Loading [MathJax]/jax/output/HTML-CSS/jax.js

Higgs decay to light (pseudo)scalars in the semi-constrained NMSSM

  • The next-to minimal supersymmetric standard model (NMSSM) with non-universal Higgs masses, i.e., the semi-constrained NMSSM (scNMSSM), extends the minimal supersymmetric standard model (MSSM) by a singlet superfield and assumes universal conditions, except for the Higgs sector. It can not only maintain the simplicity and grace of the fully constrained MSSM and NMSSM and relieve the tension they have been facing since the discovery of the 125-GeV Higgs boson but also allow for an exotic phenomenon wherein the Higgs decay into a pair of light (1060GeV) singlet-dominated (pseudo)scalars (hereafter, in this paper, we use "scalar" for both scalars and pseudoscalars, considering pseudoscalars can also be called CP-odd scalars). This condition can be classified into three scenarios according to the identitiesof the SM-like Higgs and the light scalar: (i) the light scalar is CP-odd, and the SM-like Higgs is h2; (ii) the light scalar is CP-odd, and the SM-like Higgs is h1; and (iii) the light scalar is CP-even, and the SM-like Higgs is h2. In this work, we compare the three scenarios, checking the interesting parameter regions that lead to the scenarios, the mixing levels of the doublets and singlets, the tri-scalar coupling between the SM-like Higgs and a pair of light scalars, the branching ratio of Higgs decay to the light scalars, and sensitivities in the detection of the exotic decay at the HL-LHC and future lepton colliders such as CEPC, FCC-ee, and ILC. Finally, several interesting conclusions are drawn, which are useful for understanding the different delicate mechanisms of the exotic decay and designing colliders in future.
  • [1] G. Aad et al. (ATLAS), Phys. Lett. B 716, 1-29 (2012), arXiv:1207.7214[hep-ex doi: 10.1016/j.physletb.2012.08.020
    [2] S. Chatrchyan et al. (CMS), Phys. Lett. B 716, 30-61 (2012), arXiv:1207.7235[hep-ex doi: 10.1016/j.physletb.2012.08.021
    [3] G. Aad et al. (ATLAS and CMS), JHEP 08, 045 (2016), arXiv:1606.02266[hep-ex
    [4] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C 79(5), 421 (2019), arXiv:1809.10733[hep-ex doi: 10.1140/epjc/s10052-019-6909-y
    [5] G. Aad et al. (ATLAS), Phys. Rev. D 101(1), 012002 (2020), arXiv:1909.02845[hep-ex doi: 10.1103/PhysRevD.101.012002
    [CMS], CMS-PAS-HIG-19-005
    [7] A. Sopczak (ATLAS and CMS), PoS FFK2019, 006 (2020), arXiv:2001.05927[hep-ex
    [8] R. Barate et al. (LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3 and OPAL), Phys. Lett. B 565, 61-75 (2003), arXiv:hep-ex/0306033[hep-ex doi: 10.1016/S0370-2693(03)00614-2
    [9] A. M. Sirunyan et al. (CMS), JHEP 11, 161 (2018), arXiv:1808.01890[hep-ex
    [10] [ATLAS], ATLAS-CONF-2019-036
    [11] A. M. Sirunyan et al. (CMS), Phys. Lett. B 785, 462 (2018), arXiv:1805.10191[hep-ex doi: 10.1016/j.physletb.2018.08.057
    [12] M. Aaboud et al. (ATLAS), Phys. Lett. B 790, 1-21 (2019), arXiv:1807.00539[hep-ex doi: 10.1016/j.physletb.2018.10.073
    [13] A. M. Sirunyan et al. (CMS), Phys. Lett. B 795, 398-423 (2019), arXiv:1812.06359[hep-ex doi: 10.1016/j.physletb.2019.06.021
    [14] A. M. Sirunyan et al. (CMS), JHEP 08, 139 (2020), arXiv:2005.08694[hep-ex
    [15] A. M. Sirunyan et al. (CMS), JHEP 11, 018 (2018), arXiv:1805.04865[hep-ex
    [16] A. M. Sirunyan et al. (CMS), Phys. Lett. B 800, 135087 (2020), arXiv:1907.07235[hep-ex doi: 10.1016/j.physletb.2019.135087
    [17] V. Khachatryan et al. (CMS), JHEP 10, 076 (2017), arXiv:1701.02032[hep-ex
    [CMS], CMS-PAS-HIG-16-035.
    [CMS], CMS-PAS-HIG-18-003.
    [20] M. Aaboud et al. (ATLAS), JHEP 06, 166 (2018), arXiv:1802.03388[hep-ex
    [21] M. Aaboud et al. (ATLAS), JHEP 10, 031 (2018), arXiv:1806.07355[hep-ex
    [22] M. Aaboud et al. (ATLAS), Phys. Lett. B 782, 750-767 (2018), arXiv:1803.11145[hep-ex doi: 10.1016/j.physletb.2018.06.011
    [23] [ATLAS], ATLAS-CONF-2012-079
    [CMS], CMS-PAS-FTR-18-035
    [25] F. An, Y. Bai, C. Chen et al., Chin. Phys. C 43(4), 043002 (2019), arXiv:1810.09037[hep-ex doi: 10.1088/1674-1137/43/4/043002
    [26] Z. Liu, L. T. Wang, and H. Zhang, Chin. Phys. C 41(6), 063102 (2017), arXiv:1612.09284[hep-ph doi: 10.1088/1674-1137/41/6/063102
    [27] D. Curtin, R. Essig, S. Gori et al., Phys. Rev. D 90(7), 075004 (2014), arXiv:1312.4992[hep-ph doi: 10.1103/PhysRevD.90.075004
    [28] R. Dermisek and J. F. Gunion, Phys. Rev. D 73, 111701 (2006), arXiv:hep-ph/0510322[hep-ph doi: 10.1103/PhysRevD.73.111701
    [29] R. Dermisek and J. F. Gunion, Phys. Rev. D 75, 075019 (2007), arXiv:hep-ph/0611142[hep-ph doi: 10.1103/PhysRevD.75.075019
    [30] R. Dermisek, J. F. Gunion, and B. McElrath, Phys. Rev. D 76, 051105 (2007), arXiv:hep-ph/0612031[hep-ph doi: 10.1103/PhysRevD.76.051105
    [31] M. Carena, T. Han, G. Y. Huang et al., JHEP 04, 092 (2008), arXiv:0712.2466[hep-ph
    [32] K. Cheung, J. Song, and Q. S. Yan, Phys. Rev. Lett. 99, 031801 (2007), arXiv:hep-ph/0703149[hep-ph doi: 10.1103/PhysRevLett.99.031801
    [33] J. Cao, F. Ding, and C. Han , JHEP 11, 018 (2013), arXiv:1309.4939[hep-ph
    [34] X. F. Han, L. Wang, J. M. Yang et al., Phys. Rev. D 87(5), 055004 (2013), arXiv:1301.0090[hep-ph doi: 10.1103/PhysRevD.87.055004
    [35] J. Cao, Y. He, P. Wu et al., JHEP 01, 150 (2014), arXiv:1311.6661[hep-ph
    [36] L. Liu, H. Qiao, K. Wang et al., Chin. Phys. C 43(2), 023104 (2019), arXiv:1812.00107[hep-ph doi: 10.1088/1674-1137/43/2/023104
    [37] L. Wang, X. F. Han, and B. Zhu, Phys. Rev. D 98(3), 035024 (2018), arXiv:1801.08317[hep-ph doi: 10.1103/PhysRevD.98.035024
    [38] E. J. Chun, S. Dwivedi, T. Mondal et al., Phys. Lett. B 774, 20-25 (2017), arXiv:1707.07928[hep-ph doi: 10.1016/j.physletb.2017.09.037
    [39] J. Bernon, J. F. Gunion, Y. Jiang et al., Phys. Rev. D 91(7), 075019 (2015), arXiv:1412.3385[hep-ph doi: 10.1103/PhysRevD.91.075019
    [40] I. Engeln, M. Mühlleitner, and J. Wittbrodt, Comput. Phys. Commun. 234, 256-262 (2019), arXiv:1805.00966[hep-ph doi: 10.1016/j.cpc.2018.07.020
    [41] U. Haisch, J. F. Kamenik, A. Malinauskas et al., JHEP 03, 178 (2018), arXiv:1802.02156[hep-ph
    [42] S. Liu, Y. L. Tang, C. Zhang et al., Eur. Phys. J. C 77(7), 457 (2017), arXiv:1608.08458[hep-ph doi: 10.1140/epjc/s10052-017-5012-5
    [43] S. F. King, M. Mühlleitner, R. Nevzorov et al., Nucl. Phys. B 870, 323-352 (2013), arXiv:1211.5074[hep-ph doi: 10.1016/j.nuclphysb.2013.01.020
    [44] R. Benbrik, M. Gomez Bock, S. Heinemeyer et al., Eur. Phys. J. C 72, 2171 (2012), arXiv:1207.1096[hep-ph doi: 10.1140/epjc/s10052-012-2171-2
    [45] J. J. Cao, Z. X. Heng, J. M. Yang et al., JHEP 03, 086 (2012), arXiv:1202.5821[hep-ph
    [46] J. Cao, Z. Heng, J. M. Yang et al., JHEP 10, 079 (2012), arXiv:1207.3698[hep-ph
