Processing math: 47%

General one-loop reduction in generalized Feynman parametrization form

  • The search for an effective reduction method is one of the main topics in higher loop computation. Recently, an alternative reduction method was proposed by Chen in [1, 2]. In this paper, we test the power of Chen's new method using one-loop scalar integrals with propagators of higher power. More explicitly, with the improved version of the method, we can cancel the dimension shift and terms with unwanted power shifting. Thus, the obtained integrating-by-parts relations are significantly simpler and can be solved easily. Using this method, we present explicit examples of a bubble, triangle, box, and pentagon with one doubled propagator. With these results, we complete our previous computations in [3] with the missing tadpole coefficients and show the potential of Chen's method for efficient reduction in higher loop integrals.
  • The calculation of multi-loop integrals is essential when theoretically predicting the scatting amplitude of a given process. For these calculations, the PV-reduction method [4] is a widely used approach, and one way to implement the reduction method is to use the integrating-by-parts (IBP) relation [57]. As one of the most powerful techniques for loop integral reduction, IBP gives a large number of recurrence relations, and the reduction can be represented by a combination of simpler integrals via Gauss elimination. However, as the propagator number and power increase, the IBP method becomes inefficient; hence, more efficient reduction methods must be found.

    The unitarity cut method is an alternative reduction method and has been proven to be useful for one-loop integrals [817]. In a physical one-loop process, the power of the propagator is just one; however, if the method is complete, it should be able to reduce integrals with higher power propagators. Such a situation is not simply a theoretical curiosity but appears in higher loop diagrams as a sub-diagram. Furthermore, although the scalar basis is natural for one-loop integrals, in general, the choice of basis can be different, depending on the physical input. For example, in the topology of a one-loop bubble, the basis, in which one propagator has a power of two, could be used as part of the UT-basis [18, 19].

    In a previous study [3], we successfully obtained an analytical reduction result for one-loop integrals with high power propagators by combining the tricks of differential operators and unitarity cut. We gave coefficients to all bases except the tadpoles'; however, the unitarity method could not be used because the tadpole has only one propagator. To complete this investigation, the missing tadpole coefficients must be found using other efficient methods.

    Other than the unitarity cut method, there are proposals to overcome the difficulties of IBP using tricks and other representations of integrals, such as the Baikov representation [20, 21] and Feynman parametrization representation [22, 23] for loop integrals. In recent years, Chen proposed a new representation for loop integrals [1, 2]. His method is based on the generalized Feynman parametrization representation, that is, an extra parameter xn+1 is introduced to combine U,F in the standard Feynman parametrization representation. Such a generalization will offer several benefits when deriving the IBP recurrence relation, as shown in this paper.

    As a common feature, the IBP recurrence relation derived using the generalized Feynman parametrization representation will naturally have terms in different spacetime dimensions. Because we are always concerned with reducing a particular dimension D, which is typically set to 42ϵ for renormalization, we wish to cancel these terms in different dimensions. In general, this is not easy. In [24], Gluza, Kajda, and Kosower showed how to avoid the change in the power of propagators in standard momentum space. Larsen and Zhang considered the Baikov representation and demonstrated how to eliminate both dimensional shifting and the change in the power of propagators [2530]. These methods require a solution to the syzygy equations, which is generally not easy. In Chen's second paper [2], he proposed a new technique to simplify the recurrence relation based on non-commutative algebra.

    Motivated by the above discussion and preparing Chen's method for high-loop computations, in this paper, we use Chen's method to find the missing tadpole coefficients from our previous study. Furthermore, we use the idea of removing terms with dimensional shifting in the derived IBP relation to construct a simpler reduction method, with the analytic results expressed by the elements of the coefficient matrix ˆA.

    This paper is organized as follows: In section II, we review and illustrate Chen's new method with a simple example in section II.A. In the example, integrals naturally emerge in different dimensions. We discuss the physical meaning of the boundary terms, which contribute to the sub-topologies. To cancel dimensional shifting in the parametrization form and simplify the IBP relation, a new trick is proposed in section II.B in which free auxiliary parameters are added based on the fact that F in the integrand is a homogeneous function of xi with degree L+1. Using this trick, we successfully cancel dimensional shifting and drop the terms that we are not concerned with. Moreover, we present a simplified IBP relation in which all the integrals are in the particular dimension D and integrals other than the target have a lower total propagator power. The analytic result is presented as a determinant of the cofactor of the matrix ˆA, which is entirely determined by a graph. In section III, we calculate a triangle I3(1,1,2), box I4(1,1,1,2), and pentagon I5(1,1,1,1,2) in parametric form using this trick and present the analytic results of all coefficients to the master basis, especially the tadpole parts, to complement our previous study.

    In this section, we introduce a new reduction method proposed by Chen in [1]. The general form of a loop integral is given by

    I[N(l)](k)=dDl1dDl2dDlLN(l)Dk11Dk22Dk33Dknn,

    (1)

    where, for simplicity, we denote l=(l1,l2,l3,,lL) and k=(k1,k2,k3,,kn). Because we consider only scalar integrals with N(l)=1 in this paper, let us label

    I(L;λ1+1,,λn+1)=dDl1dDlL1Dλ1+11Dλn+1n.

    (2)

    Using the Feynman parametrization procedure,

    LiαiDi=Li,jAijlilj+2Li=1Bili+C,

    (3)

    and thus loop integrals can be found as

    dDl1dDlLei(αiDi)=eiπL(1D2)/2πLD/2(DetA)D/2×ei(CA1ijBiBj).

    (4)

    Defining U(α)=DetA and CA1ijBiBjV(α)/U(α)m2iαi , we can see that U(α) is a homogeneous function of αi with degree L, whereas V(α) is a homogeneous function of αi with degree L+1. The loop integral becomes

    I(L;λ1+1,,λn+1)=e((λi+1)/2)iπΠni=1Γ(λi+1)eiπL(1D/2)/2πLD/2×dα1dαnU(α)D/2ei[V(α)/U(α)m2iαi]αλ11αλnn.

    (5)

    To derive the parametric form suggested by Chen, we perform the following: Using the α-representation of general propagators,

    1(l2m2)λ+1=e((λ+1)/2)iπΓ(λ+1)0dαeiα(l2m2)αλ,Im{l2m2}>0,

    (6)

    where "iϵ" is neglected, we obtain

    I(L;λ1+1,,λn+1)=eni((λi+1)/2)iπΠni=1Γ(λi+1)dDl1dDlL×0dα1dαneini=1αiDiαλ11αλnn.

    (7)

    To go further, we change the integral variables to αi=ηxi. Because there is a total of n independent variables, we must insert another constraint condition. In general, we could let

    iS(1,2,3,n)xi=1,

    (8)

    where S is an arbitrary non-trivial subset of {1,2,3,n}. After carrying out the integration over η, the second line of Eq. (5) becomes

    (i)(n+λDL/2)Γ(n+λDL2)×dx1dxnδ(jSxj1)U(x)n+λ(D/2)(L+1)[V(x)+U(x)m2ixi]n+λDL/2xλ11xλnn=(i)n+λDL/2Γ(n+λDL2)dx1dxnδ(jSxj1)Uλufλfxλ11xλnn,

    (9)

    where

    U(x)=ηLU(α)=ηLU(ηxi),V(x)=ηL1V(α)=ηL1V(ηx),f(x)=V(x)+U(x)m2ixiλ=ni=1λi,λu=n+λD2(L+1),λf=nλ+DL2.

    (10)

    Finally, via Mellin transformation

    Aλ1Bλ2=Γ(λ1λ2)Γ(λ1)Γ(λ2)0dx(A+Bx)λ1+λ2xλ21,

    (11)

    we can express (9) as

    (i)n+λDL/2Γ(n+λDL2)Γ(λuλf)Γ(λu)Γ(λf)dx1dxnδ(jSxj1)0dxn+1×(Uxn+1+f)λu+λfxλu1n+1xλ11xλnn(i)n+λDL/2Γ(n+λDL/2)Γ(λuλf)Γ(λu)Γ(λf)dΠ(n+1)Fλ0xλ11xλnnxλn+1n+1(i)n+λDL/2Γ(n+λDL2)Γ(λuλf)Γ(λu)Γ(λf)iλ0;λ1,λn,

    (12)

    where

    dΠ(n+1)=dx1dxn+1δ(jSxj1),F=Uxn+1+f,λ=ni=1λi,λ0=λu+λf=D2,λn+1=λu1=D2(L+1)λ1n.

