-
The effective gravitation theory with a large-scale Lorentz violation can be realized by introducing a gauge-fixing constraint to the Hilbert-Einstein theory. The constraint terms in the action supply an effective spin angular momentum distribution to the equations of motion for connection even in the case of a scalar matter source. The connection is thus with torsion in general and differs from the Levi-Civita one in the contortion part. The contortion part in turn contributes an effective energy-momentum distribution to the equations of motion for the metric tensor, the modified Einstein equations, with the Einstein tensor being composed purely of the Levi-Civita connection on the left-hand side of the equations and the organization of the terms involving contortion and the bare cosmological constant to the right-hand side of the equations [6, 7, 9-11]. Taking the possible cosmic-scale Lorentz boost violation into account, the modification to the Einstein equations entails the dark partner energy-momentum contribution from contortion in addition to the matter source one [7],
$ \widetilde{R}_{\ c}^{a}-\frac{1}{2}\delta_{\ c}^{a}\widetilde{R} = 8\pi G\left( T+T_{\Lambda}\right)_{\ c}^{a} \;, $
(1) where
$ \widetilde{R}_{\ c}^{a} $ is the Ricci tensor in Levi-Civita connection and$ T_{\Lambda} $ is the dark partner contribution of energy-momentum tensor,$ [T_{\Lambda}]_{\ c}^{a} = {\rm diag}(\rho_{\Lambda}, -p_{\Lambda}, -p_{\Lambda}, -p_{\Lambda}) $ . The energy density$ \rho_{\Lambda} $ and pressure$ p_{\Lambda} $ can be expressed as$ \rho_{\Lambda} = -\dfrac{c^4}{8\pi G}(3{\cal{K}}^2+6{\cal{K}}\dfrac{\dot{a}}{a}-\Lambda_0), $
(2) and
$ p_{\Lambda} = -\dfrac{c^4}{8\pi G}({\cal{K}}^2+4{\cal{K}}\dfrac{\dot{a}}{a}+2\dot{{\cal{K}}}-\Lambda_0), $
(3) respectively, where
$ {\cal{K}}(t) = {K^0}_{11} = {K^0}_{22} = {K^0}_{33} $ , the only non-zero components of contortion in a Robertson-Walker solution ansatz for the metric tensor of a uniform and isotropic universe in the comoving frame, and$ \Lambda_0 $ is the bare cosmological constant from vacuum energy density.$ \Lambda $ denotes the cosmological constant fitted from observation with$ \Lambda {\rm CDM} $ model, and$ x = \dfrac{\Lambda_{0}}{\Lambda} $ . The modified Friedmann Equation in geometrical unit$ \dfrac{c^4}{8G\pi} = 1 $ can be written as [7],$ {\cal{K}}^2 + 2{\cal{K}}\dfrac{\dot{a}}{a} +\left( \dfrac{\dot{a}}{a}\right) ^2 = \dfrac{1}{3}\left( \rho+\Lambda_{0}\right), $
(4) and
$ \ddot{a} = -\frac{a}{2}\left( p+\dfrac{\rho}{3}\right) +\dfrac{1}{3}a\Lambda_{0}-\dfrac{\rm d}{{\rm d}t}\left( a{\cal{K}}\right), $
(5) or
$\begin{split} \dot{H}(t)&+\dot{{\cal{K}}}(t)+H(t)\left[ H(t)+{\cal{K}}(t)\right]\\&+\dfrac{3w+1}{2}\left[ H(t)+{\cal{K}}(t)\right] ^2-\dfrac{w+1}{2}\Lambda_{0} = 0, \end{split} $
(6) utilizing the equation of state for cosmic media
$ p = w\rho $ .As discussed in reference [7], the equations of motion for
