-
In analogy to Refs. [23, 25], the mechanism of the reaction
$ B^-\to J/\psi \rho^0 K^- $ at the quark level can be depicted as shown in Fig. 1. The b quark first weakly decays into a c quark and$ W^- $ boson, and then the$ W^- $ boson couples to a$ \bar{c} $ quark and an s quark. Fig. 1(a) shows the internal emission, where c and$ \bar{c} $ go into$ J/\psi $ , and the$ s\bar{u} $ component is hadronized with the$ \bar{u}u $ pair, created from the vacuum with the quantum numbers of vacuum, to$ \rho K^- $ . As the state$ Z_c(4000) $ couples strongly to$ D^*\bar{D}^* $ , the$ D^*\bar{D}^* $ system can be produced primarily, followed by the transition to the final state$ J/\psi\rho $ . Figure 1(b) shows the internal emission mechanism of the reaction$ B^-\to D^*\bar{D}^* K^- $ , where c and$ \bar{c} $ hadronize with the$ \bar{q}q $ pair, created from the vacuum, to the final state$ D^*\bar{D}^* $ . Because the isospin of the created$ \bar{q}q $ is 0, which leads to the isospin$ I = 0 $ for the$ D^*\bar{D}^* $ system, the diagram shown in Fig. 1(b) has no contribution to the reaction of$ B^-\to J/\psi \rho^0 K^- $ . In addition, we can also observe the mechanism of external emission, as shown in Fig. 1(c), which is color-favored with respect to the internal emission. Here, the$ s\bar{c} $ component from the$ W^- $ decay, together with$ \bar{u}u $ , is hadronized to produce$ \bar{D}^{*0} K^- $ , and the remaining$ c\bar{u} $ leads to$ D^{*0} $ .Figure 1. Microscopic quark level production of the
$B^-$ decay. (a) The internal emission of the$B^-\to J/\psi s\bar{u}$ decay and hadronization of$s\bar{u}$ through$\bar{u}u$ with vacuum quantum numbers. (b) The internal emission of the$B^-\to K^- c\bar{c}$ decay and hadronization of$c\bar{c}$ through$\bar{q}q$ with vacuum quantum numbers. (c) The external emission of the$B^-\to D^{*0} \bar{c}s$ decay and hadronization of$\bar{c}s$ through$\bar{q}q$ with vacuum quantum numbers.The tree level diagrams of the
$ B^-\to J/\psi \rho^0 K^- $ reaction, and the final state interactions of$ J/\psi \rho $ and$ D^{*0}\bar{D}^{*0} $ , are shown in Figs. 2(a) and (b), respectively. The tree level amplitude for the$ B^-\to J/\psi \rho^0 K^- $ decay in S-wave can be expressed as,Figure 2. Mechanisms for the
$B^-\to J/\psi\rho^0 K^-$ reaction. The (a) tree diagram, (b)$J/\psi\rho$ final state interaction, and (c) term of the intermediate$K_1(1270)$ .$ {\cal{M}}^{(a)} = A \times \vec\epsilon_{J/\psi}\cdot \vec\epsilon_{\rho}, $
(1) where
$ \vec\epsilon_{J/\psi} $ and$ \vec\epsilon_{\rho} $ are the polarization vectors for$ J/\psi $ and$ \rho $ , respectively, and A represents the normalization factor of the vertex$ B^-\to J/\psi\rho^0 K^- $ . It should be noted that we consider the rest frame of the resonance produced, where the momenta of$ J/\psi $ and$ \rho $ are small with respect to their masses, thus leading us to neglect the$ \epsilon^0 $ component. This is actually very accurate for these momenta, as can be seen in Appendix A of Ref. [34]. For the final state interactions of the$ J/\psi\rho $ and$ D^*\bar{D}^* $ final state interaction, as shown in Fig. 2(b), the$ K^- $ in D-wave should match the angular momentum of$ B^- $ , with the amplitude given by [23, 25],$ \begin{split} {\cal{M}}^{(b)} =& \frac{B}{|\vec{k}_{\rm{ave}}|^2} \left( G_{J/\psi \rho} t_{J/\psi\rho, J/\psi\rho} \right. \left. +3C\,\frac{1}{\sqrt{2}} G_{D^*\bar{D}^*} t^{I = 1}_{D^*\bar{D}^*, J/\psi\rho} \right) \\ & \times \left(\vec{\epsilon}_{J/\psi}\cdot \vec{k}\,\vec{\epsilon}_{\rho}\cdot \vec{k} -\frac{1}{3}|\vec{k}|^2 \vec{\epsilon}_{J/\psi}\cdot \vec{\epsilon}_{\rho} \right), \end{split} $