    (13)

    Combined, we finally obtain the parametric form of the scalar loop integrals in (5),

    I(L;λ1+1,,λn+1)=(1)n+λiLπLD/2Γ(λ0)Πn+1i=1Γ(λi+1)iλ0;λ1,λn.

    (14)

    The parametric form of (14) is the starting point of Chen's proposal. The IBP relations in this form are given by

    dΠ(n+1)xi{Fλ0xλ11xλnnxλn+1+1n+1}+δλi,0dΠ(n){Fλ0xλ11xλnnxλn+1+1n+1}|xi=0=0

    (15)

    where i=1,...,n+1, and dΠ(n) in the second term is

    dΠ(n)=dx1^dxidxndxn+1δ(jSxj1).

    (16)

    The second term in (15) contributes to a boundary term, which leads to the sub-topologies of the former term.

    To illustrate the IBP relation (15), we present the reduction in I2(1,2) as an example. The general form of one-loop bubble integrals is given by

    I2(m+1,n+1)=dDl(l2m21)m+1((lp1)2m22)n+1,

    (17)

    and the corresponding parametric form is (in this paper, we ignore the former factor πLD/2)

    I2(m+1,n+1)=i(1)m+n+2×Γ(D2)Γ(m+1)Γ(n+1)Γ(D2mn)×dΠ(3)Fλ0xm1xn2xλ33,

    (18)

    where

    F=(x1+x2)(m21x1+m22x2+x3)p21x1x2,

    (19)

    and

    iλ0;m,n=dΠ(3)Fλ0xm1xn2xλ33,

    (20)

    with λ0=D2, and λ3=3mn2λ0. Using Eq. (15), we can obtain three IBP recurrence relations. First, taking x1, the first term in (15) gives

    λ0iλ01;m,n+2m21λ0iλ01;m+1,n+Δλ0iλ01;m,n+1,

    (21)

    where Δ=m21+m22p21. The second term gives

    δm,0dΠ(2)(x3+m22x2)λ0xn+λ02x2n2λ03=δm,0iλ0;1,n.

    (22)

    Here, the notation iλ0;1,nmust be explained. From the middle expression of (22), we see that it is the parametric form of the tadpole dDl/(l2m22)n+1. To emphasize its origin, that is,from a bubble by removingthe first propagator, we extend the definition of iλ0;λ1,...,λn given in (12) by setting λ1=1 . Using the extended notation, we obtain the first IBP relation

    λ0iλ01;m,n+2m21λ0iλ01;m+1,n+Δλ0iλ01;m,n+1+δm,0iλ0;1,n=0.

    (23)

    When we set m=n=0 in (23), this reads

    λ0iλ01;0,0+2m21λ0iλ01;1,0+Δλ0iλ01;0,1+iλ0;1,0=0.

    (24)

    Similarly, we can take the differential x2 and obtain the second IBP relation

    λ0iλ01;0,0+Δλ0iλ01;1,0+2m22λ0iλ01;0,1+iλ0;0,1=0.

    (25)

    We should solve iλ0;0,1 by iλ0;0,0 from (24) and (25). However, for the bubble part, we have λ01 instead of λ0. This could be fixed by rewriting λ0λ0+1 because λ0 is a free parameter. However, the boundary tadpole part iλ0;0,1 will become iλ0+1;0,1, that is, it will have the dimensional shifting, which is a common feature in the parametric IBP relation.

    To deal with this, using the parametric form of tadpoles

    iλ0;m,1=dΠ(2)(x1x3+m21x21)λ0xm1x2m2λ03

    (26)

    and taking the x1 and x3, we can obtain two IBP relations,

    λ0iλ01;m,1+2m21λ0iλ01;m+1,1+miλ0,m1,1=0,λ0iλ01;m+1,1+(1m2λ0)iλ0;m,1=0,

    (27)

    from which we solve

    iλ0;0,1=λ02m21(2λ0+1)iλ01;0,1,iλ0;1,0=λ02m22(2λ0+1)iλ01;1,0.

    (28)

    Inserting (28) into (24) and (25), we can solve iλ01;0,1. After shifting λ0λ0+1, we finally get

    iλ0;0,1=2m21ΔΔ24m21m22iλ0;0,0+1(2λ0+3)(Δ24m21m22)iλ0;0,1+Δ2m22(2λ0+3)(Δ24m21m22)iλ0;1,0.

    (29)

    Translating back to the scalar basis, we obtain the reduction in I2(1,2) as

    I2(1,2)=c22I2(1,1)+c21ˉ2I2(1,0)+c21;ˉ1I2(0,1),

    (30)

    with the coefficients

    c22=(D3)(Δ2m21)Δ24m21m22,c21;ˉ2=D2Δ24m21m22,c21;ˉ1=(D2)Δ2m22(4m21m22Δ2).

    (31)

    This result is confirmed with FIRE6 [31, 32].

    As shown in the previous subsection, the IBP relation given in (15) will contain integrals with dimension shift, which makes the reduction program slightly troublesome. As reviewed in the introduction, there are several references dealing with this or related problems. Based on these studies, an improved version of the IBP relation has been given in [2] (see Eq. (12) and (13)). All these methods require a solution to the syzygy equations, which is not generally an easy task. However, for our one-loop integrals, the function F(x) is a homogeneous function of xi with degree of two. This good property simplifies the related syzygy equations, which can then be directly solved. In this paper, we develop a direct algorithm to express the IBP relations without dimension shift and terms with unwanted higher power propagators.

    In the generalized parametric representation, our improved IBP relation involves multiplying Eq. (15) by a degree zero coefficient zi, for example, zi=xα1xβ2xαβ3. Because the degree of the new integrand does not change, the IBP identity still holds. Summing them together we get

    n+1i=1dΠ(n+1)xi{ziFλ0xλ11xλ22xλn+1+1n+1}+n+1i=1δλi,0dΠ(n)ziFλ0xλ11xλnnxλn+1n+1|xi=0=0.

    (32)

    Because the second boundary term involves integrals with sub-topologies, we focus on the first term. Expanding it, we get

    dΠ(n+1)[n+1i=1(zixi+λ0ziFxiF+λizixi)+zn+1xn+1]×Fλ0xλi1xλ22xλnnxλn+1+1n+1.

    (33)

    From (13), we can see that the power λ0 of F is related to dimension. To cancel the dimension shift, we must choose the proper coefficients zi so that n+1i=1ziFxi is a multiple of the function F, that is,

    n+1i=1ziFxi+BF=0.

    (34)

    Because the coefficients zi are not polynomials, (34) is not the "normal syzygy equation," and we cannot directly use the technique developed for the polynomial ring. In [2], Chen developed a method based on the lift and down operators. Here, for the one-loop integrals, we can solve it directly with free auxiliary parameters, as shown later in this paper. When reinserting the solutions to the IBP recurrence relation, we can choose these free parameters to cancel both the dimension shift and unwanted terms with higher power propagators, which leads to a simpler recurrence relation.

    Now, the idea is explained in detail. Note that in the one loop case, the homogeneous function F is a degree two function of xi; therefore, we can write F as

    F=12Aijxixj,

    (35)

    where A is a symmetric matrix. Thus, we have

    fiFxi,ˆf=ˆAˆx,ˆf[f1f2fnfn+1],ˆx[x1x2xnxn+1],

    Solving ˆx=ˆA1ˆf, we have

    F=12ˆxTAˆx=12ˆfT(ˆA1)TˆAˆA1ˆf=12ˆfT(ˆA1)TˆfˆfTˆKˆf,K=12A1,

    (36)

    where the coefficient matrix ˆK is a real symmetry matrix. In fact, we can go further. Using

    0=ˆfTˆKAˆf

    (37)

    with any antisymmetric matrix KA, we can add (37) to (36) to obtain a more general form

    F=ˆfTˆKˆf+ˆfTˆKAˆf=ˆfT(ˆK+ˆKA)ˆfˆfTˆRˆf=ˆfTˆRˆAˆxˆfTˆQˆx,ˆQ12ˆI+ˆKAˆA.