$ {\cal{K}}(t) $ give an expression$ \left(f_t,f_r,f_\theta,f_\varphi\right) = \left(a(t){\cal{K}}(t)+ \dot a(t)\right)\cdot\left(0, \dfrac{1}{\sqrt{1-kr^2}}, r, r\sin\theta\right) $ , where$ f_{\mu}(x) $ is introduced in the constrain equation$ \left({A^{0}}_{1\mu}\right)^2+\left({A^{0}}_{2\mu}\right)^2+ \left({A^{0}}_{3\mu}\right)^2 = \left(f_\mu (x)\right)^2 $ as a measure of Lorentz violation. In principle,$ f_{\mu}(x) $ can be derived from the fundamental theory of quantum gravity and specific model of inflation. However, to account for the late time accelerating expansion of the universe in a phenomenological view of point, it is a compromise to use some approximations to substitute the equations of motion for$ {\cal{K}}(t) $ .The evolution of
$ {\cal{K}}(t) $ can be fixed by three kinds of approximations utilizing one independent equation among the Friedmann equations in the$ \Lambda {\rm CDM} $ model or the equation of state for dark partner part, in order to close the set of equations in addition to the modified Friedmann equations. The three approximations are Case A with additional equation$ \dot{{\cal{K}}} = \dfrac 13\Lambda_0-\dfrac 13\Lambda-H{\cal{K}}\;\;, $
(7) Case B with
$ \dot{{\cal{K}}}+(3w+2)H{\cal{K}}+\dfrac {3w+1}2{\cal{K}}^2 = \frac {w+1}2(\Lambda_0-\Lambda), $
(8) and Case C with
$ (3w_0+1){\cal{K}}^2+(6w_0+4)H{\cal{K}}+2\dot{{\cal{K}}} = (w_0+1)\Lambda_0, $
(9) where
$ p_{\Lambda} = w_0\rho_{\Lambda} $ [7].The initial value of
$ {\cal{K}}(t) $ is obtained in a similar way,$ {\cal{K}}(t_0) = H_0\left( \pm\sqrt{1-\dfrac{\Lambda-\Lambda_{0}}{3H_0}}-1\right), $
(10) and hence a constraint is set for the value of
$ \Lambda_0$ $ \Lambda_{0}\geqslant-(3H_0-\Lambda)\approx-\dfrac{2}{5}\Lambda \;. $
(11) The evolution of the effective cosmological constant or the energy density of the dark partner,
$ \Lambda_{\rm eff} = \Lambda_0-3\left({\cal{K}}^2+2{\cal{K}}\dfrac{\dot{a}}{a}\right)\;\;, $
(12) exhibits that there is a critical value for
$ \Lambda_0 $ , which separates the monotonically decreasing$ \Lambda_{\rm eff} $ phase from one with a local minimum. The critical value$ \Lambda_{\rm crit} \approx 0 $ is the division of vacuum energy density from landscape and swampland [5], as is indicated in Figs. 3 and 4.Figure 3. (color online) The transition of
$ \Lambda_{\rm eff}$ from a monotonically decreasing quintessence phase to a phase with local minimum in case of$ {\cal{K}}(t_0)=H_0\left( \sqrt{1-\dfrac{\Lambda-\Lambda_{0}}{3H_0}}-1\right) $ in [5].Figure 4. (color online) The transition of
$ \Lambda_{\rm eff}$ from a monotonically decreasing quintessence phase to a phase with local minimum in case of$ {\cal{K}}(t_0)=H_0\left( -\sqrt{1-\dfrac{\Lambda-\Lambda_{0}}{3H_0}}-1\right) $ in [5]. -
In the quintessence model, the dark energy energy-momentum tensor is described by the one contributed by the quintessence field [8]. If the quintessence field is regarded as an effective description of the contortion effect caused by large scale Lorentz violation,
$ \Lambda_{\rm eff} $ , the energy density of the dark partner can be represented by the energy density produced by the quintessence field. Consider a model of gravity involving non-minimal Brans-Dicke type of coupling between gravity and the quintessence field,$\begin{split} S =& \int {\rm d}^4x\sqrt{-g}\left[\frac 12M^2_{pl}R\left( 1+\xi\phi^2\right)\right. \\&\left.-\frac 12g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi-V(\phi)\right]+S_m \;, \end{split}$
(13) where
