-
Figure 2 shows the emission energy spectrum of charged particles of the d-9Be reaction at 90 keV. The α-particles come from the 9Be(d, α0)7Li and 9Be(d, α1)7Li* reactions, while the protons come from the reactions of 9Be(d, p0)10Be and 9Be(d, p1)10Be* and the tritium from the reaction of 9Be(d, t)8Be. The emphasis of the current work is on the peaks of alpha particles (α0 and α1). It is clearly seen that the peaks separate from each other with a low background. The thick-target yield of α-particles from the 9Be(d, α0)7Li and 9Be(d, α1)7Li* reactions is shown in Fig. 3.
Figure 2. The energy spectrum of charged particles emitted from the d-9Be reaction with a beam energy of 90 keV.
Figure 3. The thick-yield of an α particle from 9Be (d, α0)7Li (top) and 9Be (d, α1) 7Li* (bottom) reactions. The solid curve and dashed curve denote with and without the screening effect, respectively.
According to Eq. (1), the thick-target α-particle yield [Yαthick (Ed)] is related to Sscreen(E) and can be expressed as
$\begin{aligned}[b] Y_\alpha ^{\rm thick} =& \frac{{{N_d}{N_t}\Delta {\varOmega _{\rm lab}}}}{{4\pi }}\mathop {\mathop \int\nolimits_0^{{E_d}} } \frac{{{\rm d}{\varOmega _{\rm c.m.}}}}{{{\rm d}{\varOmega _{\rm lab}}}}W(E){S_{\rm screen}}(E) \\&\times \exp( - 2\pi {\rm{\eta }}) \times {\left(\frac{{{\rm d}E}}{{{\rm d}x}}\right)^{ - 1}}{\rm d}E , \end{aligned}$
(1) where Nd is the number of incident deuterons, Nt is the number density of target atoms, ∆Ωlab is the solid angle, dΩc.m./dΩlab is the ratio of the solid angle at the center of mass system to the laboratory system, Sscreen(Ec.m.) the astrophysical factor, which is a function of Ec.m. in the center of mass system, W(E) [12] is the angular distribution, which is the Legendre polynomial of E, and dE/dx is the energy loss of deuterium in Beryllium calculated by the SRIM code [21].
Therefore, the Sscreen(Ei) can be calculated using the thin-target yield differentiated by two adjacent thick-target yields.
$ {{Y}}_{{\alpha}}^{{\rm thin}}\left({{E}}_{{0}}\right){=}{{Y}}_{{\rm exp}}{(}{{E}}_{{0}}{)}{-}{{Y}}_{{\rm exp}}{(}{{E}}_{{0}}{-\Delta E}{)}. $
(2) According to Eq. (1) and Eq. (2), the thin target yield can be expressed as
$\begin{aligned}[b] {{Y}}_{{\alpha}}^{{\rm thin}}{(}{{E}}_{{0}}{)}{=}&\frac{{{N}}_{{d}}{{N}}_{{t}}{{\Delta \varOmega}}_{{\rm lab}}}{{4\pi}}{ \times S}{(}{{E}}_{{\rm eff}}{)}{ \times }\mathop {\mathop \int\nolimits_{{{E_0} - \Delta E}}^{{E_0}} } \frac{{\rm d}{{\varOmega}}_{{\rm c.m.}}}{{\rm d}{{\varOmega}}_{{\rm lab}}}{W}\left({E}\right)\frac{{1}}{{{E}}_{{\rm c.m.}}}\\&{ \times \exp}{(}{-2\pi \eta }{(}{{E}}_{{\rm c.m.}}{))}{ \times }{\left(\frac{{{\rm d}E}}{{{\rm d}x}}\right)}^{{-1}}{{\rm d}E}, \end{aligned}$
(3) where Eeff is the effective deuteron energy in this energy step, which can be calculated by [10]:
$ {E_{\rm eff}} = {E_0} - \Delta E + \Delta E\left\{ { - \frac{{{\sigma _2}}}{{{\sigma _1} - {\sigma _2}}} + {{\left\{ {\frac{{{\sigma _1}^2 + {\sigma _2}^2}}{{2{{({\sigma _1} - {\sigma _2})}^2}}}} \right\}}^{\frac{1}{2}}}} \right\}, $
(4) where σ1 is the cross section at E0, and σ2 is the cross section for E0-∆E.