    [47] Z. Kang, J. Li, and T. Li, JHEP 11, 024 (2012), arXiv:1201.5305[hep-ph
    [48] S. F. King, M. Muhlleitner, and R. Nevzorov, Nucl. Phys. B 860, 207-244 (2012), arXiv:1201.2671[hep-ph doi: 10.1016/j.nuclphysb.2012.02.010
    [49] U. Ellwanger, JHEP 03, 044 (2012), arXiv:1112.3548[hep-ph
    [50] U. Ellwanger, A. Florent, and D. Zerwas, JHEP 01, 103 (2011), arXiv:1011.0931[hep-ph
    [51] D. E. Lopez-Fogliani, L. Roszkowski, R. Ruiz de Austri et al., Phys. Rev. D 80, 095013 (2009), arXiv:0906.4911[hep-ph doi: 10.1103/PhysRevD.80.095013
    [52] G. Belanger, C. Hugonie, and A. Pukhov, JCAP 01, 023 (2009), arXiv:0811.3224[hep-ph
    [53] A. Djouadi, U. Ellwanger, and A. M. Teixeira, JHEP 04, 031 (2009), arXiv:0811.2699[hep-ph
    [54] U. Ellwanger, AIP Conf. Proc. 1078(1), 73-78 (2009), arXiv:0809.0779[hep-ph
    [55] C. Hugonie, G. Belanger, and A. Pukhov, JCAP 11, 009 (2007), arXiv:0707.0628[hep-ph
    [56] K. Kowalska, S. Munir, L. Roszkowski et al., Phys. Rev. D 87, 115010 (2013), arXiv:1211.1693[hep-ph doi: 10.1103/PhysRevD.87.115010
    [57] J. F. Gunion, Y. Jiang, and S. Kraml, Phys. Lett. B 710, 454-459 (2012), arXiv:1201.0982[hep-ph doi: 10.1016/j.physletb.2012.03.027
    [58] J. Cao, Z. Heng, D. Li et al., Phys. Lett. B 710, 665-670 (2012), arXiv:1112.4391[hep-ph doi: 10.1016/j.physletb.2012.03.052
    [59] J. Ellis and K. A. Olive, Eur. Phys. J. C 72, 2005 (2012), arXiv:1202.3262[hep-ph doi: 10.1140/epjc/s10052-012-2005-2
    [60] P. Bechtle, J. E. Camargo-Molina, K. Desch et al., Eur. Phys. J. C 76(2), 96 (2016), arXiv:1508.05951[hep-ph doi: 10.1140/epjc/s10052-015-3864-0
    [61] P. Athron et al. (GAMBIT), Eur. Phys. J. C 77(12), 824 (2017), arXiv:1705.07935[hep-ph doi: 10.1140/epjc/s10052-017-5167-0
    [62] F. Wang, K. Wang, J. M. Yang et al., JHEP 12, 041 (2018), arXiv:1808.10851[hep-ph
    [63] D. Das, U. Ellwanger and A. M. Teixeira, JHEP 04, 117 (2013), arXiv:1301.7584[hep-ph
    [64] U. Ellwanger and C. Hugonie, JHEP 08, 046 (2014), arXiv:1405.6647[hep-ph
    [65] K. Wang, F. Wang, J. Zhu et al., Chin. Phys. C 42(10), 103109-103109 (2018), arXiv:1811.04435[hep-ph doi: 10.1088/1674-1137/42/10/103109
    [66] K. Nakamura and D. Nomura, Phys. Lett. B 746, 396-405 (2015), arXiv:1501.05058[hep-ph doi: 10.1016/j.physletb.2015.05.028
    [67] K. Wang and J. Zhu, JHEP 06, 078 (2020), arXiv:2002.05554[hep-ph
    [68] K. Wang and J. Zhu, Phys. Rev. D 101(9), 095028 (2020), arXiv:2003.01662[hep-ph doi: 10.1103/PhysRevD.101.095028
    [69] K. Wang and J. Zhu, Chin. Phys. C 44(6), 061001 (2020), arXiv:1911.08319[hep-ph doi: 10.1088/1674-1137/44/6/061001
    [70] U. Ellwanger and C. Hugonie, Eur. Phys. J. C 78(9), 735 (2018), arXiv:1806.09478[hep-ph doi: 10.1140/epjc/s10052-018-6204-3
    [71] U. Ellwanger, JHEP 02, 051 (2017), arXiv:1612.06574[hep-ph
    [72] M. Maniatis, Int. J. Mod. Phys. A 25, 3505-3602 (2010), arXiv:0906.0777[hep-ph doi: 10.1142/S0217751X10049827
    [73] M. Carena, H. E. Haber, I. Low et al., Phys. Rev. D 93(3), 035013 (2016), arXiv:1510.09137[hep-ph doi: 10.1103/PhysRevD.93.035013
    [74] U. Ellwanger, J. F. Gunion, and C. Hugonie, JHEP 02, 066 (2005), arXiv:hep-ph/0406215[hep-ph
    [75] U. Ellwanger and C. Hugonie, Comput. Phys. Commun. 175, 290-303 (2006), arXiv:hep-ph/0508022[hep-ph doi: 10.1016/j.cpc.2006.04.004
    [76] P. Bechtle, O. Brein, S. Heinemeyer et al., Comput. Phys. Commun. 181, 138-167 (2010), arXiv:0811.4169[hep-ph doi: 10.1016/j.cpc.2009.09.003
    [77] P. Bechtle, O. Brein, S. Heinemeyer et al., Comput. Phys. Commun. 182, 2605-2631 (2011), arXiv:1102.1898[hep-ph doi: 10.1016/j.cpc.2011.07.015
    [78] P. Bechtle, O. Brein, S. Heinemeyer et al., Eur. Phys. J. C 74(3), 2693 (2014), arXiv:1311.0055[hep-ph doi: 10.1140/epjc/s10052-013-2693-2
    [79] A. M. Sirunyan et al. (CMS), JHEP 03, 160 (2018), arXiv:1801.03957[hep-ex
    [80] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98(3), 030001 (2018) doi: 10.1103/PhysRevD.98.030001
    [81] E. Aprile et al. (XENON), Phys. Rev. Lett. 121(11), 111302 (2018), arXiv:1805.12562[astro-ph.CO doi: 10.1103/PhysRevLett.121.111302
    [82] E. Aprile et al. (XENON), Phys. Rev. Lett. 122(14), 141301 (2019), arXiv:1902.03234[astro-ph.CO doi: 10.1103/PhysRevLett.122.141301
  • [1] G. Aad et al. (ATLAS), Phys. Lett. B 716, 1-29 (2012), arXiv:1207.7214[hep-ex doi: 10.1016/j.physletb.2012.08.020
    [2] S. Chatrchyan et al. (CMS), Phys. Lett. B 716, 30-61 (2012), arXiv:1207.7235[hep-ex doi: 10.1016/j.physletb.2012.08.021
    [3] G. Aad et al. (ATLAS and CMS), JHEP 08, 045 (2016), arXiv:1606.02266[hep-ex
    [4] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C 79(5), 421 (2019), arXiv:1809.10733[hep-ex doi: 10.1140/epjc/s10052-019-6909-y
    [5] G. Aad et al. (ATLAS), Phys. Rev. D 101(1), 012002 (2020), arXiv:1909.02845[hep-ex doi: 10.1103/PhysRevD.101.012002
    [CMS], CMS-PAS-HIG-19-005
    [7] A. Sopczak (ATLAS and CMS), PoS FFK2019, 006 (2020), arXiv:2001.05927[hep-ex
    [8] R. Barate et al. (LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3 and OPAL), Phys. Lett. B 565, 61-75 (2003), arXiv:hep-ex/0306033[hep-ex doi: 10.1016/S0370-2693(03)00614-2
    [9] A. M. Sirunyan et al. (CMS), JHEP 11, 161 (2018), arXiv:1808.01890[hep-ex
    [10] [ATLAS], ATLAS-CONF-2019-036
    [11] A. M. Sirunyan et al. (CMS), Phys. Lett. B 785, 462 (2018), arXiv:1805.10191[hep-ex doi: 10.1016/j.physletb.2018.08.057
    [12] M. Aaboud et al. (ATLAS), Phys. Lett. B 790, 1-21 (2019), arXiv:1807.00539[hep-ex doi: 10.1016/j.physletb.2018.10.073
    [13] A. M. Sirunyan et al. (CMS), Phys. Lett. B 795, 398-423 (2019), arXiv:1812.06359[hep-ex doi: 10.1016/j.physletb.2019.06.021
    [14] A. M. Sirunyan et al. (CMS), JHEP 08, 139 (2020), arXiv:2005.08694[hep-ex
    [15] A. M. Sirunyan et al. (CMS), JHEP 11, 018 (2018), arXiv:1805.04865[hep-ex
    [16] A. M. Sirunyan et al. (CMS), Phys. Lett. B 800, 135087 (2020), arXiv:1907.07235[hep-ex doi: 10.1016/j.physletb.2019.135087
    [17] V. Khachatryan et al. (CMS), JHEP 10, 076 (2017), arXiv:1701.02032[hep-ex
    [CMS], CMS-PAS-HIG-16-035.
    [CMS], CMS-PAS-HIG-18-003.
    [20] M. Aaboud et al. (ATLAS), JHEP 06, 166 (2018), arXiv:1802.03388[hep-ex
    [21] M. Aaboud et al. (ATLAS), JHEP 10, 031 (2018), arXiv:1806.07355[hep-ex
    [22] M. Aaboud et al. (ATLAS), Phys. Lett. B 782, 750-767 (2018), arXiv:1803.11145[hep-ex doi: 10.1016/j.physletb.2018.06.011
    [23] [ATLAS], ATLAS-CONF-2012-079
    [CMS], CMS-PAS-FTR-18-035
    [25] F. An, Y. Bai, C. Chen et al., Chin. Phys. C 43(4), 043002 (2019), arXiv:1810.09037[hep-ex doi: 10.1088/1674-1137/43/4/043002
    [26] Z. Liu, L. T. Wang, and H. Zhang, Chin. Phys. C 41(6), 063102 (2017), arXiv:1612.09284[hep-ph doi: 10.1088/1674-1137/41/6/063102