(2) where
$ \vec{k} $ is the momentum of$ K^- $ in the$ J/\psi\rho $ rest frame. In addition, we include a factor$ 1/|\vec{k}_{\rm{ave}}|^2 $ , with$ |\vec{k}_{\rm{ave}}| = 1000 $ MeV, to make the strength B with the same dimension as A. The factor$ 1/\sqrt{2} $ is the Clebsch-Gordan coefficient for the$ D^{*0}\bar{D}^{*0} $ system with isospin$ I = 1 $ . To explicitly consider the factor 3 relative to the enhancement of the external emission mechanism of Fig. 1(c), we set$ 3C $ for the weight of the mechanism relative to the$ D^{*0} \bar{D}^{*0} $ primary production. While we can vary the value of C around unity, we can anticipate that this hardly changes the shape of the obtained distribution.$ G_{J/\psi \rho} $ and$ G_{D^*\bar{D}^*} $ are loop functions, and the dimensional regularization is defined as,$ \begin{split} G_{i} =& \frac{1}{16 \pi^2} \left\Bigg\{ \alpha_i + \ln \frac{m_1^2}{\mu^2} + \frac{m_2^2-m_1^2 + s}{2s} \ln \frac{m_2^2}{m_1^2} \right. \\ &+ \frac{p}{\sqrt{s}} \left[ \ln(s-(m_2^2-m_1^2)+2 p\sqrt{s}) \right. \\ &+ \ln(s+(m_2^2-m_1^2)+2 p\sqrt{s}) \\ & - \ln(-s+(m_2^2-m_1^2)+2 p\sqrt{s}) \\ &\left.\left.- \ln(-s-(m_2^2-m_1^2)+2 p\sqrt{s}) \right]\right\Bigg\}, \end{split} $
(3) where the subtraction constants
$ \alpha_1 = -2.3 $ and$ \alpha_2 = -2.6 $ ($ i = 1,2 $ corresponding to the channels of$ D^*\bar{D}^* $ and$ J/\psi\rho $ ), and$ \mu = 1000 $ MeV, same as in Ref. [13]. p is the three-momentum of the mesons$ D^* $ or$ J/\psi $ in the rest frame of$ D^*\bar{D}^* $ or$ J/\psi\rho $ , respectively,$ p = \frac{\sqrt{(s-(m_1+m_2)^2)(s-(m_1-m_2)^2)}}{2\sqrt{s}}, $
(4) where
$ m_{1,2} $ represents the masses of the mesons in the ith channel.The transition amplitudes of
$ t_{J/\psi\rho, J/\psi\rho} $ and$ t^{I = 1}_{D^*\bar{D}^*, J/\psi\rho} $ are computed by solving the Bethe-Salpeter equation, as shown in Eq. (8) of Ref. [13].In addition,
$ K^-\rho $ can also undergo the final state interaction. In Ref. [26],$ B\to J/\psi K_1(1270) $ was observed with Br$ [B^+\to J/\psi K^+_1(1270)] = (1.80\pm 0.34\pm 0.39) \times 10^{-3} $ , and no evidence of other high-mass kaons were seen. As the dominant decay channel of the$ K_1(1270) $ is$ \rho K $ (Br$ [K_1(1270)\to \rho K] = (42\pm6) $ % [27]), we expect that the resonance$ K_1(1270) $ will play an important role in the$ \rho K^- $ invariant mass distribution, as shown in Fig. 2(c), and the contributions from the other high-mass kaons can be safely neglected. Although some theoretical studies have shown that the$ K_1(1270) $ has a two-pole structure [35-37], the contribution from the$ K_1(1270) $ will not affect the peak structure of the$ Z_c(4000) $ in the$ J/\psi\rho $ invariant mass distribution, according to the Dalitz diagram of$ B^-\to J/$ $ \psi \rho^0 K^- $ shown in Fig. 3. For simplicity, we will include the amplitude for the$ K_1(1270) $ contribution with a Breit-Wigner form,Figure 3. (color online) Dalitz plot of the