    (38)

    Note that because the arbitrary matrix ˆKA is of rank n+1, there are n(n+1)2 free independent parameters, a1,,a(n(n+1))/2, in the matrix ˆQ in (38).

    Now, reinserting (38) into (34), we can solve ˆz as

    ˆfTˆz+BˆfTˆQˆx=0,ˆz=BˆQˆx.

    (39)

    Note that because z is degree zero, we should ensure B is a homogenous function of degree 1. In this study, we choose B=1/xn+1. The choice of z given by (39) will guarantee the removal of dimension shift in the IBP relation. Furthermore, by choosing particular values of the free parameters of ˆQ, we may cancel several unwanted terms. Some examples are shown in later computations to illustrate this trick.

    As mentioned in the introduction, one motivation of this study is to complete reduction in the scalar basis with general powers. Using the unitarity cut method in [3], we are able to find reduction coefficients of all bases, except the tadpole. In this section, we will use the improved IBP relation (32) to find the tadpole coefficients as well as other coefficients.

    We begin with bubble topology. Although this was already done in (30), we redo it using the improved IBP relation (32). The parametric form of bubble is given by (18), (19), and (20). Using our label, we have

    ˆf=ˆAˆx,ˆA=[2m21Δ1Δ2m221110],

    (40)

    and

    F=ˆfTˆKˆf,ˆK=[14p2114p21m21+m22+p214p2114p2114p21m21m22+p214p21m21+m22+p214p21m21m22+p214p21Δ24m21m224p21].

    (41)

    Adding the antisymmetric matrix KA, we have

    ˆKA=[0a1a2a10a3a2a30],ˆQ=[1+2a2+2a1m21+2a1m222a1p212a2+2a1m22a1a32a1m211+2a32a1m212a1m22+2a1p212a12a2m21a3(m21+m22p21)2a3m22a2(m21+m22p21)12a22a32].

    (42)

    1   Deriving the recurrence relation

    Taking B=1/x3 in (34), solution (39) gives zi=(Qijxj)/x3. Expanding (32), we obtain the IBP recurrence relation

    cm,niλ0;m,n+cm+1,niλ0;m+1,n+cm+1,n1iλ0;m+1,n1+cm,n+1iλ0;m,n+1+cm1,n+1iλ0;m1,n+1+cm,n1iλ0;m,n1+cm1,niλ0;m1,n+δ2=0,

    (43)

    where δ2 is the boundary term, which we will compute later. The other coefficients are

    cm,n=Q11(1+m)+Q22(1+n)+Q33(1+λ3)+λ0,cm+1,n=Q31λ3=λ3(a2A11+a3A21),cm+1,n1=Q21n=n(a1A11a3A31),

    cm,n+1=Q32λ3=λ3(a2A12a3A22),cm1,n+1=Q12m=m(a1A22+a2A32),cm,n1=Q23n=n(a1A13a3A33),cm1,n=Q13m=m(a1A32+a2A33).

    (44)

    Because we aim to obtain the reduction in I2(1,2), starting from m=n=0, we want to eliminate terms with the indices (m+1,n) and (m+1,n1) while keeping the term with the index (m,n+1). Thus, we impose cm+1,n=0 and cm+1,n1=0, which can be satisfied by choosing the free parameters

    a2=a1A21A31=a1(m21+m22p21),a3=a1A11A31=2a1m21.

    (45)

    After this choice, the matrix ˆQ becomes

    ˆQ;r=[12a1A31(A22A31A21A32)a1A31(A23A31A21A33)012a1A31(A12A31A11A32)a1A31(A11A33A13A31)0a1A31(A12A21A11A22)12+a1A31(A13A21A11A23)],

    leaving five terms with non-zero coefficients.

    cm,n+1=a1λ3A31(A11A22A12A21)=a1λ3A31|˜A33|=a1λ3,cm1,n+1=ma1A31(A21A32A22A31)=ma1A31|˜A13|=a1m(m21m22p21),cm,n1=na1A31(A11A33A13A31)=na1A31|˜A22|=a1n,cm1,n=ma1A31(A21A33A23A31)=ma1A31|˜A12|=a1m,cm,n=a1A31((1+n)(A11A32A12A31)(λ3+1)(A11A23A13A21))=a1A31(nλ3)|˜A23|=a1A31((nλ3)(m21m22+p21)).

    (46)

    The boundary δ2 term: The δ2 term is given by

    δ2=3i=1δλi,0dΠ(2){ziFλ0xm1xn2xλ3+13}|xi=0,

    (47)

    where λi represents the power of xi. It is worth emphasizing that because zi contains xi, the total power λi of xi is not equal to m,n,λ3 in general. Expanding it, we get

    δ2=δλ1,0dΠ(2)(Q11Fλ0xm+11xn2xλ33+Q12Fλ0xm1xn+12xλ33+Q13Fλ0xm1xn2xλ3+13)|x1=0+δλ2,0dΠ(2)(Q21Fλ0xm+11xn2xλ33+Q22Fλ0xm1xn+12xλ33+Q23Fλ0xm1xn2xλ3+13)|x2=0.

    (48)

    Remembering our extended notation explained under (22), we have

    dΠ(2)F|λ0x1=0xn2iλ0;1,n,dΠ(2)F|λ0x2=0xm1iλ0;m,1,

    (49)

    and the δ2 term can be written as

    δ2;r=δλ1,0(Q11;riλ0;m+1,n+Q12;riλ0;m,n+1+Q13;riλ0;m,n)+δλ2,0(Q21;riλ0;m+1,n+Q22;riλ0;m,n+1+Q23;riλ0;m,n)=δm,1Q11;riλ0;1,n+δm,0Q12;riλ0;,1,n+1+δm,0Q13;riλ0;1,n+δn,0Q21;riλ0;m+1,1+δn,1Q22;riλ0;m,1+δn,0Q23;riλ0;m,1,

    (50)

    where the subscript r in δ2;r and Qij;r indicates that a2 and a3 should be replaced by (45).

    Because m and n cannot be 1, the first and fifth terms are actually zero.

    Now, we can use (43) and (50) to get our result directly. Setting m=0, n=0, and all other terms in (43) equal to zero, and we are left with

    c0,0iλ0;0,0+c0,1iλ0;0,1+δ2;00=0,

    (51)

    with the coefficients

    c0,0=a1(D3)(m21m22+p21),c0,1=a1(D3)(m41+m42p412m21p212m22p212m21m22),δ2;00=Q12;riλ0;1,1+Q13;riλ0;1,0+Q21;riλ0;1,1+Q23;riλ0;0,1,

    (52)

    where

    Q21;r=a1A31(A21A32A22A31)=a1A31|˜A13|,Q23;r=a1A31(A11A33A13A31)=a1A31|˜A22|,Q12;r=a1A31(A21A32A22A31)=a1A31|˜A13|,Q13;r=a1A31(A21A33A23A31)=a1A31|˜A12|.

    (53)

    From this, we can directly write the solution as

    iλ0;0,1=c0,0c0,1iλ0;0,0Q21;rc0,1iλ0;1,1Q23;rc0,1iλ0;0,1Q12;rc0,1iλ0;1,1Q13;rc0,1iλ0;1,0.

    (54)

    Translating back to scalar integrals, it is

    I2(1,2)=c1211I2(1,1)+c1210I2(1,0)+c1220I2(2,0)+c1201I2(0,1)+c1202I2(0,2),

    (55)

    with c1220=0 and

    c1211=(3+D)(m21m22+p21))(m41+(m22p21)22m21(m22+p21),c1210=D22m21(m22+p21)+m41+(m22p21)2c1201=2D2m21(m22+p21)+m41+(m22p21)2,c1202=m21+m22+p212m21(m22+p21)+m41+(m22p21)2.

