Loading [MathJax]/jax/output/HTML-CSS/jax.js

New observable for measuring the CP property of top-Higgs interaction

  • We propose a new dihedral angle observable for measuring the CP property of the interaction between the top quark and Higgs boson in tˉtH production at the 14 TeV Large Hadron Collider (LHC). We consider two decay modes of the Higgs boson, Hbˉb and Hγγ, and demonstrate that the dihedral angle distribution is able to distinguish between the CP-even and the CP-odd hypothesis at a 95% confidence level, with an integrated luminosity of 180 fb1.
  • [1] G. Aad et al. (ATLAS collaboration), Eur. Phys. J. C 75, 476 (2015), [Erratum: Eur. Phys. J. C 76(3), 152(2016)], arXiv: 1506.05669[hep-ex]
    [2] G. Aad et al. (ATLAS) (2020), arXiv: 2002.05315[hep-ex]
    [3] A. M. Sirunyan et al. (CMS collaboration) (2019), arXiv: 1901.00174[hep-ex]
    [4] A. M. Sirunyan et al. (CMS collaboration), Submitted to: Phys. Rev., (2019), arXiv:1903.06973[hep-ex
    [5] A. M. Sirunyan et al. (CMS collaboration), Phys. Rev. Lett. 120, 231801 (2018), arXiv:1804.02610[hep-ex doi: 10.1103/PhysRevLett.120.231801
    [6] M. Aaboud et al. (ATLAS collaboration), Phys. Lett. B 784, 173 (2018), arXiv:1806.00425[hep-ex
    [7] A. M. Sirunyan et al. (CMS), (2020), arXiv: 2003.10866[hep-ex]
    [8] G. Aad et al. (ATLAS), (2020), arXiv: 2004.04545[hep-ex]
    [9] J. F. Gunion and X.-G. He, Phys. Rev. Lett. 76, 4468 (1996), arXiv:hep-ph/9602226 doi: 10.1103/PhysRevLett.76.4468
    [10] F. Boudjema, R. M. Godbole, D. Guadagnoli et al., Phys. Rev. D 92, 015019 (2015), arXiv:1501.03157[hep-ph
    [11] N. Mileo, K. Kiers, A. Szynkman et al., JHEP 07, 056 (2016), arXiv:1603.03632[hepph
    [12] A. V. Gritsan, R. Rntsch, M. Schulze et al., Phys. Rev. D 94, 055023 (2016), arXiv:1606.03107[hep-ph
    [13] S. Amor Dos Santos et al., Phys. Rev. D 96, 013004 (2017), arXiv:1704.03565[hep-ph
    [14] S. P. Amor dos Santos et al., Phys. Rev. D 92, 034021 (2015), arXiv:1503.07787[hep-ph
    [15] E. Gouveia et al., (2018), arXiv: 1801.04954[hep-ph]
    [16] D. Gonalves, K. Kong, and J. H. Kim, JHEP 06, 079 (2018), arXiv:1804.05874
    [17] J. Ren, L. Wu, and J. M. Yang, (2019), arXiv: 1901.05627[hep-ph]
    [18] E. Gouveia, R. Gonalo, A. Onofre, (2019), arXiv: 1902.00298[hep-ph]
    [19] A. Ferroglia, M. C. Fiolhais, E. Gouveia et al., Phys. Rev. D 100, 075034 (2019), arXiv:1909.00490 doi: 10.1103/PhysRevD.100.075034
    [20] H. Bahl, P. Bechtle, S. Heinemeyer et al., (2020), arXiv: 2007.08542[hep-ex]
    [21] B. z. Bortolato, J. F. Kamenik, N. Koˇ snik et al., (2020), arXiv: 2006.13110[hep-ex]
    [22] Q.-H. Cao, B. Yan, D.-M. Zhang et al., Phys. Lett. B 752, 285 (2016), arXiv:1508.06512 doi: 10.1016/j.physletb.2015.11.045
    [23] Y. Chen, D. Stolarski, and R. Vega-Morales, Phys. Rev. D 92, 053003 (2015), arXiv:1505.01168[hep-ph
    [24] Q.-H. Cao, G. Li, B. Yan et al., Phys. Rev. D 96, 095031 (2017), arXiv:1611.09336 doi: 10.1103/PhysRevD.96.095031
    [25] Q.-H. Cao, S.-L. Chen, and Y. Liu, Phys. Rev. D 95, 053004 (2017), arXiv:1602.01934[hep-ph
    [26] Q.-H. Cao, S.-L. Chen, Y. Liu et al., Phys. Rev. D 99, 113003 (2019), arXiv:1901.04567[hepph
    [27] R. Frederix, S. Frixione, V. Hirschi et al., JHEP 07, 185 (2018), arXiv:1804.10017[hep-ph
    [28] S. Dulat, T. J. Hou, J. Gao et al., (2015), arXiv: 1506.07443[hep-ph]
    [29] A. Czarnecki, M. Jezabek, and J. H. Kuhn, Nucl. Phys. B 351, 70 (1991)
    [30] A. Brandenburg, Z. G. Si, and P. Uwer, Phys. Lett. B 539, 235 (2002), arXiv:hep-ph/0205023
    [31] Q.-H. Cao and C.-P. Yuan, Phys. Rev. D 71, 054022 (2005), arXiv:hep-ph/0408180 doi: 10.1103/PhysRevD.71.054022
    [32] Q.-H. Cao, J. Wudka, and C.-P. Yuan, Phys. Lett. B 658, 50 (2007), arXiv:0704.2809 doi: 10.1016/j.physletb.2007.10.057