    [27] D. Curtin, R. Essig, S. Gori et al., Phys. Rev. D 90(7), 075004 (2014), arXiv:1312.4992[hep-ph doi: 10.1103/PhysRevD.90.075004
    [28] R. Dermisek and J. F. Gunion, Phys. Rev. D 73, 111701 (2006), arXiv:hep-ph/0510322[hep-ph doi: 10.1103/PhysRevD.73.111701
    [29] R. Dermisek and J. F. Gunion, Phys. Rev. D 75, 075019 (2007), arXiv:hep-ph/0611142[hep-ph doi: 10.1103/PhysRevD.75.075019
    [30] R. Dermisek, J. F. Gunion, and B. McElrath, Phys. Rev. D 76, 051105 (2007), arXiv:hep-ph/0612031[hep-ph doi: 10.1103/PhysRevD.76.051105
    [31] M. Carena, T. Han, G. Y. Huang et al., JHEP 04, 092 (2008), arXiv:0712.2466[hep-ph
    [32] K. Cheung, J. Song, and Q. S. Yan, Phys. Rev. Lett. 99, 031801 (2007), arXiv:hep-ph/0703149[hep-ph doi: 10.1103/PhysRevLett.99.031801
    [33] J. Cao, F. Ding, and C. Han , JHEP 11, 018 (2013), arXiv:1309.4939[hep-ph
    [34] X. F. Han, L. Wang, J. M. Yang et al., Phys. Rev. D 87(5), 055004 (2013), arXiv:1301.0090[hep-ph doi: 10.1103/PhysRevD.87.055004
    [35] J. Cao, Y. He, P. Wu et al., JHEP 01, 150 (2014), arXiv:1311.6661[hep-ph
    [36] L. Liu, H. Qiao, K. Wang et al., Chin. Phys. C 43(2), 023104 (2019), arXiv:1812.00107[hep-ph doi: 10.1088/1674-1137/43/2/023104
    [37] L. Wang, X. F. Han, and B. Zhu, Phys. Rev. D 98(3), 035024 (2018), arXiv:1801.08317[hep-ph doi: 10.1103/PhysRevD.98.035024
    [38] E. J. Chun, S. Dwivedi, T. Mondal et al., Phys. Lett. B 774, 20-25 (2017), arXiv:1707.07928[hep-ph doi: 10.1016/j.physletb.2017.09.037
    [39] J. Bernon, J. F. Gunion, Y. Jiang et al., Phys. Rev. D 91(7), 075019 (2015), arXiv:1412.3385[hep-ph doi: 10.1103/PhysRevD.91.075019
    [40] I. Engeln, M. Mühlleitner, and J. Wittbrodt, Comput. Phys. Commun. 234, 256-262 (2019), arXiv:1805.00966[hep-ph doi: 10.1016/j.cpc.2018.07.020
    [41] U. Haisch, J. F. Kamenik, A. Malinauskas et al., JHEP 03, 178 (2018), arXiv:1802.02156[hep-ph
    [42] S. Liu, Y. L. Tang, C. Zhang et al., Eur. Phys. J. C 77(7), 457 (2017), arXiv:1608.08458[hep-ph doi: 10.1140/epjc/s10052-017-5012-5
    [43] S. F. King, M. Mühlleitner, R. Nevzorov et al., Nucl. Phys. B 870, 323-352 (2013), arXiv:1211.5074[hep-ph doi: 10.1016/j.nuclphysb.2013.01.020
    [44] R. Benbrik, M. Gomez Bock, S. Heinemeyer et al., Eur. Phys. J. C 72, 2171 (2012), arXiv:1207.1096[hep-ph doi: 10.1140/epjc/s10052-012-2171-2
    [45] J. J. Cao, Z. X. Heng, J. M. Yang et al., JHEP 03, 086 (2012), arXiv:1202.5821[hep-ph
    [46] J. Cao, Z. Heng, J. M. Yang et al., JHEP 10, 079 (2012), arXiv:1207.3698[hep-ph
    [47] Z. Kang, J. Li, and T. Li, JHEP 11, 024 (2012), arXiv:1201.5305[hep-ph
    [48] S. F. King, M. Muhlleitner, and R. Nevzorov, Nucl. Phys. B 860, 207-244 (2012), arXiv:1201.2671[hep-ph doi: 10.1016/j.nuclphysb.2012.02.010
    [49] U. Ellwanger, JHEP 03, 044 (2012), arXiv:1112.3548[hep-ph
    [50] U. Ellwanger, A. Florent, and D. Zerwas, JHEP 01, 103 (2011), arXiv:1011.0931[hep-ph
    [51] D. E. Lopez-Fogliani, L. Roszkowski, R. Ruiz de Austri et al., Phys. Rev. D 80, 095013 (2009), arXiv:0906.4911[hep-ph doi: 10.1103/PhysRevD.80.095013
    [52] G. Belanger, C. Hugonie, and A. Pukhov, JCAP 01, 023 (2009), arXiv:0811.3224[hep-ph
    [53] A. Djouadi, U. Ellwanger, and A. M. Teixeira, JHEP 04, 031 (2009), arXiv:0811.2699[hep-ph
    [54] U. Ellwanger, AIP Conf. Proc. 1078(1), 73-78 (2009), arXiv:0809.0779[hep-ph
    [55] C. Hugonie, G. Belanger, and A. Pukhov, JCAP 11, 009 (2007), arXiv:0707.0628[hep-ph
    [56] K. Kowalska, S. Munir, L. Roszkowski et al., Phys. Rev. D 87, 115010 (2013), arXiv:1211.1693[hep-ph doi: 10.1103/PhysRevD.87.115010
    [57] J. F. Gunion, Y. Jiang, and S. Kraml, Phys. Lett. B 710, 454-459 (2012), arXiv:1201.0982[hep-ph doi: 10.1016/j.physletb.2012.03.027
    [58] J. Cao, Z. Heng, D. Li et al., Phys. Lett. B 710, 665-670 (2012), arXiv:1112.4391[hep-ph doi: 10.1016/j.physletb.2012.03.052
    [59] J. Ellis and K. A. Olive, Eur. Phys. J. C 72, 2005 (2012), arXiv:1202.3262[hep-ph doi: 10.1140/epjc/s10052-012-2005-2
    [60] P. Bechtle, J. E. Camargo-Molina, K. Desch et al., Eur. Phys. J. C 76(2), 96 (2016), arXiv:1508.05951[hep-ph doi: 10.1140/epjc/s10052-015-3864-0
    [61] P. Athron et al. (GAMBIT), Eur. Phys. J. C 77(12), 824 (2017), arXiv:1705.07935[hep-ph doi: 10.1140/epjc/s10052-017-5167-0
    [62] F. Wang, K. Wang, J. M. Yang et al., JHEP 12, 041 (2018), arXiv:1808.10851[hep-ph
    [63] D. Das, U. Ellwanger and A. M. Teixeira, JHEP 04, 117 (2013), arXiv:1301.7584[hep-ph
    [64] U. Ellwanger and C. Hugonie, JHEP 08, 046 (2014), arXiv:1405.6647[hep-ph
    [65] K. Wang, F. Wang, J. Zhu et al., Chin. Phys. C 42(10), 103109-103109 (2018), arXiv:1811.04435[hep-ph doi: 10.1088/1674-1137/42/10/103109
    [66] K. Nakamura and D. Nomura, Phys. Lett. B 746, 396-405 (2015), arXiv:1501.05058[hep-ph doi: 10.1016/j.physletb.2015.05.028
    [67] K. Wang and J. Zhu, JHEP 06, 078 (2020), arXiv:2002.05554[hep-ph
    [68] K. Wang and J. Zhu, Phys. Rev. D 101(9), 095028 (2020), arXiv:2003.01662[hep-ph doi: 10.1103/PhysRevD.101.095028
    [69] K. Wang and J. Zhu, Chin. Phys. C 44(6), 061001 (2020), arXiv:1911.08319[hep-ph doi: 10.1088/1674-1137/44/6/061001
    [70] U. Ellwanger and C. Hugonie, Eur. Phys. J. C 78(9), 735 (2018), arXiv:1806.09478[hep-ph doi: 10.1140/epjc/s10052-018-6204-3
    [71] U. Ellwanger, JHEP 02, 051 (2017), arXiv:1612.06574[hep-ph
    [72] M. Maniatis, Int. J. Mod. Phys. A 25, 3505-3602 (2010), arXiv:0906.0777[hep-ph doi: 10.1142/S0217751X10049827
    [73] M. Carena, H. E. Haber, I. Low et al., Phys. Rev. D 93(3), 035013 (2016), arXiv:1510.09137[hep-ph doi: 10.1103/PhysRevD.93.035013
    [74] U. Ellwanger, J. F. Gunion, and C. Hugonie, JHEP 02, 066 (2005), arXiv:hep-ph/0406215[hep-ph
    [75] U. Ellwanger and C. Hugonie, Comput. Phys. Commun. 175, 290-303 (2006), arXiv:hep-ph/0508022[hep-ph doi: 10.1016/j.cpc.2006.04.004
    [76] P. Bechtle, O. Brein, S. Heinemeyer et al., Comput. Phys. Commun. 181, 138-167 (2010), arXiv:0811.4169[hep-ph doi: 10.1016/j.cpc.2009.09.003
    [77] P. Bechtle, O. Brein, S. Heinemeyer et al., Comput. Phys. Commun. 182, 2605-2631 (2011), arXiv:1102.1898[hep-ph doi: 10.1016/j.cpc.2011.07.015
    [78] P. Bechtle, O. Brein, S. Heinemeyer et al., Eur. Phys. J. C 74(3), 2693 (2014), arXiv:1311.0055[hep-ph doi: 10.1140/epjc/s10052-013-2693-2
    [79] A. M. Sirunyan et al. (CMS), JHEP 03, 160 (2018), arXiv:1801.03957[hep-ex
    [80] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98(3), 030001 (2018) doi: 10.1103/PhysRevD.98.030001
    [81] E. Aprile et al. (XENON), Phys. Rev. Lett. 121(11), 111302 (2018), arXiv:1805.12562[astro-ph.CO doi: 10.1103/PhysRevLett.121.111302
    [82] E. Aprile et al. (XENON), Phys. Rev. Lett. 122(14), 141301 (2019), arXiv:1902.03234[astro-ph.CO doi: 10.1103/PhysRevLett.122.141301
  • 加载中