$ M_{pl} $ is the reduced Planck mass, R is the Ricci scalar,$ \xi $ is the non-minimal coupling constant between gravity and quintessence field, and$ S_m $ is the matter action. The equations of motion for gravity and scalar field are$ \left( 1+\xi\phi^2\right) \left( R_{\mu\nu}-\frac{1}{2}g_{\mu\nu}R\right) = 8\pi GT_{\mu\nu}, $
(14) and
$ V_{,\phi}+3H\dot{\phi}+\ddot{\phi}-M_{pl}^2R\xi\phi = 0, $
(15) respectively. The pressure and energy density of the quintessence are given by
$ P_{\phi} = \left[ \dot{\phi}^2/2-V(\phi)\right] /(1+\xi\phi^2) $ and$ \rho_{\phi} = \left[ \dot{\phi}^2/2+V(\phi)\right] /(1+\xi\phi^2) $ , respectively. In an effective description of the dark partner energy density by quintessence field, we have$ \Lambda_{\rm eff} = \rho_{\phi} = \frac {\dot{\phi}^2+2V(\phi)}{2+2\xi\phi^2}, $
(16) or
$ \dot{\Lambda}_{\rm eff}\left( 1+\xi\phi^2\right)+2\Lambda_{\rm eff}\xi\phi\dot{\phi}+3H\dot{\phi}^2-M_{pl}^2R\xi\phi\dot{\phi} = 0, $
(17) by Eq. (15), where the metric is assigned with the Robertson-Walker metric in the form of
$ {\rm d}s^2 = -{\rm d}t^2+ a^2(t)\left({\rm d}r^2+ r^2{\rm d}\Omega^2\right) $ . Formally, we have$\begin{split} \dot{\phi} =& M_{pl}^2\xi\phi\left( \dfrac{\dot{H}}{H}+2H\right)-\dfrac{\Lambda_{\rm eff}\xi\phi}{3H}\\&\pm\sqrt{\left[ M_{pl}^2\xi\phi\left( \dfrac{\dot{H}}{H}+2H\right)-\dfrac{\Lambda_{\rm eff}\xi\phi}{3H}\right]^2-\dfrac{\dot{\Lambda}_{\rm eff}}{3H}\left( 1+\xi\phi^2\right) } \;, \end{split}$
(18) which gives a constrain on the Brans-Dicke coupling
$ \xi $ as$ \left[3M_{pl}^2\left(\dot{H}+2H^2\right)-\Lambda_{\rm eff}\right]^2\phi^2\xi^2-3H\dot{\Lambda}_{\rm eff}\phi^2\xi-3H\dot{\Lambda}_{\rm eff}\geqslant 0 \;. $
(19) The minimal values of the Brans-Dicke coupling constant
$ \xi_{\rm min} $ in all cases during matter domination with$ w = 0 $ are plotted in Fig. 5 and Fig. 6. It reveals that the non-trivial Brans-Dicke type of coupling is necessary when$ \Lambda_0 $ exceeds a critical value in every case.Figure 5. (color online) The cases of initial value
$ {\cal{K}}(t_0) = \sqrt{1-(\Lambda-\Lambda_0)/3H_0^2}-H_0 $ revealing the non-triviality of the non-minimal coupling,$ \xi_{\rm min}>0 $ , when$ \Lambda_0>\Lambda_{\rm crit} $ .Figure 6. (color online) The cases of initial value
$ {\cal{K}}(t_0) = -\sqrt{1-(\Lambda-\Lambda_0)/3H_0^2}-H_0 $ revealing the non-triviality of the non-minimal coupling,$ \xi_{\rm min}>0 $ , when$ \Lambda_0>\Lambda_{\rm crit} $ .The numerical calculation of Eq. (18) with plus sign gives the evolution of
$ \phi $ , a monotonical evolution versus t, as is shown in Fig. 7 and Fig. 8. The field$ \phi $ may thus be regarded as an intrinsic time for the evolution of the universe. The evolution of$ V(\phi) $ versus$ \phi $ is shown in Fig. 9 and Fig. 10. The critical value for$ \Lambda_{0} $ which symbolizes the transformation of$ V(\phi) $ from a monotonical quintessence like to the meta-stable dS potential is almost the same as one for$ \Lambda_{\rm eff}(t) $ in [5] in most cases.Figure 7. (color online) The monotonic evolution of
$ \phi(t) $ in cases with initial value$ {\cal{K}}(t_0) = H_0( \sqrt{1-(\Lambda-\Lambda_{0})/3H_0}-1) $ .Figure 8. (color online) The monotonic evolution of
$ \phi(t) $ in cases with$ {\cal{K}}(t_0) = H_0( -\sqrt{1-(\Lambda-\Lambda_{0})/3H_0}-1) $ .Figure 9. (color online)