    [33] S. Heim, Q.-H. Cao, R. Schwienhorst et al., Phys. Rev. D 81, 034005 (2010), arXiv:0911.0620 doi: 10.1103/PhysRevD.81.034005
    [34] D. de Florian et al. (LHC Higgs Cross Section Working Group) (2016), arXiv: 1610.07922[hep-ph]
    [35] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C 79, 421 (2019), arXiv:1809.10733[hep-ex
  • [1] G. Aad et al. (ATLAS collaboration), Eur. Phys. J. C 75, 476 (2015), [Erratum: Eur. Phys. J. C 76(3), 152(2016)], arXiv: 1506.05669[hep-ex]
    [2] G. Aad et al. (ATLAS) (2020), arXiv: 2002.05315[hep-ex]
    [3] A. M. Sirunyan et al. (CMS collaboration) (2019), arXiv: 1901.00174[hep-ex]
    [4] A. M. Sirunyan et al. (CMS collaboration), Submitted to: Phys. Rev., (2019), arXiv:1903.06973[hep-ex
    [5] A. M. Sirunyan et al. (CMS collaboration), Phys. Rev. Lett. 120, 231801 (2018), arXiv:1804.02610[hep-ex doi: 10.1103/PhysRevLett.120.231801
    [6] M. Aaboud et al. (ATLAS collaboration), Phys. Lett. B 784, 173 (2018), arXiv:1806.00425[hep-ex
    [7] A. M. Sirunyan et al. (CMS), (2020), arXiv: 2003.10866[hep-ex]
    [8] G. Aad et al. (ATLAS), (2020), arXiv: 2004.04545[hep-ex]
    [9] J. F. Gunion and X.-G. He, Phys. Rev. Lett. 76, 4468 (1996), arXiv:hep-ph/9602226 doi: 10.1103/PhysRevLett.76.4468
    [10] F. Boudjema, R. M. Godbole, D. Guadagnoli et al., Phys. Rev. D 92, 015019 (2015), arXiv:1501.03157[hep-ph
    [11] N. Mileo, K. Kiers, A. Szynkman et al., JHEP 07, 056 (2016), arXiv:1603.03632[hepph
    [12] A. V. Gritsan, R. Rntsch, M. Schulze et al., Phys. Rev. D 94, 055023 (2016), arXiv:1606.03107[hep-ph
    [13] S. Amor Dos Santos et al., Phys. Rev. D 96, 013004 (2017), arXiv:1704.03565[hep-ph
    [14] S. P. Amor dos Santos et al., Phys. Rev. D 92, 034021 (2015), arXiv:1503.07787[hep-ph
    [15] E. Gouveia et al., (2018), arXiv: 1801.04954[hep-ph]
    [16] D. Gonalves, K. Kong, and J. H. Kim, JHEP 06, 079 (2018), arXiv:1804.05874
    [17] J. Ren, L. Wu, and J. M. Yang, (2019), arXiv: 1901.05627[hep-ph]
    [18] E. Gouveia, R. Gonalo, A. Onofre, (2019), arXiv: 1902.00298[hep-ph]
    [19] A. Ferroglia, M. C. Fiolhais, E. Gouveia et al., Phys. Rev. D 100, 075034 (2019), arXiv:1909.00490 doi: 10.1103/PhysRevD.100.075034
    [20] H. Bahl, P. Bechtle, S. Heinemeyer et al., (2020), arXiv: 2007.08542[hep-ex]
    [21] B. z. Bortolato, J. F. Kamenik, N. Koˇ snik et al., (2020), arXiv: 2006.13110[hep-ex]
    [22] Q.-H. Cao, B. Yan, D.-M. Zhang et al., Phys. Lett. B 752, 285 (2016), arXiv:1508.06512 doi: 10.1016/j.physletb.2015.11.045
    [23] Y. Chen, D. Stolarski, and R. Vega-Morales, Phys. Rev. D 92, 053003 (2015), arXiv:1505.01168[hep-ph
    [24] Q.-H. Cao, G. Li, B. Yan et al., Phys. Rev. D 96, 095031 (2017), arXiv:1611.09336 doi: 10.1103/PhysRevD.96.095031
    [25] Q.-H. Cao, S.-L. Chen, and Y. Liu, Phys. Rev. D 95, 053004 (2017), arXiv:1602.01934[hep-ph
    [26] Q.-H. Cao, S.-L. Chen, Y. Liu et al., Phys. Rev. D 99, 113003 (2019), arXiv:1901.04567[hepph
    [27] R. Frederix, S. Frixione, V. Hirschi et al., JHEP 07, 185 (2018), arXiv:1804.10017[hep-ph
    [28] S. Dulat, T. J. Hou, J. Gao et al., (2015), arXiv: 1506.07443[hep-ph]
    [29] A. Czarnecki, M. Jezabek, and J. H. Kuhn, Nucl. Phys. B 351, 70 (1991)
    [30] A. Brandenburg, Z. G. Si, and P. Uwer, Phys. Lett. B 539, 235 (2002), arXiv:hep-ph/0205023
    [31] Q.-H. Cao and C.-P. Yuan, Phys. Rev. D 71, 054022 (2005), arXiv:hep-ph/0408180 doi: 10.1103/PhysRevD.71.054022
    [32] Q.-H. Cao, J. Wudka, and C.-P. Yuan, Phys. Lett. B 658, 50 (2007), arXiv:0704.2809 doi: 10.1016/j.physletb.2007.10.057
    [33] S. Heim, Q.-H. Cao, R. Schwienhorst et al., Phys. Rev. D 81, 034005 (2010), arXiv:0911.0620 doi: 10.1103/PhysRevD.81.034005
    [34] D. de Florian et al. (LHC Higgs Cross Section Working Group) (2016), arXiv: 1610.07922[hep-ph]
    [35] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C 79, 421 (2019), arXiv:1809.10733[hep-ex
  • 加载中