$B^-\rightarrow J/\psi\rho K^-$ reaction. The colored bands in blue and red correspond to the energy regions ($M-\Gamma/2,M+\Gamma/2$ ) of the$Z_c(4000)$ and$K_1(1270)$ resonances, respectively. Here, we consider$M_{K_1}=1272$ MeV and$\Gamma_{K_1}=90$ MeV for the$K_1(1270)$ from the PDG [27], and$M_{Z_c}=4000$ MeV and$\Gamma_{Z_c}=100$ MeV for the$Z_c(4000)$ from Ref. [13].$ {\cal{M}}^{(c)} = \frac{ A'\times M^2_{K_1} \times \epsilon_{J/\psi}\cdot \epsilon_{\rho}}{M^2_{\rm{inv}}(K\rho)-M^2_{K_1}+ {\rm i} M_{K_1} \Gamma_{K_1}}, $
(5) where
$ M_{K_1} = 1272 $ MeV, and$ \Gamma_{K_1} = 90 $ MeV [27]. Then, the full amplitude for the$ B^-\to J/\psi\rho^0 K^- $ reaction is given by,$ \begin{split} {\cal{M}} =& {\cal{M}}^{(a)}+{\cal{M}}^{(b)}+ {\cal{M}}^{(c)} = A \times \, \vec\epsilon_{J/\psi}\cdot \vec\epsilon_{\rho} \times \left[1+\frac{\beta M^2_{K_1} }{M^2_{\rm{inv}}(K\rho)-M^2_{K_1}+ {\rm i} M_{K_1} \Gamma_{K_1}} \right] +\frac{B}{|\vec{k}_{\rm{ave}}|^2} \left( G_{J/\psi \rho} t_{J/\psi\rho, J/\psi\rho} + \frac{3C}{\sqrt{2}} G_{D^*\bar{D}^*} t^{I = 1}_{D^*\bar{D}^*, J/\psi\rho} \right) \\ & \times \left(\vec{\epsilon}_{J/\psi}\cdot \vec{k}\,\vec{\epsilon}_{\rho}\cdot \vec{k} -\frac{1}{3}|\vec{k}|^2 \vec{\epsilon}_{J/\psi}\cdot \vec{\epsilon}_{\rho} \right) = A \times \, \vec\epsilon_{J/\psi}\cdot \vec\epsilon_{\rho} \times \left[t^{(a)}+t^{(c)} \right] +\frac{B}{|\vec{k}_{\rm{ave}}|^2} \left(\vec{\epsilon}_{J/\psi}\cdot \vec{k}\,\vec{\epsilon}_{\rho}\cdot \vec{k} -\frac{1}{3}|\vec{k}|^2 \vec{\epsilon}_{J/\psi}\cdot \vec{\epsilon}_{\rho} \right) \times t^{(b)}, \\ =& A \times \, \vec\epsilon_{J/\psi}\cdot \vec\epsilon_{\rho} \times t^{S}+\frac{B}{|\vec{k}_{\rm{ave}}|^2} \left(\vec{\epsilon}_{J/\psi}\cdot \vec{k}\,\vec{\epsilon}_{\rho}\cdot \vec{k} -\frac{1}{3}|\vec{k}|^2 \vec{\epsilon}_{J/\psi}\cdot \vec{\epsilon}_{\rho} \right) \times t^{D}, \end{split} $
(6) where the terms from the S and D waves can be defined as,
$ t^{S} = t^{(a)}+t^{(c)} = 1+\frac{\beta M^2_{K_1} }{M^2_{\rm{inv}}(K\rho)-M^2_{K_1}+ {\rm i} M_{K_1} \Gamma_{K_1}}, $
(7) $ t^{D} = t^{(b)} = G_{J/\psi \rho} t_{J/\psi\rho, J/\psi\rho} + \frac{3C}{\sqrt{2}} G_{D^*\bar{D}^*} t^{I = 1}_{D^*\bar{D}^*, J/\psi\rho}, $
(8) where
$ \beta = A'/A $ represents the relative weight of the contribution from the$ K_1(1270) $ resonance.Based on the above amplitudes, the mass distribution of the decay width is given by,
$ \frac{{\rm d}^{2}\Gamma}{{\rm d} M^{2}_{J/\psi\rho} {\rm d} M_{\rho K}^{2}} = \frac{1}{(2\pi)^{3}}\frac{1}{32M^{3}_{B^{-}}}\sum |{\cal{M}}|^{2} . $
(9) As the
$ \vec{\epsilon}_{J/\psi}\cdot \vec{\epsilon}_{\rho} $ and$ \left(\vec{\epsilon}_{J/\psi}\cdot \vec{k}\,\vec{\epsilon}_{\rho}\cdot \vec{k} -\frac{1}{3}|\vec{k}|^2 \vec{\epsilon}_{J/\psi}\cdot \vec{\epsilon}_{\rho} \right) $ structures filter spin 0 and 2 respectively, they do not interfere when one sums over the polarizations of all the final states. Thus, the mass distribution can be rewritten by summing$ {\cal{M}} $ over the final state polarizations,$ \begin{split} \frac{{\rm d}^{2}\Gamma}{{\rm d} M^{2}_{J/\psi\rho} {\rm d} M_{\rho K}^{2}} = \frac{1}{(2\pi)^{3}}\frac{A^2}{32M^{3}_{B^{-}}} \left(3 |t^{S}|^2+\frac{2B^2}{3A^2}\frac{ |\vec{k}|^4}{|\vec{k}_{\rm{ave}}|^4} |t^{D}|^2 \right) . \end{split} $
(10)
Search for the ${{{D^*}}\!{{\bar{D}^*}}}$ molecular state ${{Z_c(4000)}}$ in the reaction ${{B^{-}\! \rightarrow\! J/\psi \rho^0 K^{-}}}$
- Received Date: 2020-04-16
- Available Online: 2020-09-01
Abstract: Based on the prediction of a