Cited by

1. Gao, J., Han, X.-F., Ma, J. et al. 95 GeV Higgs boson and spontaneous CP -violation at the finite temperature[J]. Physical Review D, 2024, 110(11): 115045. doi: 10.1103/PhysRevD.110.115045
2. Wang, K., Tian, P., Zhu, J. Exploration of heavy Higgs bosons at a 100 TeV hadron collider withinthe semi-constrained next-to-minimal supersymmetric standard model[J]. Chinese Physics C, 2024, 48(9): 093108. doi: 10.1088/1674-1137/ad5663
3. Wang, K., Zhu, J. 95 GeV light Higgs in the top-pair-associated diphoton channel at the LHC in the minimal dilaton model[J]. Chinese Physics C, 2024, 48(7): 073105. doi: 10.1088/1674-1137/ad4268
4. Li, W., Qiao, H., Zhu, J. Light Higgs boson in the NMSSM confronted with the CMS di-photon and di-tau excesses[J]. Chinese Physics C, 2023, 47(12): 123102. doi: 10.1088/1674-1137/acfaf1
5. Robens, T.. A Short Overview on Low Mass Scalars at Future Lepton Colliders[J]. Universe, 2022, 8(5): 286. doi: 10.3390/universe8050286
6. Gao, Yu., Wang, K. Heavy neutrino searches via same-sign lepton pairs at a Higgs boson factory[J]. Physical Review D, 2022, 105(7): 076005. doi: 10.1103/PhysRevD.105.076005
7. Domingo, F., Paßehr, S. Curing tachyonic tree-level syndrome in NMSSM light-singlet scenarios[J]. European Physical Journal C, 2022, 82(2): 98. doi: 10.1140/epjc/s10052-022-09985-5