Cited by

1. Bahl, H., Fuchs, E., Hannig, M. et al. Classifying the CP properties of the ggH coupling in H + 2j production[J]. SciPost Physics Core, 2025, 8(1): 006. doi: 10.21468/SciPostPhysCore.8.1.006
2. Bahl, H., Carnelli, A., Déliot, F. et al. CP-sensitive simplified template cross-sections for tt¯H[J]. Journal of High Energy Physics, 2024, 2024(10): 214. doi: 10.1007/JHEP10(2024)214
3. Chalbaud, E., Silva, R.M., Onofre, A. et al. Asymmetries in invisible dark matter mediator production associated with t t ¯ final states[J]. Physical Review D, 2024, 110(7): 076016. doi: 10.1103/PhysRevD.110.076016
4. Yu, Z., Mohan, K.A., Yuan, C.-P. Determining the CP property of htt¯ coupling via a novel jet substructure observable[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2024. doi: 10.1016/j.physletb.2024.138959
5. Cassidy, M.E., Dong, Z., Kong, K. et al. Probing the CP structure of the top quark Yukawa at the future muon collider[J]. Journal of High Energy Physics, 2024, 2024(5): 176. doi: 10.1007/JHEP05(2024)176
6. Tiwari, A., Gupta, S.K. t t ¯ H Interactions and T-odd Correlations at Hadron Colliders[J]. Journal of Physics G: Nuclear and Particle Physics, 2024, 51(4): 045003. doi: 10.1088/1361-6471/ad2276
7. Bhardwaj, A., Englert, C., Gonçalves, D. et al. Nonlinear CP violation in the top-Higgs sector[J]. Physical Review D, 2023, 108(11): 115006. doi: 10.1103/PhysRevD.108.115006
8. Azevedo, D., Capucha, R., Chaves, P. et al. Search for an invisible scalar in tt¯ final states at the LHC[J]. Journal of High Energy Physics, 2023, 2023(11): 125. doi: 10.1007/JHEP11(2023)125
9. Moreno-Llácer, M., Vos, M. The Higgs Boson and the Top Quark[J]. Letters in High Energy Physics, 2023. doi: 10.31526/LHEP.2023.453
10. Azevedo, D., Capucha, R., Onofre, A. et al. CP-violation, asymmetries and interferences in tt¯ ϕ[J]. Journal of High Energy Physics, 2022, 2022(9): 246. doi: 10.1007/JHEP09(2022)246
11. Barman, R.K., Gonçalves, D., Kling, F. Machine learning the Higgs boson-top quark CP phase[J]. Physical Review D, 2022, 105(3): 035023. doi: 10.1103/PhysRevD.105.035023
12. Grojean, C., Paul, A., Qian, Z. Resurrecting bb¯ h with kinematic shapes[J]. Journal of High Energy Physics, 2021, 2021(4): 139. doi: 10.1007/JHEP04(2021)139