    (56)

    Using I2(2,0)=D22m21I2(1,0) and I2(0,2)=D22m22I2(0,1), we have our final results for the reduction in I2(1,2),

    I2(1,2)=c22I2(1,1)+c21;ˉ2I2(1,0)+c21;ˉ1I2(0,1),

    (57)

    with the coefficients

    c22=(D3)(m21m22+p21)2m21(m22+p21)+m41+(m22p21)2,c21;ˉ2=D22m21(m22+p21)+m41+(m22p21)2,c21;ˉ1=(D2)(m21+m22p21)2m22(2m21(m22+p21)+m41+(m22p21)2),

    (58)

    which is given in (30).

    Now, let us consider more complicated examples, that is, bubbles with general higher power propagators. With the choice of (45), we get an IBP recurrence relation (46) and use it to reduce the bubbles iλ0,m,n+1 to simpler bubbles, which have a lower total propagator power and no higher power in D2. Similarly, by choosing different values of a2 and a3, we can obtain another IBP recurrence relation to reduce the integral to those with no higher power in D1. The choice is

    a2=a1A22A32,a3=a1A12A32,

    (59)

    and the corresponding IBP recurrence is

    cm+1,niλ0,m+1,n+cm+1,n1iλ0,m+1,n1+cm,n1iλ0,m,n1+cm1,niλ0,m1,n+cm,niλ0,m,n+δ2;r=0,

    (60)

    with the coefficients

    cm+1,n=(|˜A33|)(D3mn),cm+1,n1=n|˜A23|,cm,n1=n|˜A21|,cm1,n=m|˜A11|,cm,n=|˜A13|(3+2m+nD),

    (61)

    and the boundary term

    δ2;r=δm,0|˜A11|iλ0,m,n+δn,0(|˜A32|iλ0,m+1,n+|˜A21|iλ0,m,n).

    (62)

    Combining (46) and (60), we can reduce the general bubbles.

    1   Example: I2(1,3)

    In the example I2(1,3), we simply need to reduce D2 from power 3 to 1. The strategy is to use (46) twice. In the first step, by setting m=0 and n=1 in (46), we get

    I2(1,3)=|˜A23|(D5)2|˜A33|I2(1,2)+|˜A22|(D3)2|˜A33|I2(1,1)+|˜A12|(D3)2|˜A33|I2(0,2)+|˜A13||˜A33|I2(0,3).

    (63)

    For the first term in (63), setting m=0 and n=0 in (46) again, we have

    I2(1,2)=|˜A23|(D3)|˜A33|I2(1,1)+|˜A22|(D2)|˜A33|I2(1,0)+|˜A13||˜A33|I2(0,2)+|˜A12|(D2)|˜A33|I2(0,1).

    (64)

    Inserting (64) into (63) and using the reduction in the tadpole, we get

    I2(1,3)=c1311I2(1,1)+c1310I2(1,0)+c1301I2(0,1),

    (65)

    with the coefficients

    c1311=(|˜A23||˜A33|+|˜A23|2(D5))(D3)2|˜A33|2,c1310=|˜A22||˜A23|(D5)(D2)2|˜A33|2,c1301=(D2)8|˜A33|2m42A21(2A32|˜A23|(D5)m22+A32At33(D4)4A33|˜A23|(D5)m422A33|˜A33|(D3)m22)A22A31(2|˜A23|(D5)m22+At33(D4))+2A23A31m22(2|˜A23|(D5)m22+|˜A33|(D3)).

    (66)

    The result is confirmed with FIRE6. In this example, we simply need to solve two equations to reduce the bubble topology.

    2   Example: I2(3,5)

    For this example, we must use (60) to lower the power of D1 and (46) to lower the power of D2. Setting m=1 and n=4 in (60), we can reduce I2(3,5) to I2(2,4), I2(2,5), I2(1,5), and I2(3,4).

    I2(3,5)=|˜A11|(D7)2|˜A33|I2(1,5)+|˜A13|(D9)2|˜A33|I2(2,5)+|˜A21|(D7)2|˜A33|I2(2,4)+|˜A23||˜A33|I2(3,4).

    (67)

    Then, setting m=1 and n=3 in (60), we reduce I2(3,4) to I2(1,4), I2(2,3), I2(2,4), and I2(3,3).

    I2(3,4)=|˜A23||˜A33|I2(3,3)+|˜A13|(D8)2|˜A33|I2(2,4)+|˜A21|(D6)2|˜A33|I2(2,3)+|˜A11|(D6)2|˜A33|I2(1,4).

    (68)

    Using the same idea, we must solve 14 equations to completely reduce I2(3,5). The analytic expressions for these 14 equations have also been confirmed by FIRE6.

    The triangle I3(m+1,n+1,q+1) is given by

    I3(m+1,n+1,q+1)=dDl(l2m21)m+1((lp1)2m22)n+1((l+p3)2m23)q+1.

    (69)

    Its parametric form is

    I3(m+1,n+1,q+1)=i(1)3+m+n+qΓ(λ0)Γ(m+1)Γ(n+1)Γ(q+1)Γ(λ4+1)iλ0,m,n,q,

    (70)

    where

    iλ0;m,n,q=dΠ(4)Fλ0xm1xn2xq3xλ44,λ0=D2,λ4=42λ0mnq=D4mnq.

    (71)

    Using expression (10), we have

    U(x)=x1+x2+x3,V(x)=x1x2p21+x1x3p23+x2x3p22,f(x)=V+Um2ixi=(x1+x2+x3)(x1m21+x2m22+x3m23)x1x2p21x2x3p22x1x3p23,F(x)=U(x)x4+f(x)=(x1+x2+x3)×(m21x1+m22x2+m23x3+x4)x1x2p21x2x3p22x1x3p23.

    (72)

    Thus, we can express the matrices as

    ˆA=[2m21m21+m22p21m21+m23p231m21+m22p212m22m22+m23p221m21+m23p23m22+m23p222m2311110],ˆKA=[0a1a2a3a10a4a5a2a40a6a3a5a60],ˆQ=12ˆI+ˆKAˆA.

    (73)
    1   Deriving the recurrence relation

    Taking B=1x4 in (39), we get zi=Qijxjx4. Taking this relation into our IBP identities (32), we get

    4i=1dΠ(4){ziFλ0xm1xn2xq3xλ4+14}+δ3=0,

    (74)

    for which we deal with the boundary δ3 term later. After expanding the first term, we get

    cm,n,qiλ0;m,n,q+cm+1,n,qiλ0;m+1,n,q+cm+1,n,q1iλ0;m+1,n,q1+cm+1,n1,qiλ0;m+1,n1,q+cm1,n+1,qiλ0;m1,q+1,q+cm,n+1,q1iλ0;m,n+1,q1+cm,n+1,qiλ0;m,n+1,q+cm,n,q+1iλ0;m,n,q+1+cm,n1,q+1iλ0;m,n1,q+1+cm1,n,q+1iλ0;m1,n,q+1+cm1,n,qiλ0;m1,n,q+cm,n1,qim,n1,q+cm,n,q1iλ0;m,n,q1+δ3=0,

    (75)

    with the coefficients

    cm,n,q=λ0+(m+1)Q11+(n+1)Q22+(q+1)Q33+(λ4+1)Q44,cm+1,n,q=λ4Q41,cm+1,n,q1=qQ31,cm+1,n1,q=nQ21,cm,n,q1=qQ34,cm1,n+1,q=mQ12,cm,n+1,q1=qQ32,cm,n+1,q=λ4Q42,cm,n,q+1=λ4Q43,cm,n1,q+1=nQ23,cm1,n,q+1=mQ13,cm1,n,q=mQ14,cm,n1,q=nQ24.