Figures(10) / Tables(2)

Get Citation
Shiquan Ma, Kun Wang and Jingya Zhu. Higgs decay to light (pseudo)scalars in the semi-constrained NMSSM[J]. Chinese Physics C. doi: 10.1088/1674-1137/abce4f
Shiquan Ma, Kun Wang and Jingya Zhu. Higgs decay to light (pseudo)scalars in the semi-constrained NMSSM[J]. Chinese Physics C.  doi: 10.1088/1674-1137/abce4f shu
Milestone
Received: 2020-08-24
Revised: 2020-11-17
Article Metric

Article Views(1384)
PDF Downloads(34)
Cited by(7)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Higgs decay to light (pseudo)scalars in the semi-constrained NMSSM

    Corresponding author: Jingya Zhu, zhujy@whu.edu.cn
  • 1. Center for Theoretical Physics, School of Physics and Technology, Wuhan University, Wuhan 430072, China
  • 2. School of Physics and Electronics, Henan University, Kaifeng 475004, China

Abstract: The next-to minimal supersymmetric standard model (NMSSM) with non-universal Higgs masses, i.e., the semi-constrained NMSSM (scNMSSM), extends the minimal supersymmetric standard model (MSSM) by a singlet superfield and assumes universal conditions, except for the Higgs sector. It can not only maintain the simplicity and grace of the fully constrained MSSM and NMSSM and relieve the tension they have been facing since the discovery of the 125-GeV Higgs boson but also allow for an exotic phenomenon wherein the Higgs decay into a pair of light (1060GeV) singlet-dominated (pseudo)scalars (hereafter, in this paper, we use "scalar" for both scalars and pseudoscalars, considering pseudoscalars can also be called CP-odd scalars). This condition can be classified into three scenarios according to the identitiesof the SM-like Higgs and the light scalar: (i) the light scalar is CP-odd, and the SM-like Higgs is h2; (ii) the light scalar is CP-odd, and the SM-like Higgs is h1; and (iii) the light scalar is CP-even, and the SM-like Higgs is h2. In this work, we compare the three scenarios, checking the interesting parameter regions that lead to the scenarios, the mixing levels of the doublets and singlets, the tri-scalar coupling between the SM-like Higgs and a pair of light scalars, the branching ratio of Higgs decay to the light scalars, and sensitivities in the detection of the exotic decay at the HL-LHC and future lepton colliders such as CEPC, FCC-ee, and ILC. Finally, several interesting conclusions are drawn, which are useful for understanding the different delicate mechanisms of the exotic decay and designing colliders in future.

    HTML

    I.   INTRODUCTION
    • In 2012, a new boson of approximately125GeV was discovered at the LHC [1,2], which in later years, was consistently verified to be the SM-like Higgs boson with an increasing amount of data [3-7]. However, some other questions still exist, e.g., whether another scalar survives in the low mass region, and whether there is exotic Higgs decay into light scalars. Before the LHC, for the low integrated luminosity (IL), the LEP did not exclude a light scalar with a smaller production rate than the SM-like Higgs [8]. The CMS(ATLAS) collaboration searched for resonances directly in the bjμμ channel in the 1060 (2070) GeV range [9,10]. The two collaborations also searched for the exotic Higgs decay to light resonances in final states with bˉbτ+τ [11], bˉbμ+μ [12,13], μ+μτ+τ [14-16], 4τ [16,17], 4μ [18-20], 4b [21], γγgg [22], and 4γ [23]. However, there is still sufficient space left for physics on the exotic decay. For example, in the bˉbτ+τ channel reported by CMS collaboration [11], the 95% exclusion limit is at least 3% in the 2060GeV region. According to simulations, however, the future limits could be 0.3% at the High-Luminosity program of the Large Hadron Collider (HL-LHC) [24], 0.04% at the Circular Electron Positron Collider (CEPC), and 0.02% at the Future Circular Colliders in e+e collisions (FCC-ee) [25, 26].

      This exotic Higgs decay to light scalars can be investigated via many theories beyond the Standard Model (BSM) [27], e.g., the next-to minimal supersymmetric standard model (NMSSM), the simplest little Higgs model, the minimal dilaton model, the two-Higgs-doublet model, the next-to two-Higgs-doublet model, the singlet extension of the SM, etc. Several phenomenological studies on the exotic decay exist with these models [28-42].

      The NMSSM extends the MSSM by a singlet superfield ˆS, thereby solving the μ-problem and relaxing the fine-tuning tension resulting from the discovery of the Higgs in 2012 [43-49]. However, as supersymmetric (SUSY) models, the MSSM and NMSSM both suffer from a huge parameter space of over 100 dimensions. In most studies, some parameters are manually assumed equal at low-energy scales, leaving only about 10 free parameters, without considering the Renormalization Group Equations (RGEs) running from high scales [43-49]. In Ref. [33], decay of a Higgs boson of 125GeV into light scalars was studied in the NMSSM with parameters set in this way. In contrast, in constrained models, congeneric parameters are assumed universal at the Grand Unified Theoretical (GUT) scale, leaving only four free parameters in the fully-constrained MSSM (CMSSM) and four or five in the fully-constrained NMSSM (CNMSSM) [50-57]. However, it was found that CMSSM and CNMSSM were nearly excluded considering the 125GeV Higgs data, high mass bounds of gluino and squarks in the first two generations, muon g-2, and dark matter relic density and detections [56-62].

      The semi-constrained NMSSM (scNMSSM) relaxes the unified conditions of the Higgs sector at the GUT scale; thus, it is also called the NMSSM with non-universal Higgs mass (NUHM) [63-66]. It not only keeps the simplicity and grace of the CMSSM and CNMSSM but also relaxes the tension that they have faced since the discovery of SM-like Higgs [67]. Moreover, it makes predictions about interesting light particles such as a singlino-like neutralino [68] and light Higgsino-dominated NLSPs [69-71]. In this work, we study the scenarios in the scNMSSM with a light scalar of 1060GeV and the detections of exotic Higgs decay to a pair of it.

      The main points of this paper are listed as follows. In Sec. II, we introduce the model briefly and provide some related analytic formulas. In Sec. III, we present in detail the numerical calculations and discussions. Finally, we draw our conclusions in Sec. IV.

    II.   THE MODEL AND ANALYTIC CALCULATIONS
    • The superpotential of NMSSM, with Z3 symmetry, is written as [72]

      W=WYuk+λˆSˆHuˆHd+13κˆS3,

      (1)

      from which the so-called F-terms of the Higgs potential can be derived as

      VF=|λS|2(|Hu|2+|Hd|2)+|λHuHd+κS2|2.

      (2)

      The D-terms are the same as in the MSSM

      VD=18(g21+g22)(|Hd|2|Hu|2)2+12g22|HuHd|2,

      (3)

      where g1 and g2 are the gauge couplings of U(1)Y and SU(2)L, respectively. Without considering the SUSY-breaking mechanism, at a low-energy scale, the soft-breaking terms can be imposed manually to the Lagrangian. In the Higgs sector, these terms corresponding to the superpotential are

      Vsoft=M2Hu|Hu|2+M2Hd|Hd|2+M2S|S|2+(λAλSHuHd+13κAκS3+h.c.),

      (4)

      where M2Hu,M2Hu,M2S are the soft masses of Higgs fields Hu,Hd,S, respectively, and Aλ,Aκ are the trilinear couplings at the MSUSY scale. However, in the scNMSSM, the SUSY breaking is mediated by gravity; thus, the soft-parameters at the MSUSY scale are running naturally from the GUT scale complying with the RGEs.