Figures(6) / Tables(2)

Get Citation
Qing-Hong Cao, Ke-Pan Xie, Hao Zhang and Rui Zhang. A new observable for measuring CP property of top-Higgs interaction[J]. Chinese Physics C. doi: 10.1088/1674-1137/abcfac
Qing-Hong Cao, Ke-Pan Xie, Hao Zhang and Rui Zhang. A new observable for measuring CP property of top-Higgs interaction[J]. Chinese Physics C.  doi: 10.1088/1674-1137/abcfac shu
Milestone
Received: 2020-09-16
Article Metric

Article Views(1499)
PDF Downloads(26)
Cited by(12)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

New observable for measuring the CP property of top-Higgs interaction

    Corresponding author: Qing-Hong Cao, qinghongcao@pku.edu.cn
    Corresponding author: Ke-Pan Xie, kpxie@snu.ac.kr
    Corresponding author: Hao Zhang, zhanghao@ihep.ac.cn
    Corresponding author: Rui Zhang, rui.z@pku.edu.cn
  • 1. Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
  • 2. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
  • 3. Center for High Energy Physics, Peking University, Beijing 100871, China
  • 4. Center for Theoretical Physics, Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
  • 5. Theoretical Physics Division, Institute of High Energy Physics, Beijing 100049, China
  • 6. School of Physics, University of Chinese Academy of Science, Beijing 100049, China

Abstract: We propose a new dihedral angle observable for measuring the CP property of the interaction between the top quark and Higgs boson in tˉtH production at the 14 TeV Large Hadron Collider (LHC). We consider two decay modes of the Higgs boson, Hbˉb and Hγγ, and demonstrate that the dihedral angle distribution is able to distinguish between the CP-even and the CP-odd hypothesis at a 95% confidence level, with an integrated luminosity of 180 fb1.

    HTML

    I.   INTRODUCTION
    • In the standard model (SM) of particle physics, the Higgs boson is a CP-even scalar boson with JPC=0++. Any deviation from this prediction is clear evidence of new physics (NP) beyond the SM. Therefore, measuring the CP nature of the Higgs boson is a hot topic at the Large Hadron Collider (LHC) [1-4]. The interaction between the top quark and Higgs boson has recently been verified in the tˉtH channel [5, 6], and the next target is to measure the CP property of the Htˉt interaction in the tˉtH channel [7, 8]. The effective Lagrangian of the Htˉt interaction can be parameterized as

      L=Ytˉteiαγ5tHα[0,2π),YtR+,

      (1)

      where α denotes the CP-phase angle. Many observables and methods have been proposed in the literature [9-21], and most of them require the complete reconstruction of the kinematics of both the top quark and the antitop quark, which is very challenging. In this work, we propose a novel observable that requires reconstruction of only the top quark.

      The observable is a dihedral angle (ϕC) between the plane spanned by the incoming protons and the plane spanned by the tˉt pair in the rest frame of the Higgs boson, as depicted in Fig. 1. The head-on collision, pptˉtH, in the laboratory frame can be viewed approximately as a non-head-on “22” scattering in the rest frame of the Higgs boson, i.e., the two colliding protons produce two moving top quarks and one Higgs boson at rest. In such a picture, the non-zero 3-momenta of the incoming parton pair is equal to that of the top quark pair in the final state, while the Higgs boson merely carries away a rest energy.