    (76)

    Now, we can choose particular values for our six parameters a1, a2, a3, a4, a5, and a6 to let the coefficients cm+1,n,q, cm+1,n,q1, cm+1,n1,q, cm1,n+1,q, cm,n+1,q, and cm,n+1,q be zero. The solutions are

    a2=a1A21A42A22A41A31A42A32A41=a1(m21+m22+p21)m21+m22+2(p1p2)+p21,a3=a1(A21A32A22A31)A31A42A32A41=a1(m21m22p21)(m22+m23p22)m21+m22+2(p1p2)+p212a1m22,a4=a1(A11A42A12A41)A31A42A32A41=a1(m21m22+p21)m21+m22+2(p1p2)+p21,a5=a1(A11A32A12A31)A31A42A32A41=a1(m21m22+p21)(m21+m232(p1p2)p21p22)m21+m22+2(p1p2)+p21+2a1m21,a6=a1(A11A22A12A21)A31A42A32A41=a1(m412m21(m22+p21)+(m22p21)2)m21+m22+2(p1p2)+p21.

    (77)

    Then, the matrix ˆQ becomes

    ˆQr=1ΔA[12ΔA0a1|˜A14|a1|˜A13|012ΔAa1|˜A24|a1|˜A23|0012ΔA+a1|˜A34|a1|˜A33|00a1|˜A44|12ΔAa1|˜A43|],ΔA=Det[A31A32A41A42]=A31A42A32A41.

    After this, we obtain the reduced IBP relation, where only the propagator D3=(l+p3)2m23 has one increasing power,

    cm,n,qiλ0;m,n,q+cm,n,q+1iλ0;m,n,q+1+cm,n1,q+1iλ0;m,n1,q+1+cm1,n,q+1iλ0;m1,n,q+1+cm1,n,qiλ0;m1,n,q+cm,n1,qiλ0;m,n1,q+cm,n,q1iλ0;m,n,q1+δ3;r=0,

    (78)

    with the coefficients

    cm,n,q=λ0+mQ11;r+nQ22;r+qQ33;r+Q11;r+Q22;r+Q33;r+λ4Q44;r+Q44;r,cm,n,q+1=λ4Q43;r=a1λ4A31A42A32A41|˜A44|,cm,n1;q+1=nQ23;r=a1nA31A42A32A41|˜A24|,cm1,n,q+1=mQ13;r=a1mA31A42A32A41|˜A14|,cm1,n,q=mQ14;ra1mA31A42A32A41|˜A13|,cm,n1,q=nQ24;r=a1nA31A42A32A41|˜A23|,cm,n,q1=qQ34;r=a1qA31A42A23A41|˜A33|,

    (79)

    where the subscript r in δ3;r and Qij;r indicates that the parameters a2 to a6 should be replaced by (77).

    The reduction in the boundary δ3 part: Similar to the bubble situation, inserting the value of zi into the δ3 part, we obtain

    δ3;r=(δm+1,0Q11;r+δm,0Q14;r)iλ0,1,n,q+δm,0Q12;riλ0,1,n+1,q+δm,0Q13;riλ0,1,n,q+1+δn,0Q21;riλ0,m+1,1,q+(δn+1,0Q22;r+δn,0Q24;r)iλ0,m,1,q+δn,0Q23;riλ0,m,1,q+1+δq,0Q31;riλ0,m+1,n,1+δq,0Q32;riλ0,m,n+1,1+(δq+1,0Q33;r+δq,0Q34;r)iλ0,m,n,1,

    (80)

    where iλ0,m,n,1, iλ0,m,1,q, and iλ0,1,n,q contribute to the sub-topology of the triangle, that is, the bubble.

    2   Triangle example: I3(1,1,2)

    Now, we apply the complete recurrence relation to the example I3(1,1,2). Setting m=n=q=0 in (78), we obtain

    c0,0,0iλ0,0,0,0+c0,0,1iλ0,0,0,1+δ3;000=0,

    (81)

    with the coefficients

    c0,0,1=λ4Q43;r=1m21+m22+2(p1p2)+p21×{2a1(D4)(m41p222m21(m22((p1p2)+p22)m23(p1p2)+p22((p1p2)+p21))+m42(2(p1p2)+p21+p22)+m22(2(p1p2)(2(p1p2)+p21+p22)2m23((p1p2)+p21))+p21(m432m23((p1p2)+p22)+p22(2(p1p2)+p21+p22)))},c0,0,0=D2+Q11;r+Q22;r+Q33;r+(D3)Q44;r=2a1(D4)(m21(p1p2)m22((p1p2)+p21)+p21(m23(p1p2)p22))m21+m22+2(p1p2)+p21.

    (82)

    In (81), only two terms of triangle topology remain: one is the scalar basis, and the other is the target we want to reduce. The other five terms in (78) disappear owing to the expression in (79). Thus, there is no need to solve mixed IBP relations. The δ3 term becomes

    δp;000δp;r|m=0,n=0,q=0=Q14;riλ0,1,0,0+Q12;riλ0,1,1,0+Q13;riλ0,1,0,1+Q21;riλ0,1,1,0+Q24;riλ0,0,1,0+Q23;riλ0,0,1,1+Q31;riλ0,1,0,1+Q32;riλ0,0,1,1+Q34;riλ0,0,0,1.

    (83)

    Translating back to the I form, we obtain the result

    I3(1,1,2)=c3111I3(1,1,1)+c3110I3(1,1,0)+c3101I3(1,0,1)+c3011I3(0,1,1)c3210I3(2,1,0)+c3201I3(2,0,1)+c3120I3(1,2,0)+c3021I3(0,2,1)c3102I3(1,0,2)+c3012I3(0,1,2),

    (84)

    with the coefficients

    c3111=c0,0,0Γ(D3)c0,0,1Γ(D4),c3110=Q34;rΓ(D2)c0,0,1Γ(D4),c3101=Q24;rΓ(D2)c0,0,1Γ(D4),c3011=Q14;rΓ(D2)c0,0,1Γ(D4),c3210=Q31;rΓ(D3)c0,0,1Γ(D4),c3201=Q21;rΓ(D3)c0,0,1Γ(D4),c3021=Q12;rΓ(D3)c0,0,1Γ(D4),c3120=Q32;rΓ(D3)c0,0,1Γ(D4),c3102=Q23;rΓ(D3)c0,0,1Γ(D4),c3012=Q13;rΓ(D3)c0,0,1Γ(D4).

    (85)

    The final step is to reduce bubbles that have one propagator with the power two. This problem has been solved in the previous subsection (see (57)). With proper relabeling of the external variables of the last six terms in (84) and collecting all coefficients together, we get

    I3(1,1,2)=c33I3(1,1,1)+c32;ˉ3I3(1,1,0)+c32;ˉ2I3(1,0,1)+c32;ˉ1I3(0,1,1)+c31;ˉ2ˉ3I3(1,0,0)+c31;ˉ1ˉ3I3(0,1,0)+c31;ˉ1ˉ2I3(0,0,1).

    (86)

    Because the explicit expressions of these coefficients are long, they are provided in the companion Mathematica notebook. The result is confirmed by FIRE6.

    3   General case in triangles

    Similar to the bubble case, with different choices, we can obtain three IBP recurrence relations. In each of these relations, only one term has a propagator with a higher power. For simplicity, we label the IBP recurrence relation eqi, which shifts the propagator Di. Now, we can use eqi with i=1,2,3 to calculate the general case for triangles. Let us denote

    eq1:(a1+1++a1+31+3+a1+21+2+a33+a22+a11+a0)iλ0,m,n,q+δ3;r,eq1=0,eq2:(b2+2++b2+32+3+b12+12++b33+b22+b11+b0)iλ0,m,n,q+δ3;r,eq2=0,eq3:(c3+3++c23+23++c13+13++c33+c22+c11+c0)iλ0,m,n,q+δ3;r,eq3=0,

    (87)

    where all coefficients have the same form as in (78). Combining these, we can reduce the general triangles. For example, for I3(2,2,3), after setting m=0, n=1, and q=2 in eq1, we can reduce I3(2,2,3) to I3(1,1,3), I3(1,2,2), I3(1,2,3), I3(2,1,3), I3(2,2,2) and boundary terms, the general bubbles. Then, setting m=0, n=0, and q=2 in eq1, we can reduce I3(2,1,3) to I3(1,1,2), I3(1,1,3), and I3(2,1,2). After 12 steps, we get the result for the reduction in the triangle topology. The boundary terms involve bubbles and tadpoles, which have been dealt with in previous subsections. Finally, we can obtain all coefficients from I3(2,2,3) to all scalar bases.