$ V(\phi) $ shifts from a monotonically decreasing quintessence phase to a dS one with a local minimum versus$ \phi $ evolution in cases of$ {\cal{K}}(t_0) = H_0( \sqrt{1-(\Lambda-\Lambda_{0})/3H_0}-1) $ .Figure 10. (color online)
$ V(\phi) $ shifts from a monotonically decreasing quintessence phase to a dS one with a local minimum versus$ \phi $ evolution in cases of$ {\cal{K}}(t_0) = H_0( -\sqrt{1-(\Lambda-\Lambda_{0})/3H_0}-1) $ .It is a universal conclusion that the minimal Brans-Dicke coupling is non-trivial, i.e.,
$ \xi_{\rm min}>0 $ , in all the cases when$ \Lambda_0>\Lambda_{\rm crit} $ . Note that the minimal value of the coupling constant satisfies$ \dot{\Lambda}_{\rm eff} = \dfrac{\dot{\phi}\left( \ddot{\phi}+V_{,\phi}-2\xi\phi\Lambda_{\rm eff}\right) }{1+\xi\phi^2} = \dfrac{\dot{\phi}\left[ \left( M^2_{pl}R-2\Lambda_{\rm eff}\right)\xi\phi-3H\dot{\phi} \right] }{1+\xi\phi^2}, $
(20) from Eq. (19), in the increasing region of
$ V(\phi) $ when$ \Lambda_0>\Lambda_{\rm crit} $ ,$ \dot{\Lambda}_{\rm eff}>0 $ implies that$ \left( M^2_{pl}R-2\Lambda_{\rm eff}\right)\xi\phi-3H\dot{\phi} \geqslant 0 \;. $
(21) At the minimum of
$ V(\phi) $ , it holds that$ M^2_{pl}R-2\Lambda_{\rm eff} > 0, $
(22) i.e.
$ \xi\geqslant \dfrac{3H\dot{\phi}}{\left(M^2_{pl}R-2\Lambda_{\rm eff}\right)\phi} \;. $
(23) As pointed out in [5], the Case C approximation is not suitable from the comparison between Hubble constant versus time and the luminosity distance versus redshift z. The reason may be that a fixed
$ w_0 $ in the equation of state of dark partner part is assumed. The case$ w_0>-8/9 $ can be ignored (excluded by observation of luminosity distance with redshift relation [5]), we can conclude that the meta-stable dS potential needs non-trivial coupling between quintessence field and gravitation. The conclusion that quintessence potential can be generated from string landscape AdS vacuum effectively and the critical value of cosmological constant separating quintessence from meta-stable dS is approximately zero still holds for the effective description of quintessence field theory.The discussion on the non-triviality of
$ \xi_{\rm min} $ can be easily extended to the case including radiation and warm dark matter. We show the numerical results for$ \xi_{\rm min} $ values for all the cases with w ranging from$ 1/3 $ to$ 0 $ in Tables 1, 2, 3, and 4. The second column of the tables for both cases, which correspond to the critical value$ \Lambda_{\rm crit} $ reveal that the dependence of starting point for non-trivial$ \xi_{\rm min} $ on w is insensitive; a similar conclusion can be drawn from the numerical results for w ranging from$ 1/3 $ to$ 0 $ as that for the$ w = 0 $ case.$\xi_{\rm min}$ for Case A1($x_{\rm crit}=-0.05$ )$\xi_{\rm min}$ for Case A2($x_{\rm crit}=-0.187$ )x=−0.1 x=−0.05 x=0 x=0.1 x=−0.2 x=−0.186 x=−0.1 x=0.1 $ w=0 $ 0 0 0.135 0.249 0 0.003 0.111 0.391 $ w=1/24 $ 0 0.029 0.142 0.255 0 0 0.114 0.401 $ w=1/12 $ 0 0.041 0.152 0.261 0 0 0.115 0.412 $ w=1/8 $ 0 0.05 0.155 0.268 0 0 0.114 0.422 $ w=1/6 $ 0 0.057 0.161 0.274 0 0 0.109 0.432 $ w=5/24 $ 0 0.063 0.167 0.28 0 0 0.099 0.442 $ w=1/4 $ 0 0.069 0.173 0.284 0 0 0.076 0.452 $ w=7/24 $ 0 0.074 0.178 0.291 0 0 0 0.461 $ w=1/3 $ 0 0.078 0.183 0.297 0 0 0 0.471 Table 1.