      Figure 1.  (color online) Dihedral angle ϕC between the plane of incoming protons and the plane of the tˉt pair in the rest frame of the Higgs boson.

      The normalized 3-momenta of the protons, top quark, and antitop quark in the Higgs rest frame are denoted as np1,np2,nt, and nˉt, respectively; then, the cosine of the dihedral angle is

      cosϕC=|(np1×np2)(nt×nˉt)||np1×np2||nt×nˉt|.

      (2)

      Without loss of generality, we choose the XY-plane as the plane of the incoming protons and the positive X-axis along the direction of the total 3-momenta of the incoming protons. The Z-axis is chosen such that ptz>0. As the two protons are identical, it is meaningless to distinguish between ϕC and πϕC; therefore, we restrict the range of cosϕC to [0,1]. Figure 2(a) displays the normalized ϕC distributions at the 14 TeV LHC for four benchmark CP phase angles, α, i.e., α=0 (CP-even), π/4, π/3, and π/2 (CP-odd). Note that the possibility of the Higgs boson being a purely CP-odd scalar fades away when various Higgs boson production channels are considered [22-26]. The simulation is performed using MadGraph5 [27] with the CT14llo parton distribution function (PDF) [28]. While the CP-odd Higgs-top interaction exhibits a peak in the small ϕC region, the CP-even coupling has a flat distribution. The difference can be used to measure phase angle α.

      Figure 2.  (color online) Normalized distributions of ϕC (a) and ϕC (b) for various CP phase angles: α=0 (CP-even), π/4, π/3, and π/2 (CP-odd).

      To suppress the SM background, the dileptonic decay mode of tˉt in the final state is often used. Unfortunately, reconstruction of the (anti) top quark kinematics is challenging in this case. Because the charged lepton from the (anti) top quark decay is maximally correlated with the spin of the (anti) top quark [29-33], we define the dihedral angle between the plane of two charged leptons and the plane of incoming protons as follows:

      cosϕC=|(np1×np2)(n+×n)||np1×np2||n+×n|.

      (3)

      Figure 2(b) displays the ϕC distributions for the four CP phases. The ϕC distribution is distorted in the small angle region but can still be used to discriminate the CP properties of the Htˉt interaction.

    II.   COLLIDER SIMULATION
    • The α-dependence of the tˉtH production cross section at the leading order (LO) at the 14 TeV LHC can be parameterized as

      σ(α)pptˉtH=0.216sin2α+0.484cos2α(pb).

      (4)

      We perform a fast collider simulation at the parton level to demonstrate the potential of the dihedral angles, ϕC and ϕC, in the measurement of the CP phase of the Htˉt interaction. Because the dihedral angles are defined in the rest frame of the Higgs boson, it is important to reconstruct the full kinematics of the Higgs boson. Hence, we focus on the Hbˉb and Hγγ decay modes of the Higgs boson. Furthermore, we only consider the dominant SM backgrounds. Our cut-based parton-level analysis demonstrates that the dihedral angle distributions are acceptable for measuring the CP phase α, such that it can be used to expedite the BDT method.

      We generate the signal and background events at the LO using MadGraph5 [27] with the CT14llo PDF [28]. The tˉtH production rate is rescaled such that the total cross section for the CP-even Higgs case is the NLO cross section, which includes both QCD and EW corrections [34]. To mimic the detector effects, we introduce the Gaussian smearing effects in the transverse momentum (pT) of charged leptons, jets, and photons as follows:

      σe±,γpT={0.00130.03pT/GeV|η|0.5,0.00170.05pT/GeV0.5<|η|1.5,0.00310.15pT/GeV1.5<|η|2.47,σμ±pT={0.00010.01pT/GeV|η|0.5,0.000150.015pT/GeV0.5<|η|1.5,0.000350.025pT/GeV1.5<|η|2.5,σj,bpT=0.060.95pT/GeV.

      (5)

      The b-tagging efficiency is chosen as 80%, whereas the rate of a charm-jet faking a b-jet is chosen as 10%, and the fake-rate of a light-jet is 1%.

    • A.   Hγγ mode

    • In this channel, to retain more signal events, we require the semileptonic decay mode of the tˉt in the final state, i.e., tˉtbˉbjj±ν. The event topology of the signal events consists of one isolated charged lepton (e± or μ±), two b-tagged jets, two photons arising from the Higgs boson decay, two non-b-tagged jets, and large missing transverse energy from the invisible neutrino. The dominant SM background is from the channel of pptˉtγγ, whereas the other backgrounds, e.g., ppVVjjγγ, are sub-dominant.