Then, the S(Ei) can be obtained from Eq. (4), which is shown in Table 1. It is found that S(Ei) only slightly fluctuate from our expectation. Since the data of most works in high energy region are far from this work, we only compare with the results of Yan’s work, as shown in Fig. 4. To calculate the thick target yield, the S(Ei) were fitted using the parametric Sbare(E) = a + b·E + c·E2 + d·E3 multiplied by the enhancement factor f (E, Us):
Ec.m./keV 9Be(d, α0)7LiS(Ei)/(MeV·b) 9Be(d, α1)7Li*S(Ei)/(MeV·b) 55.6 9.0±2.3 29.3±4.5 57.3 8.9±1.4 22.2±2.8 58.9 9.0±1.8 15.3±3.4 60.5 9.5±1.1 23.1±2.3 62.2 7.1±1.5 17.9±3.2 63.8 4.7±1.1 16.7±2.2 65.5 4.9±1.1 19.6±2.4 67.1 6.7±1.0 17.1±2.0 68.7 7.9±1.0 12.7±2.0 70.4 8.3±1.0 14.6±2.5 72.0 6.9±1.0 16.4±1.7 73.6 6.2±0.9 14.2±2.0 75.3 4.8±0.9 17.2±1.4 Note: The error values include the statistical error of the alpha particle number, detection efficiency, and beam current measurement. Besides, for all S(Ei), the angular distribution introduces a 4% uncertainty; an error of 3% comes from the change in target environment in the experiment; a 1% uncertainty is due to the uncertain detection angle, and another error of 7.4% occurs in the stopping power (5.4%, mean errors). Table 1. The S factor and its error of the 9Be (d, α0)7Li and 9Be (d, α1) 7Li* reactions.
Figure 4. (color online) Comparison of S(Ei) factor between this work (solid black circles) and previous work (solid red circles). The top one is the S factor of 9Be(d, α0)7Li reaction, and the bottom one is the S factor of 9Be(d, α1)7Li* reaction. The solid and dashed curves are the Sscreen(E) and the Sbare(E), respectively.
$ {f}{(}{{E}{,}{U}}_{{s}}{)}{=}\frac{{{\sigma}}_{{\rm screen}}{(}{E}{)}}{{{\sigma}}_{{\rm bare}}{(}{E}{)}}{=}\frac{{{S}}_{{\rm screen}}{(}{E}{)}}{{{S}}_{{\rm bare}}{(}{E}{)}}{ \approx }\frac{{E}}{{E+}{{U}}_{{s}}}{\rm exp}\left({\pi \eta }\frac{{{U}}_{{s}}}{{E}}\right), $
(5) where Us = 512 eV is the electron screening potential from our previous work [14], Sbare(E) is the bare nucleus S factor without Us. Usually, Us is considered the energy of the incident particle (i.e., Sscreen(E) = Sbare(E) ∙ f (E, Us) = Sbare(E + Us)). a, b, c, and d are the coefficients of the polynomial term. Clearly, the enhancement factor f(E, Us) increases sharply with the decreasing energy, especially at a low energy region, owing to the exponential term.
The results of Sscreen(E) and Sbare(E) are the solid and dashed curves shown in Fig. 4, respectively. It is clear that the polynomials can describe the trend of the S factor well in the energy region presented in this work (below 140 keV), while it is difficult to predict the S(E) of the 9Be(d, α) reaction at the Gamow window by extrapolation because it may lead to considerable uncertainty due to the significant statistical error in a lower energy region (below 50 keV). Finally, we used the polynomial to calculate the thick target yields. However, it cannot explain the experimental thick target yield well; as shown in Fig. 3, the solid curve and dashed curve denote with and without screening effect, respectively. The main reason is the errors of S(Ei). Therefore, more measurements in the low energy region are needed, especially for E < 50 keV.
Measurement of astrophysical S-factor for 9Be(d, α0)7Li and 9Be(d, α1)7Li* reactions at low energies
- Received Date: 2020-09-08
- Available Online: 2021-02-15
Abstract: The thick-target yield of the 9Be(d, α0)7Li and 9Be(d, α1)7Li* reactions has been first directly measured over deuteron energies from 66 to 94 keV. The obtained S(Ei) of α0 and α1 have similar trends calculated by the thin-target yield, consistent with Yan’s report within the errors. Furthermore, the parametric expression of S(E) was obtained to calculate the theoretical thick target yield, and it roughly agrees with the experimental thick target yield.