    The general form of a box is given by

    I4(n1+1,n2+1,n3+1,n4+1)=dDlDn1+11Dn2+12Dn3+13Dn4+14,

    (88)

    with

    D1=l2m21,D2=(lp1)2m22,D3=(lp1p2)2m23,D4=(l+p4)2m24.

    (89)

    The parametric form of I4(n1+1,n2+1,n3+1,n4+1) can be written as

    I4(n1+1,n2+1,n3+1,n4+1)=i(1)4+n1+n2+n3+n4Γ(λ0)Γ(n1+1)Γ(n2+1)Γ(n3+1)Γ(n4+1)Γ(λ5+1)iλ0;n1,n2,n3,n4,

    (90)

    where

    iλ0;n1,n2,n3,n4=dΠ(5)Fλ0xn11xn22xn33xn44xλ55=dΠ(5)(Ux5+f)λ0xn11xn22xn33xn44xλ55dΠ(5)=dx1dx2dx3dx4dx5δ(xj1),λ0=D2λ5=5n1n2n3n42λ0=D5n1n2n3n4,

    (91)

    and the functions are

    U(x)=x1+x2+x3+x4,V(x)=x1x2p21+x1x3(p1+p2)2+x1x4(p1+p2+p3)2+x2x3p22+x2x4(p2+p3)2+x3x4p23f(x)=V(x)+U(x)m2ixi=m21x1+m22x2+m23x3+m24x4+(m21+m22p21)x1x2+[m21+m23(p1+p2)2]x1x3+[m21+m24(p1+p2+p3)2]x1x4,+(m22+m23p22)x2x3+[m22+m24(p2+p3)2]x2x4+(m23+m24p23)x3x4,F(x)=U(x)x5+f(x)=m21x21+m22x22+m23x23+m24x24+(m21+m22p21)x1x2+[m21+m23(p1+p2)2]x1x3+[m21+m24(p1+p2+p3)2]x1x4+[m22+m23p22]x2x3+[m22+m24(p2+p3)2]x2x4+[m23+m24p23]x3x4+x1x5+x2x5+x3x5+x4x5=(x1+x2+x3+x4)(m21x1+m22x2+m23x3+m24x4+x5)x1x2p21x1x3(p1+p2)2x1x4(p1+p2+p3)2x2x3p22x2x4(p2+p3)2x3x4p23.

    (92)

    Now, the matrices are given by

    ˆA=[2m21m21+m22p21m21+m23p212m21+m24p2131m21+m22p212m22m22+m23p22m22+m24p2231m21+m23p212m22+m23p222m23m23+m24p231m21+m24p213m22+m24p223m23+m24p232m24111110],KA=[0a1a2a3a4a10a5a6a7a2a50a8a9a3a6a80a10a4a7a9a100],

    (93)

    where pijpi+pi+1pj.

    1   Deriving the recurrence relation

    Taking B=1x5 in (39), we get

    {cn1+1,n2,n2,n41++cn1+1,n2,n3,n41+4+cn1+1,n2,n31,n41+3+cn1+1,n21,n3,n41+2+cn1,n2+1,n3,n42++cn1,n2+1,n3,n412+4+cn1,n2+1,n31,n42+3+cn11,n2+1,n3,n42+1+cn1,n2,n3+1,n43++cn1,n2,n3+1,n413+4+cn1,n21,n3+1,n43+2+cn11,n2,n3+1,n43+1+cn1,n2,n3,n4+14++cn1,n2,n31,n4+14+3+cn1,n21,n3,n4+14+2+cn11,n2,n3,n4+14+1+cn1,n2,n3,n414+cn1,n2,n31,n43+cn1,n21,n3,n42+cn11,n2,n3,n41+cn1,n2,n3,n4}in1,n2,n3,n4+δ4=0,

    (94)

    where

    j+in1njnk=in1nj+1nk,jin1njnk=in1nj1nk.

    (95)

    Similarly, we can choose particular values of the parameters a2 to a10 with a free a1 to ensure the coefficients of the terms in the first three lines of (94) equal zero. The analytic solution is provided in the companion Mathematica notebook. Here, we can express the solution for the parameters using the matrix elements of ˆA.

    a2=a1ΔBox|˜A13,45|,a3=a1ΔBox|˜A14,45|,a4=a1ΔBox|˜A15,45|,a5=a1ΔBox|˜A23,45|,a6=a1ΔBox|˜A24,45|,a7=a1ΔBox|˜A25,45|,a8=a1ΔBox|˜A34,45|,a9=a1ΔBox|˜A35,45|,a10=a1ΔBox|˜A45,45|,ΔBox=|A31A32A33A41A42A43A51A52A53|,

    where |˜Aij,kl| represents the determinant of the matrix A after we removed the i,jth rows and k,lth columns. Then, the matrix ˆQ becomes

    ˆQr=1ΔBox[12ΔBox00a1|˜A15|a1|˜A14|012ΔBox0a1|˜A25|a1|˜A24|0012ΔBoxa1|˜A35|a1|˜A34|00012ΔBox+a1|˜A45|a1|˜A44|000a1|˜A55|12ΔBoxa1|˜A54|].

    We then obtain the simplified recurrence relation

    cn1,n2,n3,n4+1in1,n2,n3,n4+1+cn1,n2,n31,n4+1in1,n2,n31,n4+1+cn1,n21,n3,n4+1in1,n21,n3,n4+1+cn11,n2,n3,n4in11,n2,n3,n4+cn1,n2,n3,n41in1,n2,n3,n41+cn1,n2,n31,n4in1,n2,n31,n4+cn1,n21,n3,n4in1,n21,n3,n4+cn11,n2,n3,n4in11,n2,n3,n4+cn1,n2,n3,n4in1,n2,n3,n4+δ4;r=0.

    (96)

    Now, we must calculate the δ4 term.

    The reduction in the boundary δ4 term: Similar to the former case, we can expand the δ4 term and take the values of the parameters a2 to a10 into the δ4 part. Subsequently, we get

    δ4;r=δn1+1,0Q11;ri1,n2,n3,n4+δn1,0Q12;ri1,n2+1,n3,n4+δn1,0Q13;ri1,n2,n3+1,n4+δn1,0Q14;ri1,n2,n3,n4+1+δn1,0Q15;ri1,n2,n3,n4+δn2,0Q21;rin1+1,1,n3,n4+δn2+1,0Q22;rin1,1,n3,n4+δn2,0Q23;rin1,1,n3+1,n4+δn2,0Q24;rin1,1,n3,n4+1+δn2,0Q25;rin1,1,n3,n4+δn3,0Q31;rin1+1,n2,1,n4+δn3,0Q32;rin1,n2+1,1,n4+δn3+1,0Q33;rin1,n2,1,n4+δn3,0Q34;rin1,n2,1,n4+1+δn3,0Q35;rin1,n2,1,n4+δn4,0Q41;rin1+1,n2,n3,1+δn4,0Q42;rin1,n2+1,n3,1+δn4,0Q43;rin1,n2,n3+1,1+δn4+1,0Q44;rin1,n2,n3,1+δn4,0Q45;rin1,n2,n3,1,

    (97)

    where the subscript "r" represents the value of the parameter Q after we set a2 to a10.