      We impose a set of pre-selection cuts as follows:

      pbT>40GeV,|ηb|<2.5,pjT>25GeV,|ηj|<4.5,p±T>15GeV,|η±|<2.4,ET>40GeV,EleadingγT>35GeV,EsubleadingγT>25GeV,|ηγ|<2.4,ΔRik>0.4,i,k=b,±,j,γ,|mγγmH|<5GeV,

      (6)

      where ΔRik is the angular distance between objects i and k and is defined as

      ΔRik=(ηiηk)2+(ϕiϕk)2,

      (7)

      and mH denotes the mass of the Higgs boson, which is chosen to be mH=125GeV throughout this work. Assuming that the jγ fake-rate is 105, we find that the cross sections of the background processes of tˉtγj, tˉtjj, and VVjjγγ are approximately 104fb after the pre-selection cuts and can be ignored in our analysis.

      It is straightforward to reconstruct the kinematics of the Higgs boson from the two energetic photons. Furthermore, we demand three cuts, based on the property of the top quark decays, as follows:

      |mjj80GeV|<20GeV,|mbjj175GeV|<25GeV,mb<140GeV,

      (8)

      to suppress the backgrounds. The likelihood fitting method is used to pick up the correct combinations of those jets from the W-boson decay and the top quark decay. We fit the invariant mass distributions of the (b), (ν), (bν), (jj), and (bjj) systems using the likelihood functions as follows:

      Lb(m)=m(130.1)2GeV[1+(m63.8)2]×{1tanh2[m149.0+(m149.0)6+(m179.0)12]},Lν(m)=1(7.5GeV)π[1+(m81.47.5)2],Lbν(m)=1(13.1GeV)π[1+(m174.713.1)2],Ljj(m)=12π×8.3GeVexp[12(m81.0)2(8.3)2],Lbjj(m)=12π×13.6GeVexp[12(m174.7)2(13.6)2],

      (9)

      where parameter m is in GeV. Minimizing the following logarithm of the likelihood function (LL)

      2logLb2logLbν2logLν2logLjj2logLbjj

      with the Z-direction component of neutrino pνz as a variable, we determine which b-jet is from the leptonic decaying (anti-)top quark and simultaneously solve pνz. The cross sections of the signal and dominant SM background after the pre-selection cuts and reconstruction are shown in Table 1. The number of signal events after event reconstruction is small because of the small branching ratio, Br(Hγγ).

      α=0α=π/2tˉtγγ
      after pre-selection cuts0.03450.01400.0056
      after reconstruction0.01890.00740.0029

      Table 1.  Cross section (in the unit of fb) of the signal process (α=0 and α=π/2) and major background process tˉtγγ in the semileptonic mode of the top quark pair.

      Once the full kinematics of the top quark and the Higgs boson are reconstructed, we calculate the ϕC angle, defined in Eq. (2). The normalized ϕC distribution is plotted in Fig. 3. The difference between the CP-even and CP-odd Higgs bosons still remains after event reconstruction.

      Figure 3.  (color online) Normalized ϕC distribution in the pptˉtHγγ±ˉbbjj+T channel after event reconstruction.

    • B.   Hbˉb mode

    • To suppress the SM background, we consider the dileptonic decaying mode of tˉt, i.e., tˉtbˉb+νˉν. The dominant SM background is pptˉtbˉb. The event topology of the signal contains two opposite-sign charged leptons (e± or μ±), four b-tagged jets, and large missing transverse momentum. To select the signal event, we impose a set of pre-selection cuts as follows:

      pbT>40GeV,|ηb|<2.5,p±T>20GeV,|η±|<2.4,ΔRik>0.4(i,k=b,±),ET>50GeV.

      (10)

      When the two charged leptons are of the same flavor, e.g., e+e or μ+μ, we require that they not be close to the Z pole, i.e.,

      |m+mZ|>10GeV,

      (11)

      to suppress the Z+jets background. In addition, we require mμ+μ>20 GeV to suppress the background from heavy flavor hadron decay.

      When the two b-jets are from the Higgs boson decay, their invariant mass must peak near mh; therefore, we require at least one pair of b-jets satisfying the following invariant mass cut:

      |mbbmH|<25GeV.

      (12)

      The other two b-jets and two charged leptons are from the top quark decay. The invariant mass of the b-jet and the charged lepton, if they originate from the same top quark decay, is less than 140 GeV because of the spin correlation effect.