      At electroweak symmetry breaking, Hu, Hd, and S get their vacuum expectation values (VEVs) vu, vd, and vs, respectively, with tanβvu/vd, vv2u+v2d174GeV, and μeffλvs. Then, they can be written as

      Hu=(H+uvu+ϕ1+iφ12),Hd=(vd+ϕ2+iφ22Hd),S=vs+ϕ3+iφ32.

      (5)

      The Lagrangian consists of the F-terms, D-terms, and soft-breaking terms; therefore, with the above equations, one can get the tree-level squared-mass matrix of CP-even Higgses in the base {ϕ1,ϕ2,ϕ3} and CP-odd Higgses in the base {φ1,φ2,φ3} [72]. After diagonalizing the mass squared matrixes including loop corrections [73], one can get the mass-eigenstate Higgses (three CP-even ones h1,2,3 and two CP-odd ones a1,2, in mass order) from the gauge-eigenstate ones (ϕ1,2,3 and φ1,2,3 in Eq. (5), with 1,2,3 corresponding to up-type, down-type, and singlet states, respectively):

      hi=Sikϕk,aj=Pjkφk,

      (6)

      where Sik,Pjk are the corresponding components of ϕk in hi and φk in aj, respectively, with i,k=1,2,3 and j=1,2.

      In the scNMSSM, the SM-like Higgs (hereafter, uniformly denoted as h) can be CP-even h1 or h2, and the light scalar (hereafter uniformly denoted as s) can be CP-odd a1 or CP-even h1. Then, the couplings between the SM-like Higgs and a pair of light scalars Chss can be written at tree level as [74]

      Ctreeh2h1h1=λ22[vu(Π122211+Π133211)+vd(Π211211+Π233211)+vs(Π311211+Π322211)]λκ2(vuΠ323211+vdΠ313211+2vsΠ123211)+2κ2vsΠ333211λAλ2Π123211+κAκ32Π333211+g222[vu(Π111211Π122211)vd(Π211211Π222211)],

      (7)

      where

      Πijk211=2S2iS1jS1k+2S1iS2jS1k+2S1iS1jS2k;

      or

      Ctreehaa1a1=λ22[vu(Π122a11+Π133a11)+vd(Π211a11+Π233a11)+vs(Π311a11+Π322a11)]+λκ2[vu(Π233a112Π323a11)+vd(Π133a112Π313a11)+2vs(Π312a11Π123a11Π213a11)]+2κ2vsΠ333a11+λAλ2(Π123a11+Π213a11+Π312a11)κAκ32Π333a11+g222[vu(Π111a11Π122a11)vd(Π211a11Π222a11)],

      (8)

      where Πijka11=2SaiP1jP1k, and a=1,2. Thus, the width of Higgs decay to a pair of light scalars can be given by

      Γ(hss)=132πmhC2hss(14m2sm2h)1/2.

      (9)

      Then, the light scalars decay to light SM particles, such as a pair of light quarks or leptons, gluons, or photons. The widths of light scalar decay to quarks and charged leptons at tree level are given by

      Γ(sl+l)=2GF8πmsm2l(14m2lm2s)p/2,

      (10)

      Γ(sqˉq)=NcGF42πC2sqqmsm2q(14m2qm2s)p/2,

      (11)

      where p=1 for CP-odd s, and p=3 for CP-even s. The couplings between light scalar and up-type or down-type quarks are given by

      Ch1tLtcR=mt2vsinβS11,

      (12)

      Ch1bLbcR=mb2vcosβS12,

      (13)

      Ca1tLtcR=imt2vsinβP11,

      (14)

      Ca1bLbcR=imb2vcosβP12.

      (15)
    III.   NUMERICAL CALCULATIONS AND DISCUSSIONS
    • In this work, we first scan the following parameter space with NMSSMTOOLS-5.5.2 [74,75]:

      0<λ<0.7,0<κ<0.7,1<tanβ<30,100<μeff<200GeV,0<M0<500GeV,0.5<M1/2<2TeV,|A0|,|Aλ|,|Aκ|<10TeV,

      (16)

      where we choose small μeff to get low fine tuning, small M0 to get large muon g-2, and moderate M1/2 to meet both large muon g-2 and high gluino-mass bounds. The regions of other parameters are chosen to be wide to investigate all scenarios with a low mass scalar and the exotic Higgs decay.

      The constraints we imposed in our scan include the following: (i) an SM-like Higgs of 123127GeV, with signal strengths and couplings satisfying the current Higgs data [3-7]; (ii) search results for exotic and invisible decay of the SM-like Higgs, and Higgs-like resonances in other mass regions, with HIGGSBOUNDS-5.7.1 [76-78]; (iii) the muon g-2 constraint, like that in Ref. [67]; (iv) the mass bounds of gluino and the first-two-generation squarks over 2TeVand search results for electroweakinos in multilepton channels [79]; (vi) the dark matter relic density Ωh2 below 0.131 [80], and the dark matter and nucleon scattering cross section below the upper limits in direct searches [81,82]; and (vii) the theoretical constraints of vacuum stability and Landau pole.

      After imposing these constraints, the surviving samples can be categorized into three scenarios:

      • Scenario I: h2 is the SM-like Higgs, and the light scalar a1 is CP-odd;

      • Scenario II: h1 is the SM-like Higgs, and the light scalar a1 is CP-odd;

      • Scenario III: h2 is the SM-like Higgs, and the light scalar h1 is CP-even.

      In Table 1, we list the ranges of parameters and light particle masses in the three scenarios. From the table, one can see that the parameter ranges are nearly the same except for λ, κ, and Aκ, but the mass spectrums for light particles are totally different.

      Scenario I Scenario II Scenario III
      λ 00.58 00.24 00.57
      κ 00.21 00.67 00.36
      tanβ 1427 1028 1328
      μeff/GeV 103200 102200 102200
      M0/GeV 0500 0500 0500
      M1/2/TeV 1.061.47 1.041.44 1.051.47
      A0/TeV 2.80.2 3.21.0 2.80.6
      Aλ(MGUT)/TeV 1.39.4 0.110 1.19.8
      Aκ(MGUT)/TeV 0.025.4 0.020.9 0.75.7
      Aλ(MSUSY)/TeV 2.010.1 0.810.9 1.610.2
      Aκ(MSUSY)/GeV 5142 177 80311
      m˜χ01/GeV 3129 98198 3190
      mh1/GeV 4123 123127 460
      mh2/GeV 123127 1275058 123127
      ma1/GeV 460 0.560 3697

      Table 1.  The ranges of parameters and light particle masses in Scenario I, II, and III.

      To study the different mechanisms of Higgs decay to light scalars in different scenarios, we recombine relevant parameters and show them in Fig. 1. From this figure, one can find the following:

      Figure 1.  (color online) Surviving samples for the three scenarios in the λAλSi2 versus λ2vs (upper), where S22 (left and right) and S12 (middle) are the down-type-doublet component coefficient in the SM-like Higgs, and κAκ versus κ2vs (lower) planes, respectively. Colors indicate λ2vu (upper) and λκvs (lower), respectively.

      • For Scenarios I and III, λAλS22λ2vs, where 0.03S220.07 is at the same order with 1/tanβ, for the mass scale of the CP-odd doublet scalar MA2μeff/sin2βAλκvs, and tanβ1 [33]. Thus, the SM-like Higgs is up-type-doublet dominated.