    2   Example: I4(1,1,1,2)

    Now, we can use recurrence relation (96) to calculate the example I4(1,1,1,2). Letting n1=n2=n3=n4=0, we get (the coefficients of the other terms are all zero)

    c0,0,0,0i0,0,0,0+c0,0,0,1i0,0,0,1+δ4;0000=0,

    (98)

    where δ4;0000δ4;r|n1=n2=n3=n4=0. Translating to I, we obtain the following result:

    I4(1,1,1,2)=c41111I4(1,1,1,1)+c41110I4(1,1,1,0)+c41101I4(1,1,0,1)+c41011I4(1,0,1,1)+c40111I4(0,1,1,1)+c42110I4(2,1,1,0)+c42101I4(2,1,0,1)+c42011I4(2,0,1,1)+c41210I4(1,2,1,0)+c41201I4(1,2,0,1)+c40211I4(0,2,1,1)+c41120I4(1,1,2,0)+c41021I4(1,0,2,1)+c40121I4(0,1,2,1)+c41102I4(1,1,0,2)+c41012I4(1,0,1,2)+c40112I4(0,1,1,2),

    (99)

    with the coefficients

    c41111=c0,0,0,0c0,0,0,1(D5)=TrˆQij;r+(D5)Q55;rD2Q54;r,c40111=Q15;rΓ(D3)c0,0,0,1Γ(D5),c41011=Q25;rΓ(D3)c0,0,0,1Γ(D5),c41101=Q35;rΓ(D3)c0,0,0,1Γ(D5),c41110=Q45;rΓ(D3)c0,0,0,1Γ(D5),c40211=Q12;rΓ(D4)c0,0,0,1Γ(D5),c40121=Q13;rΓ(D4)c0,0,0,1Γ(D5),c40112=Q14;rΓ(D4)c0,0,0,1Γ(D5),c42011=Q21;rΓ(D4)c0,0,0,1Γ(D5),c41021=Q23;rΓ(D4)c0,0,0,1Γ(D5),c41012=Q24;rΓ(D4)c0,0,0,1Γ(D5),c42101=Q31;rΓ(D4)c0,0,0,1Γ(D5),c41201=Q32;rΓ(D4)c0,0,0,1Γ(D5),c41102=Q34;rΓ(D4)c0,0,0,1Γ(D5),c42110=Q41;rΓ(D4)c0,0,0,1Γ(D5),c41210=Q42;rΓ(D4)c0,0,0,1Γ(D5),c41120=Q43;rΓ(D4)c0,0,0,1Γ(D5).

    (100)

    Next, we must use the reduction in triangles with one double propagator given in (86). Inserting them into (99), we obtain the complete reduction in the box I4(1,1,1,2).

    I4(1,1,1,2)=c44I4(1,1,1,1)+c43;ˉ1I4(0,1,1,1)+c43;ˉ2I4(1,0,1,1)+c43;ˉ3I4(1,1,0,1)+c43;ˉ4I4(1,1,1,0)+c42;ˉ1ˉ2I4(0,0,1,1)+c42;ˉ1ˉ3I4(0,1,0,1)+c42;ˉ1ˉ4I4(0,1,1,0)+c42;ˉ2ˉ3I4(1,0,0,1)+c42;ˉ2ˉ4I4(1,0,1,0)+c42;ˉ3ˉ4I4(1,1,0,0)+c41;D1I4(1,0,0,0)+c41;D2I4(0,1,0,0)+c41;D3I4(0,0,1,0)+c41;D4I4(0,0,0,1),

    (101)

    the long coefficient expressions of which are given in the companion Mathematica notebook. The result is confirmed by FIRE6.

    The general form of a pentagon is given by

    I5(n1+1,n2+1,n3+1,n4+1,n5+1)=dDlDn1+11Dn2+12Dn3+13Dn4+14Dn5+15

    (102)

    with

    D1=l2m21,D2=(lp1)2m22,D3=(lp1p2)2m23,D4=(lp1p2p3)2m24,D5=(l+p5)2m25.

    (103)

    The parametric form of I5(n1+1,n2+1,n3+1,n4+1,n5+1) can be written as

    I5(n1+1,n2+1,n3+1,n4+1,n5+1)=i(1)5+n1+n2+n3+n4+n5Γ(λ0)5i=1Γ(ni+1)Γ(λ6+1)iλ0;n1,n2,n3,n4,n5,

    (104)

    where

    iλ0;n1,n2,n3,n4,n5=dΠ(6)Fλ0xn11xn22xn33xn44xn55xλ6+16,dΠ(5)=dx1dx2dx3dx4dx5dx6δ(xj1),λ0=D2,λ6=(D6)n1n2n3n4n5,

    (105)

    and the function

    U(x)=x1+x2+x3+x4+x5,V(x)=x1x2p21+x1x3p212+x1x4p213+x1x5p214+x2x3p22+x2x4p223+x2x5p224+x3x4p23+x3x5p234+x4x5p24,f(x)=(x1+x2+x3+x4+x5)(m21x1+m22x2+m23x3+m24x4+m25x5)x1x2p21x1x3p212x1x4p213x1x5p214x2x3p22x2x4p223x2x5p224x3x4p23x3x5p234x4x5p24,F(x)=(x1+x2+x3+x4+x5)(m21x1+m22x2+m23x3+m24x4+m25x5+x6)x1x2p21x1x3p212x1x4p213x1x5p214x2x3p22x2x4p223x2x5p224x3x4p23x3x5p234x4x5p24,

    (106)

    where pijpi+pi+1+pj1+pj. Now the matrix are given by

    ˆA=[2m21m21+m22p21m21+m23p212m21+m24p213m21+m25p211m21+m22p212m22m22+m23p22m22+m24p223m22+m25p2241m21+m23p212m22+m23p2232m23m23+m24p23m23+m25p2341m21+m24p213m22+m24p223m23+m24p232m24m24+m25p241m21+m25p21m22+m25p224m23+m25p234m24+m25p242m251111110],

    (107)

    ˆKA=[0a1a2a3a4a5a10a6a7a8a9a2a60a10a11a12a3a7a100a13a14a4a8a11a130a15a5a9a12a14a150].

    (107)

    Taking B=1/x6, and inserting zi into the IBP identities,

    6i=1xi{ziFλ0xn11xn22xn33xn44xn55xλ6+16}+δ5=0,

    (108)

    where δ5 is given by

    δ5=5i=1δλi,0dΠ(5){ziFλ0xn11xn22xn33xn44xn55xλ6+16}|xi=0.

    (109)
    1   Deriving the recurrence relation

    Similar to the previous subsections, by expanding the IBP relation, we get

    {cn1+1,n2,n3,n4,n51++cn1+1,n21,n3,n4,n51+2+cn1+1,n2,n31,n4,n51+3+cn1+1,n2,n3,n41,n51+4+cn1+1,n2,n3,n4,n511+5+cn1,n2+1,n3,n4,n52++cn11,n2+1,n3,n4,n512++cn1,n2+1,n31,n4,n52+3+cn1,n2+1,n3,n41,n52+4+cn1,n2+1,n3,n4,n512+5+cn1,n2,n3+1,n4,n53++cn11,n2,n3+1,n4,n513++cn1,n21,n3+1,n4,n523++cn1,n2,n3+1,n41,n53+4+cn1,n2,n3+1,n4,n513+5+cn1,n2,n3,n4+1,n54++cn11,n2,n3,n4+1,n514++cn1,n21,n3,n4+1,n524++cn1,n2,n31,n4+1,n534++cn1,n2,n3,n4+1,n514+5+cn1,n2,n3,n4,n5+15++cn11,n2,n3,n4,n5+115++cn1,n21,n3,n4,n5+125++cn1,n2,n31,n4,n5+135++cn1,n2,n3,n41,n5+145++cn11,n2,n3,n4,n51+cn1,n21,n3,n4,n52+cn1,n2,n31,n4,n53+cn1,n2,n3,n41,n54+cn1,n2,n3,n4,n515+cn1,n2,n3,n4,n5}in1,n2,n3,n4,n5+δ5=0.

    (110)

    We can choose particular values for parameters a2 to a15 to ensure the coefficients of the first three line of (110) equal zero. The solution is

    a2=a1Δpen|˜A13,56|,a3=a1Δpen|˜A14,56|,a4=a1Δpen|˜A15,56|,a5=a1Δpen|˜A16,56|,a6=a1Δpen|˜A23,56|,a7=a1Δpen|˜A24,56|,a8=a1Δpen|˜A25,56|,a9=a1Δpen|˜A26,56|,a10=a1Δpen|˜A34,56|,a11=a1Δpen|˜A35,56|,a12=a1Δpen|˜A36,56|,a13=a1Δpen|˜A45,56|,a14=a1Δpen|˜A46,56|,a15=a1Δpen|˜A56,56|,

    (111)

    where

    Δpen=|A31A32A33A34A41A42A43A44A51A52A53A54A61A62A63A64|.