      For event reconstruction, it is crucial to determine which two b-jets are from the Higgs boson decay, which is accomplished using the likelihood fitting method in our analysis. The likelihood function of the invariant mass of the bˉb pair from the Higgs boson decay is

      Lbb(m)=12π×10.6GeVexp[12(m126.2)2(10.6)2],

      (13)

      after imposing all the cuts. Parameter m is again in GeV. The b± distributions are used to decrease contamination from the b-jets from the top quark decay. We require that any pair of b-jets and the charged leptons must satisfy the following condition,

      mb<140GeV,

      (14)

      and then fit the invariant mass distributions of the b± pair with the likelihood function, Lb, given in Eq. (9). By minimizing the discriminator,

      D=22.05logLbb0.02log2Lb++log2Lb,

      we identify the two b-jets from the Higgs boson decay. In addition, a cut of D<0 is imposed to optimize the signal-to-background ratio.

      Table 2 shows the cross section of the signal (α=0 and α=π/2) and the dominant SM backgrounds after the pre-selection cut and the event reconstruction. The rates of other backgrounds, e.g., W+W+4j, W+W+1b3j, W+W+2b2j, and W+W+3b1j, are smaller than 105fb after the pre-selection cuts and can be ignored in our analysis.

      α=0α=π/2tˉtbˉbtˉtbjtˉtjjWW4b
      pre-selection0.6010.2951.2610.02150.04600.0007
      reconstruction0.5580.2730.9450.01600.03430.0005

      Table 2.  Cross section (in the unit of fb) of the signal and background processes, where j denotes the light-flavor jet from g,u,d,s,c.

      After identifying the two b-jets from the Higgs boson decay, the other two b-jets are treated as from the top quark decays. Because of the two invisible neutrinos in the final state, it is difficult to reconstruct the top quark and antitop quark. We consider the ϕC defined in Eq. (3) and plot the normalized distributions in Fig. 4. The CP-even Higgs boson (red) and the SM background (black) have nearly the same distribution. Conversely, the CP-odd Higgs boson (black curve) exhibits a distinct distribution.

      Figure 4.  (color online) Normalized ϕC distribution in the pptˉtH4b+++ET channel.

    III.   CP-EVEN VERSUS CP-ODD
    • A purely CP-odd scalar is severely limited by the global fitting of the single Higgs boson production, the tˉtH production, and the tˉttˉt production [23, 25, 26]. It is still important to probe the CP phase directly from a single scattering process. Equipped with the ϕC and ϕC distributions for both the CP-even and the CP-odd Higgs bosons, we are ready to discuss how well the CP-odd Higgs boson can be distinguished from the CP-even one. In our study, we divide the ϕC and ϕC distributions into 10 bins and use the binned likelihood function, which is defined as follows:

      L(μ,α)Nbini=1(μsi(α)+bi)nini!eμsi(α)bi,

      (15)

      where Nbin=10, μ is the strength of the signal, bi and ni are the number of the background and observed event in the ith bin, respectively, and si(α) is the number of the signal event in the ith bin for CP phase α.

      The recent measurement of the tˉtH production shows that the signal event number is inconsistent with the SM prediction [6, 35]. Thus, we rescale μ for all the α to match the signal strength of the SM value. The logarithm of the likelihood function ratio is defined as

      2logλ(α1|α0)=2logL(ˆμ1,α1)L(ˆμ0,α0),

      (16)

      where ˆμk(k=0,1) is determined by minimizing 2logL(ˆμk,αk). Setting ni=ˆμ0s(α0)i+bi, hypothesis 1 is excluded versus hypothesis 0 with 2logλ(α1|α0)σ confidence level (CL). Using this relation, we combine the diphoton and the bˉb channels to obtain the statistical significance of distinguishing between a CP-odd Higgs boson and a CP-even Higgs boson. Figure 5 displays the exclusion significance as a function of the integrated luminosity at the 14 TeV LHC. It shows that, if the Higgs boson is a pure CP-even scalar, to exclude the pure CP-odd hypothesis at a 95% CL, an integrated luminosity of 180fb1 is needed.

      Figure 5.  (color online) Statistical significance of discriminating the CP-odd Higgs boson from the CP-even Higgs boson as a function of the integrated luminosity at the 14 TeV LHC.

    IV.   MEASUREMENT OF CP-PHASE ANGLE α
    • Now, we discuss how well CP-phase angle α can be measured from the ϕC and ϕC distributions. In general, the ϕC and ϕC distributions of the signal channel can be written as

      s(α)=Acos2α+Bcosαsinα+Csin2α.

