\eta'}} = -\sqrt{2}g_{_{\bar D^*_s\bar D^*_s\eta'}} = \frac{g}{f_\pi}, $
$ g_{_{D_{s1}D_{s1}\eta}} = g_{_{\bar D_{s1}\bar D_{s1}\eta}} = -\sqrt{2}g_{_{D_{s1}D_{s1}\eta'}} = -\sqrt{2}g_{_{\bar D_{s1}\bar D_{s1}\eta'}} = \frac{5\kappa}{6f_\pi}, $
$ g_{_{D_sD^*_s\eta}} = -g_{_{\bar D_s\bar D^*_s\eta}} = -\sqrt{2}g_{_{D_sD^*_s\eta'}} = \sqrt{2}g_{_{\bar D_s\bar D^*_s\eta'}} = -\frac{2g}{f_{\pi}} \sqrt{M_{D_s}M_{D_s^*}}, $
$ g_{_{D^*_sD'_{s1}\eta}} = g_{_{\bar D^*_s\bar D'_{s1}\eta}} = -\sqrt{2}g_{_{D^*_sD'_{s1}\eta'}} = -\sqrt{2}g_{_{\bar D^*_s\bar D'_{s1}\eta'}} = \frac{h}{f_{\pi}} \sqrt{M_{D^*_s}M_{D'_{s1}}}, $
$\begin{split} g_{_{D_{s1}D'_{s1}\eta}} =& g_{_{\bar D_{s1}\bar D'_{s1}\eta}} = -\sqrt{2}g_{_{D_{s1}D'_{s1}\eta'}} = -\sqrt{2}g_{_{\bar D_{s1}\bar D'_{s1}\eta'}} \\=& \frac{\sqrt{6}\tilde{h}}{6f_{\pi}} \sqrt{M_{D_{s1}}M_{D'_{s1}}}, \end{split}$
$\begin{split} g_{_{D_{s1}D_{s2}\eta}} =& g_{_{\bar D_{s1}\bar D_{s2}\eta}} = -\sqrt{2}g_{_{D_{s1}D_{s2}\eta'}} = -\sqrt{2}g_{_{\bar D_{s1}\bar D_{s2}\eta'}} \\=& -\frac{\sqrt{6}\kappa}{3f_{\pi}} \sqrt{M_{D_{s1}}M_{D_{s2}}},\end{split} $
$ g_{_{D^*_sD^*_s\phi}} = -g_{_{\bar D^*_s\bar D^*_s\phi}} = -\frac{\beta g_V}{\sqrt{2}},\,\, g'_{_{D^*_sD^*_s\phi}} = -g'_{_{\bar D^*_s\bar D^*_s\phi}} = -\sqrt{2}\lambda g_V M_{D^*_s} $
$ g_{_{D_{s1}D_{s1}\phi}} = g_{_{\bar D_{s1}\bar D_{s1}\phi}} = \frac{\beta_2 g_V}{\sqrt{2}},\,\, g'_{_{D_{s1}D_{s1}\phi}} = g'_{_{\bar D_{s1}\bar D_{s1}\phi}} = \frac{5\lambda_2 g_V}{3\sqrt{2}}M_{D_{s1}}, $
$ g_{_{D^*_sD_{s1}\phi}} = g_{_{\bar D^*_s\bar D_{s1}\phi}} = \frac{g_V\zeta_1}{2\sqrt{3}},\,\, g_{_{D^*_sD_{s1}\phi}} = g_{_{\bar D^*_s\bar D_{s1}\phi}} = \frac{2g_V\mu_1}{2\sqrt{3}} $
and we suppose
$ g_{_{D_{s}^*D_{s}^*f_0}} = g_{_{D*D*\sigma}} = -2g_{\sigma}M_{D_{s}^*}, $
$ g_{_{D_{s1}D_{s1}f_0}} = g_{_{D_{1}D_{1}\sigma}} = -2g''_{\sigma}M_{D_{s1}}, $
$ g_{_{D_{s1}D^*_{s}f_0}} = g_{_{D_{1}D^*\sigma}} = {\rm i}\frac{h'_\sigma}{\sqrt{6}f_\pi}. $
with
$ \Lambda_{\chi} = 1 $ GeV,$ f_\pi = 132 $ MeV [37],$ h = 0.56 $ ,$ h_1 = h_2 = 0.43 $ ,$ g = 0.64 $ [38],$ \kappa = g $ ,$ \tilde{h} = 0.87 $ [51],$ g_{\sigma} = 0.761 $ [52],$ g''_{\sigma} = g_{\sigma} $ ,$ h'_\sigma = 0.346 $ [53],$ \beta = 0.9 $ ,$ g_V = 5.9 $ ,$ \lambda_1 = 0.56 $ [51],$ \beta_2 = 1.1 $ ,$ \lambda_2 = -0.6 $ $ \zeta_1 = -0.1 $ [8], and$ \mu_1 = 0 $ [54].
Study on the possible molecular state composed of $ {{D}^ * _s} {\bar{{D}}_{{s1}}}$ within the Bethe-Salpeter framework
- Received Date: 2020-04-13
- Available Online: 2020-09-01
Abstract: Recently, a vector charmonium-like state