      • For Scenario I, κAκ, k2vs, and λκvs are at the same level of a few GeV; however, for Scenario II, κ2vs can be as large as a few TeV for small λ and large κ.

      • Especially, for Scenario III, κAκ4κ2vs, or Aκ4κvs.

      According to the large data of the 125GeV Higgs and current null results searching for non-SM Higgs, the 125GeV Higgs should be doublet dominated, and the light scalar should be singlet dominated. In our cases, we found that, in the CP-even sector, the mixing between singlet and up-type doublet ηus, the mixing between down-type doublet and up-type doublet ηud, and the mixing between singlet and down-type doublet ηds are, respectively, roughly equal to

      ηus2λvμeff[1(MA2μ/sin2β)2κ2λsin2β]m2hm2s,ηud1tanβ,ηdsηustanβ,

      (17)

      where mh and ms are masses of the SM-like Higgs and the singlet-dominated CP-even scalar, respectively, and

      |ηds||ηus|,|ηud|1.

      (18)

      And in the CP-odd sector, the mixing between singlet and down-type doublet ηds, the mixing between down-type doublet and up-type doublet ηud, and the mixing between singlet and up-type doublet ηus are, respectively, roughly equal to

      ηdsλvM2A2μeff/sin2β3κvμeffm2a2m2a1λvμefftanβ,ηud1tanβ,ηusηdstanβ,

      (19)

      where

      |ηus||ηds|,|ηud|1.

      (20)

      Specifically, in Scenario I,

      S23=ηus,S22=ηud,P11=ηus,P12=ηds;

      (21)

      in Scenario II,

      S13=ηus,S12=ηud,P11=ηus,P12=ηds;

      (22)

      in Scenario III,

      S23=ηus,S22=ηud,S11=ηus,S12=ηds.

      (23)

      In Fig. 2, we show how small they can be and their relative scale. From this figure, we can see the following for the three scenarios.

      Figure 2.  (color online) Surviving samples for the three scenarios in the P11 versus S23 (left), P11 versus S13 (middle), and S11 versus S23 (right) planes, respectively, where S23 (left and right) and S13 (middle) are the singlet component in the SM-like Higgs, and P11 (left and middle) and S11 (right) are the up-type-doublet components of the light scalar, respectively. Colors indicate the parameter λ.

      • Scenario I: The up-type-doublet component of the light scalar, 0.0015P11<0, is proportional to the parameter λ; thus, the total doublet component of the light scalar is P1DP211+P212P11tanβ0.04, while the singlet component of the SM-like Higgs is |S23|0.3.

      • Scenario II: The up-type-doublet component of the light scalar, 0.0006P11<0, is proportional to the parameter λ; thus, the total doublet component of the light scalar is 0<P1D0.013, while the singlet component in the SM-like Higgs is |S13|0.3.

      • Scenario III: The up-type-doublet component of the light scalar and the singlet component of the SM-like Higgs are anticorrelated, i.e., S11S23, and their range is 0.15S110.2, with the sign related to the parameter λ. This also means that the mixing in the CP-even scalar sector is mainly between the singlet and the up-type doublet, and we found that 0.03S220.07 and S120.03. Thus, the SM-like Higgs is up-type doublet dominated, which is applicable in all three scenarios, with S211 in Scenario I and III and S111 in Scenario II.

      Considering the values of and correlations among parameters and component coefficients, the couplings between the SM-like Higgs and a pair of light scalars can be simplified as

      Ch2a1a12λ2vu+2λAλP11tanβ,

      (24)

      Ch1a1a12λ2vu+2λAλP11tanβ+22κ2vsS13,

      (25)

      Ch2h1h12λ2vu2λAλS12+2λ2vsS11+22κ2vsS23+3g22vuS11S1122λκvsS12.

      (26)

      In Fig. 3, we show the exotic branching ratio Br(hss) including one-loop correction correlated with the mass of the light scalar and the coupling between the SM-like Higgs and a pair of the light scalars at tree level. Since the 125 GeV Higgs is constrained to be very SM-like, its decay widths and branching ratios to SM particles cannot vary much, which leads indirectly to strong upper limits on exotic branching ratios of the SM-like Higgs [3-5]. Thus, combined with Eq. (9), it is natural that the branching ratios to light scalars are proportional to the square of the tri-scalar couplings. The significant deviations for the negative-coupling samples in Scenario III are because of the one-loop correction of the stop loops,

      Figure 3.  (color online) Surviving samples for the three scenarios in the exotic branching ratio Br(hss) versus the tri-scalar coupling Ctreehss at tree level planes, respectively, with colors indicating the mass of light Higgs ms, where h denotes the SM-like Higgs h2 (left and right) and h1 (middle), and s denotes the light scalar a1 (left and middle) and h1 (right).

      ΔCh2h1h1S21S21132m4t16π2v3uln(m˜t1m˜t2m2t),

      (27)

      which can be as large as 5GeV, whereas for Scenario I and II, they are

      ΔCh2a1a1S21P21132m4t16π2v3uln(m˜t1m˜t2m2t),

      (28)

      ΔCh1a1a1S11P21132m4t16π2v3uln(m˜t1m˜t2m2t).

      (29)

      Since P11S11, as seen from Fig. 2, the loop correction in Scenarios I and II is much smaller than that in Scenario III. In the following figures and discussions, we consider the coupling Chss to include the one-loop correction ΔChss, unless otherwise specified.

    • A.   Detections at the HL-LHC

    • At the LHC, the SM-like Higgs can first be produced in gluon fusion (ggF), vector boson fusion (VBF), associated with vector boson (Wh, Zh), or associated with tˉt processes, where the cross section in the ggF process is much larger than that of others. Then, the SM-like Higgs can decay to a pair of light scalars, and each scalar can then decay to a pair of fermions, gluons, or photons. The ATLAS and CMS collaborations have searched for these exotic decay modes in the final states of bˉbτ+τ [11], bˉbμ+μ [12,13], μ+μτ+τ [14-16], 4τ [16,17], 4μ [18-20], 4b [21], γγgg [22], 4γ [23], etc. These results are included in the constraints we considered.

      As we checked, the main decay mode of the light scalar is usually to bˉb when ms2mb. However, the color backgrounds at the LHC are very large; thus, a subleading Zh production process is used in detecting h2s4b, and VBF is used for h2sγγgg. For the other decay mode, the main production process ggF can be used. Considering the cross sections of production and branching ratios of decay, as well as the detection precisions, we found that the detections in 4b, 2b2τ, and 2τ2μ channels are important for the scNMSSM. The signal rates are μZh×Br(hss4b), μggF×Br(hss2b2τ), and μggF×Br(hss2τ2μ), respectively, where μggF and μZh are the ggF and Zh production rates normalized to their SM value, respectively [3-5].

      For detections of the exotic decay at the HL-LHC, we use the simulation results of 95% exclusion limit in Refs. [24,33]. Suppose, with an integrated luminosity of L0, the 95% exclusion limit for branching ratio in some channel is Br0 in the simulation result; then, for a sample in the model, if the signal rate is μi×Br (i denotes the production channel), the signal significance with integrated luminosity of L will be

      ss=2μi×BrBr0LL0,

      (30)

      and the integrated luminosity needed to exclude the sample in the channel at 95% confidence level (with ss=2) will be

      Le=L0(Br0μi×Br)2,

      (31)

      and the integrated luminosity needed to discover the sample in the channel (with ss=5) will be

      Ld=L0(52)2(Br0μi×Br)2.

      (32)

      In Figs. 4, 5, and 6, we show the signal rates for the surviving samples in the three scenarios and the 95% exclusion bounds [24,33] in the 4b, 2b2τ, and 2τ2μ channels, respectively. From these figures, one can see the following:

      Figure 4.  (color online) Surviving samples for the three scenarios in the signal rate μZh×Br(hss4b) versus the mass of light Higgs ms planes, respectively, with colors indicating the tri-scalar coupling Chss including one-loop correction, where h denotes the SM-like Higgs h2 (left and right) and h1 (middle), and s denotes the light scalar a1 (left and middle) and h1 (right). The solid curves indicate the simulation results of the 95% exclusion limit in the corresponding channel at the HL-LHC with 300fb1 [33].