      (17)

      Note that the A and C terms correspond to the CP-even and CP-odd contributions, respectively, and the B term is zero for the tˉtH production. After dividing the ϕC and ϕC distributions into 10 bins, we read out the CP-even (α=0) and the CP-odd (α=π/2) contributions in each bin, defined as si(0) and si(π/2), respectively. Therefore, the distribution of the signal event is given by

      si(α)=si(0)cos2α+si(π/2)sin2α.

      (18)

      The tˉtH production has been confirmed recently by both the ATLAS and the CMS collaborations, assuming a purely CP-even Higgs boson [6, 35]. The current data of the signal strength, μ=1.18+0.300.27 [35], are consistent with the SM theory, although a large experimental uncertainty exists. To explore the potential of measuring angle α in future experiments, we rescale the signal strength, μ, of input angle α to be the same as the SM theoretical prediction.

      We vary the signal strength, μ, for each input α to minimize the logarithm of the likelihood function ratio (the signal strength that minimizes the 2logL(μ,α) is denoted as ˆμ here), defined as

      2logλ(α;α0)=2logL(ˆμ,α)L(ˆμ0,α0),

      (19)

      to obtain the projected sensitivity of the α measurement. The following condition,

      2logλ(α;α0)1,

      yields the 1σ confidence interval of the measured α angle for a given input α0. As shown in Eq. (17), the signal rate depends on sin2α rather than directly on α; therefore, we first obtain the sensitivity of a future LHC experiment on sin2α. Figure 6(a) displays the projected experimental measurement of sin2αout versus theoretical input sin2αin at the 14 TeV LHC with integrated luminosities of 300fb1 (green) and 3000fb1 (yellow), respectively. The uncertainty of the sin2α measurement is large in the region where α0 and is reduced in the region where απ/2. Increasing the integrated luminosity significantly reduces the uncertainties; see the yellow band. Figure 6(b) shows the correlation between αout and αin. Because of the small production rate, it is still very challenging to obtain precise information concerning CP-phase α at the high-luminosity LHC.

      Figure 6.  (color online) Projected accuracy of the α measurement versus the input value at the LHC with integrated luminosities of 300 fb1 (green) and 3000 fb1 (yellow), respectively.

      The behavior of the contours can be qualitatively understood as follows. From the definition of the likelihood ratio given in Eq. (16), it is easy to show that

      2logλ(α;α0)=2Nbini=1{ˆμsi(α)ˆμ0si(α0)nilog[1+ˆμsi(α)ˆμ0si(α0)ni]},

      (20)

      where ni=ˆμ0si(α0)+bi. We require that the number of the signal event be the same as that in the SM case to respect the current data. As a result, this yields

      Nbini=1(ˆμsi(α)ˆμ0si(α0))=0.

      (21)

      Note that the above condition is valid only after summing over all the bins. Using a rough approximation of each bin,

      |ˆμsi(α)ˆμ0si(α0)|<ni,

      (22)

      we expand the logarithm of the likelihood ratio function to the second order and obtain

      2logλ(α;α0)i[ˆμsi(α)ˆμ0si(α0)]2ˆμ0si(α0)+bi.

      (23)

      By definition, ˆμ0=1 when α0=0, which yields

      ˆμ0=[cos2α0+isi(π/2)isi(0)sin2α0]1.

      (24)

      Through simple algebra, one can show that

      2logλ(α;α0)sin22α0,

      which explains the linear behavior of the contour in Fig. 6(a).

    V.   CONCLUSIONS AND DISCUSSION
    • We proposed a novel observable ϕC for measuring the CP property of the top quark Yukawa coupling in tˉtH production. The observable ϕC is the dihedral angle between the plane of the incoming protons and the plane of the top quark pair in the rest frame of the Higgs boson. We carry out a fast simulation of the tˉtH production with two decay modes of the Higgs boson, Hbˉb and Hγγ, and the SM background process of tˉtγγ. The CP-even Htˉt coupling and the SM background process of tˉtγγ have a similar shape in the ϕC distribution before and after the kinematic cuts. Conversely, the CP-odd coupling exhibits different ϕC distributions, such that it serves well in searching for the CP-odd coupling. At the 14 TeV LHC, with an integrated luminosity of 180fb1, one can distinguish between the CP-odd coupling and the CP-even hypothesis at the 95% confidence level.

Reference (35)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return