$ \xi_{\rm min} $ dependence on w and$ x\equiv \Lambda_0/\Lambda $ for Case A1 and Case A2.$\xi_{\rm min}$ for Case B1($x_{\rm crit}=-0.066$ )$\xi_{\rm min}$ for Case B2($x_{\rm crit}=-0.2145$ )x=−0.1 x=−0.066 x=0 x=0.1 x=−0.25 x=−0.2 x=−0.1 x=0.1 $ w=0 $ 0 0 0.136 0.229 0 0.032 0.12 0.371 $ w=1/24 $ 0 0.034 0.144 0.234 0 0.017 0.127 0.379 $ w=1/12 $ 0 0.05 0.151 0.24 0 0 0.13 0.388 $ w=1/8 $ 0 0.063 0.158 0.245 0 0 0.13 0.396 $ w=1/6 $ 0 0.073 0.165 0.25 0 0 0.129 0.404 $ w=5/24 $ 0 0.082 0.171 0.255 0 0 0.126 0.411 $ w=1/4 $ 0 0.09 0.178 0.261 0 0 0.12 0.418 $ w=7/24 $ 0 0.098 0.184 0.266 0 0 0.111 0.423 $ w=1/3 $ 0 0.105 0.19 0.271 0 0 0.097 0.428 Table 2.
$\xi_{\rm min}$ dependence on w and$ x\equiv \Lambda_0/\Lambda $ for Case B1 and Case B2.$ w_0=-1 $ $\xi_{\rm min}$ for Case C1($x_{\rm crit}=0$ )$\xi_{\rm min}$ for Case C2($x_{\rm crit}=0$ )x=−0.1 x=−0.001 x=0.1 x=0.2 x=−0.1 x=0.001 x=0.1 x=0.2 $ w=0 $ 0 0 0.318 0.428 0 0.034 0.445 0.75 $ w=1/24 $ 0 0 0.32 0.431 0 0.031 0.448 0.75 $ w=1/12 $ 0 0 0.322 0.433 0 0.028 0.452 0.751 $ w=1/8 $ 0 0 0.325 0.435 0 0.015 0.458 0.755 $ w=1/6 $ 0 0 0.327 0.438 0 0 0.465 0.759 $ w=5/24 $ 0 0 0.33 0.44 0 0 0.473 0.765 $ w=1/4 $ 0 0 0.332 0.442 0 0 0.483 0.772 $ w=7/24 $ 0 0 0.335 0.444 0 0 0.495 0.78 $ w=1/3 $ 0 0 0.337 0.447 0 0 0.51 0.789 Table 3.
$\xi_{\rm min}$ dependence on w and$ x\equiv \Lambda_0/\Lambda $ for Case C1 and Case C2 with$ w_0 = -1 $ .$ w_0=-8/9 $ $\xi_{\rm min}$ for Case C1($x_{\rm crit}=0.119$ )$\xi_{\rm min}$ for Case C2($x_{\rm crit}=0.075$ )x=−0.1 x=0.119 x=0.15 x=0.2 x=−0.1 x=0.075 x=0.1 x=0.2 $ w=0 $ 0 0 0.088 0.151 0 0 0.212 0.635 $ w=1/24 $ 0 0.03 0.096 0.157 0 0.108 0.248 0.655 $ w=1/12 $ 0 0.044 0.104 0.163 0 0.161 0.282 0.675 $ w=1/8 $ 0 0.055 0.112 0.168 0 0.205 0.314 0.696 $ w=1/6 $ 0 0.064 0.118 0.173 0 0.246 0.347 0.718 $ w=5/24 $ 0 0.073 0.124 0.178 0 0.287 0.381 0.741 $ w=1/4 $ 0 0.08 0.13 0.183 0 0.332 0.417 0.765 $ w=7/24 $ 0 0.087 0.135 0.187 0 0.384 0.458 0.789 $ w=1/3 $ 0 0.093 0.14 0.191 0 0.447 0.504 0.815 Table 4.
$\xi_{\rm min}$ dependence on w and$ x\equiv \Lambda_0/\Lambda $ for Case C1 and Case C2 with$ w_0 = -8/9 $ .
The effective potential originating from swampland and the non-trivial Brans-Dicke coupling
- Received Date: 2020-03-20
- Accepted Date: 2020-06-20
- Available Online: 2020-10-01
Abstract: The effective vacuum energy density contributed by the non-trivial contortion distribution and the bare vacuum energy density can be viewed as the energy density of the auxiliary quintessence field potential. We find that the negative bare vacuum energy density from string landscape leads to a monotonically decreasing quintessence potential while the positive one from swampland leads to the metastable or stable de Sitter-like potential. Moreover, the non-trivial Brans-Dicke like coupling between the quintessence field and gravitation field is necessary in the latter case.