      Figure 5.  (color online) Same as in Fig. 4, but shows the signal rate μggF×Br(hss2τ2b) and 95% exclusion bounds in the corresponding channel at the HL-LHC with 3000fb1 [24].

      Figure 6.  (color online) Same as in Fig. 4, but shows the signal rate μggF×Br(hss2τ2μ) and 95% exclusion bounds in the corresponding channel at the HL-LHC with 3000fb1 [24].

      • With a light scalar heavier than 30GeV, the easiest way to discover the exotic decay is via the 4b channel, and the minimal integrated luminosity needed to discover the decay in this channel can be 650fb1 for Scenario II.

      • With a light scalar lighter than 20GeV, the 2τ2μ channel can be important, especially for samples in Scenario II, and the minimal integrated luminosity needed to discover the decay in this channel can be 1000fb1.

      • With a light scalar heavier than 2mb, it is possible to discover the decay in the 2b2τ channel, and the minimal integrated luminosity needed to discover the decay in this channel can be 1500fb1 for Scenario II.

    • B.   Detections at the future lepton colliders

    • In future lepton colliders, such as CEPC, FCC-ee, and International Linear Collider (ILC), the main production process of the SM-like Higgs is Zh, and the color backgrounds are minimal; thus, these lepton colliders are powerful in detecting the exotic decay. There have been simulation results in many channels, such as 4b, 4j, 2b2τ, and 4τ [26]. With the same method as in the last subsection, one can perform similar analyses.

      In Figs. 7, 8, 9, and 10, we show the signal rates for surviving samples in the three scenarios and the 95% exclusion bounds (following the simulation results in Ref. [26]) at the CEPC, FCC-ee, and ILC, and in the 4b, 4j, 2b2τ, and 4τ channels, respectively. In these processes, the backgrounds are mainly from SM Higgs decays to four light particles through SM gauge bosons. From these figures, one can see the following:

      Figure 7.  (color online) Surviving samples for the three scenarios in the signal rate μZh×Br(hss4b) versus the mass of light Higgs ms planes, respectively, with colors indicating the tri-scalar coupling Chss including one-loop correction, where h denotes the SM-like Higgs h2 (left and right) and h1 (middle), and s denotes the light scalar a1 (left and middle) and h1 (right). The solid, dashed, and dotted lines are the 95% exclusion bounds from simulations in the corresponding channel at the CEPC with 5ab1, FCC-ee with 30ab1, and ILC with 2ab1, respectively [26].

      Figure 8.  (color online) Same as in Fig. 7, but shown are the signal rates μZh×Br(hss4j) and 95% exclusion bounds in the corresponding channel [26]. The "4j" denotes four jets, including gluon and light quarks, except for b.

      Figure 9.  (color online) Same as in Fig. 7, but shown are the signal rates μZh×Br(hss2b2τ) and 95% exclusion bounds in the corresponding channel [26].

      Figure 10.  (color online) Same as in Fig. 7, but shown are the signal rates μZh×Br(hss4τ) and 95% exclusion bounds in the corresponding channel [26].

      • As in Fig. 7, when the light scalar is heavier than approximately15GeV and the tri-scalar coupling is large enough, the branching ratio for the 4b channel is significant. The minimal integrated luminosity needed to discover the decay in this channel can be 0.31fb1 for Scenarios II and III at the ILC.

      • As in Fig. 8, for Scenarios I and II, the exotic Higgs decay can be expected to be observed in the 4j channel when its mass is lighter than 11GeV, whereas for Scenario III, the light scalar available at the CEPC can be as heavy as 40GeV. The minimal integrated luminosity needed to discover the exotic decay in this channel can be 18fb1 for Scenario II at the ILC.

      • As in Figs. 9 and 10, the signal rates in 2b2τ and 4τ channel show similar trends. The branching ratios are small before the light scalar reaches the mass threshold, and the maximum values of branching ratios occur around ms=12GeV; the minimal integrated luminosity needed to discover the decay in the 2b2τ channel is 3.6fb1 for Scenario II at the ILC, and that in the 4τ channel is 0.22fb1 for Scenario III at the ILC.

    IV.   CONCLUSIONS
    • In this work, we have discussed the exotic Higgs decay to a pair of light scalars in the scNMSSM, or the NMSSM with NUHM. First, we performed a general scan over the nine-dimension parameter space of the scNMSSM, considering the theoretical constraints of vacuum stability and Landau pole as well as experimental constraints of Higgs data, non-SM Higgs searches, muon g-2, sparticle searches, relic density and direct searches for dark matter, etc. Then, we found three scenarios with a light scalar of 1060GeV: (i) the light scalar is CP-odd, and the SM-like Higgs is h2; (ii) the light scalar is CP-odd, and the SM-like Higgs is h1; and (iii) the light scalar is CP-even, and the SM-like Higgs is h2. For the three scenarios, we check the parameter regions that lead to the scenarios, the mixing levels of the doublets and singlets, the tri-scalar coupling between the SM-like Higgs and a pair of light scalars, the branching ratio of Higgs decay to the light scalars, and the detections at the hadron colliders and future lepton colliders.

      In this work, we compare the three scenarios, checking the interesting parameter regions that lead to the scenarios, the mixing levels of the doublets and singlets, the tri-scalar coupling between the SM-like Higgs and a pair of light scalars, the branching ratio of Higgs decay to the light scalars, and the detections at the hadron colliders and future lepton colliders.

      Finally, we draw the following conclusions regarding a light scalar and the exotic Higgs decay to a pair of it in the scNMSSM:

      • There are different interesting mechanisms in the three scenarios to tune parameters to obtain the small tri-scalar couplings.

      • The singlet components of the SM-like Higgs in the three scenarios are at the same level of 0.3 and are roughly one order of magnitude larger than the doublet component of the light scalar in Scenario I and II.

      • The couplings between the SM-like Higgs and a pair of light scalars at tree level are 35, 16, and 105 GeV for Scenario I, II, and III, respectively.

      • The stop-loop correction to the tri-scalar coupling in Scenario III can be a few GeV, much larger than those in Scenarios I and II.

      • The most effective way to discover the exotic decay at the future lepton collider is via the 4τ channel, while that at the HL-LHC is via the 4b channel for a light scalar heavier than 30 GeV and via 2b2τ or 2τ2μ channel for a lighter scalar.

      The details of the minimal integrated luminosity needed to discover the exotic Higgs decay at the HL-LHC, CEPC, FCC-ee, and ILC are summarized in Table 2, and the tuning mechanisms in the three scenarios to obtain the small tri-scalar coupling can be seen from Figs. 1,2 and Eqs. (17)-(26).

      Decay Mode Futrue colliders
      HL-LHC CEPC FCC-ee ILC
      (bˉb)(bˉb) 650fb1(@II) 0.42fb1(@III) 0.41fb1(@III) 0.31fb1(@II)
      (jj)(jj) 21fb1(@II) 18fb1(@II) 25fb1(@II)
      (τ+τ)(τ+τ) 0.26fb1(@III) 0.22fb1(@III) 0.31fb1(@III)
      (bˉb)(τ+τ) 1500fb1(@II) 4.6fb1(@II) 3.6fb1(@II) 4.4fb1(@II)
      (μ+μ)(τ+τ) 1000fb1(@II)

      Table 2.  The minimum integrated luminosity for discovering (at 5σ level) the exotic Higgs decay at the future colliders, where "@I, II, III" indicates the three different scenarios.

Reference (82)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return