    Subsequently, we get

    {cn1,n2,n3,n4,n5+1;r5++cn11,n2,n3,n4,n5+1;r15++cn1,n21,n3,n4,n5+1;r25++cn1,n2,n31,n4,n5+1;r35++cn1,n2,n3,n41,n5+1;r45+cn11,n2,n3,n4,n5;r1+cn1,n21,n3,n4,n5;r2+cn1,n2,n31,n4,n5;r3+cn1,n2,n3,n41,n5;r4+cn1,n2,n3,n4,n51;r5+cn1,n2,n3,n4,n5;r}iλ0;n1,n2,n3,n4,n5+δ5;r=0,

    (112)

    where we define

    i+iλ0;n1,n2,n3,n4,n5iλ0;n1,ni+1,n5,iiλ0;n1,n2,n3,n4,n5iλ0;n1,ni1,n5,

    (113)

    with the coefficients

    c0,0,0,0,1=Q65;rλ6,c1,0,0,0,1=n1Q15;r,c0,1,0,0,1=n2Q25;r,c0,0,1,0,1=n3Q35;r,c0,0,0,1,1=n4Q45;r,c1,0,0,0,0=n1Q16;r,c0,1,0,0,0=n2Q26;r,c0,0,1,0,0=n3Q36;r,c0,0,0,1,0=n4Q46;r,c0,0,0,0,1=n5Q56;r,c00000;r=TrˆQij;r+((D6))Q66;rrD2+n1Q11;r+n2Q22;r+n3Q33;r+n4Q44;r+n5Q55;r,

    (114)

    while the matrix ˆQ becomes

    ˆQr=1Δpen[12Δpen000a1|˜A1,6|a1|˜A1,5|012Δpen00a1|˜A2,6|a1|˜A2,5|0012Δpen0a1|˜A3,6|a1|˜A3,5|00012Δpena1|˜A4,6|a1|˜A4,5|000012Δpen+a1|˜A5,6|a1|˜A5,5|0000a1|˜A6,6|12Δpena1|˜A6,5|].

    Similar to the former situation, the δ6;r term is given by

    δ5;r=Q11;rδn1,1i1,n2,n3,n4,n5+Q12;rδn1,0i1,n2+1,n3,n4,n5+Q13;rδn1,0i1,n2,n3+1,n4,n5+Q14;rδn1,0i1,n2,n3,n4+1,n5+Q15;rδn1,0i1,n2,n3,n4,n5+1+Q16;rδn1,0i1,n2,n3,n4,n5+Q21;rδn2,0in1+1,1,n3,n4,n5+Q22;rδn2,1in1,1,n2,n3,n4,n5+Q23;rδn2,0in1,1,n3+1,n4,n5+Q24;rδn2,0in1,1,n3,n4+1,n5+Q25;rδn2,0in1,1,n3,n4,n5+1+Q26;rδn2,0in1,1,n3,n4,n5+Q31;rδn3,0in1+1,n2,1,n4,n5Q32;rδn3,0in1,n2+1,1,n4,n5+Q33;rδn3,1in1,n2,1,n4,n5+Q34;rδn3,0in1,n2,1,n4+1,n5+Q35;rδn3,0in1,n2,1,n4,n5+1+Q36;rδn3,0in1,n2,1,n4,n5Q41;rδn4,0in1+1,n2,n3,1,n5+Q42;rδn4,0in1,n2+1,n3,1,n5+Q43;rδn4,0in1,n2,n3+1,1,n5+Q44;rδn4,1in1,n2,n3,1,n5+Q45;rδn4,0in1,n2,n3,1,n5+1+Q46;rδn4,0in1,n2,n3,1,n5+Q51;rδn5,0in1+1,n2,n3,n4,1+Q52;rδn5,0in1,n2+1,n3,n4,1+Q53;rδn5,0in1,n2,n3+1,n4,1+Q54;rδn5,0in1,n2,n3,n4+1,1+Q55;rδn5,1in1,n2,n3,n4,1+Q56;rδn5,0in1,n2,n3,n4,n5.

    (115)

    Setting n1=n2=n3=n4=n5=0, we get the IBP recurrence relation (other coefficients are all zero)

    c0,0,0,0,1iλ0;0,0,0,0,1+c0,0,0,0,0iλ0;0,0,0,0,0+δ5;00000=0,

    (116)

    where δ5;00000δ5;r|n1=n2=n3=n4=n5=0.

    Comparing them with our scalar basis, we have the result

    I5(1,1,1,1,2)=c55I5(1,1,1,1,1)+c501111I4(0,1,1,1,1)+c510111I5(1,0,1,1,1)+c511011I5(1,1,0,1,1)+c511101I5(1,1,1,0,1)+c511110I5(1,1,1,1,0)+c520111I5(2,0,1,1,1)+c521011I5(2,1,0,1,1)+c521101I5(2,1,1,0,1)

    +c521110I5(2,1,1,1,0)+c502111I5(0,2,1,1,1)+c512011I5(1,2,0,1,1)+c512101I5(1,2,1,0,1)+c512110I5(1,2,1,1,0)+c501211I5(0,1,2,1,1)+c510211I5(1,0,2,1,1)+c511201I5(1,1,2,0,1)+c511210I5(1,1,2,1,0)+c501121I5(0,1,1,2,1)+c510121I5(1,0,1,2,1)+c511021I5(1,1,0,2,1)+c511120I5(1,1,1,2,0)+c501112I5(0,1,1,1,2)+c510112I5(1,0,1,1,2)+c511012I5(1,1,0,1,2)+c511102I5(1,1,1,0,2),

    (117)

    with the coefficients

    c55=(D6)c0,0,0,0,0c0,0,0,0,1,c501111=(D6)(5D)Q16;rc0,0,0,0,1,c54;10111=(D6)(5D)Q26;rc0,0,0,0,1,c54;11011=(D6)(5D)Q36;rc0,0,0,0,1,c54;11101=(D6)(5D)Q46;rc0,0,0,0,1,c54;11110=(D6)(5D)Q56;rc0,0,0,0,1,c520111=(D6)Q21;rc0,0,0,0,1,c521011=(D6)Q31;rc0,0,0,0,1,c521101=(D6)Q41;rc0,0,0,0,1,c521110=(D6)Q51;rc0,0,0,0,1,c502111=(D6)Q12;rc0,0,0,0,1,c512011=(D6)Q32;rc0,0,0,0,1,c512101=(D6)Q42;rc0,0,0,0,1,c512110=(D6)Q52;rc0,0,0,0,1,c501211=(D6)Q13;rc0,0,0,0,1,c510211=(D6)Q23;rc0,0,0,0,1,c511201=(D6)Q43;rc0,0,0,0,1,c511210=(D6)Q53;rc0,0,0,0,1,c501121=(D6)Q14;rc0,0,0,0,1,c510121=(D6)Q24;rc0,0,0,0,1,c511021=(D6)Q34;rc0,0,0,0,1,c511120=(D6)Q54;rc0,0,0,0,1,c501112=(D6)Q15;rc0,0,0,0,1,c510112=(D6)Q25;rc0,0,0,0,1,c511012=(D6)Q35;rc0,0,0,0,1,c511102=(D6)Q45;rc0,0,0,0,1.

    (118)

    The final step is to reduce the coefficients of the general boxes to the scalar basis.

    After this reduction, we obtain the final solution.

    \begin{aligned}[b] I_{5}(1,1,1,1,2) = &c_{5\to5}I_5(1,1,1,1,1)+c_{5\to4;\bar1}I_5(0,1,1,1,1)+c_{5\to4;\bar2}I_5(1,0,1,1,1)+c_{5\to4;\bar3}I_5(1,1,0,1,1) \\ &+c_{5\to4;\bar4}I_5(1,1,1,0,1)+c_{5\to4;\bar5}I_5(1,1,1,1,0)+c_{5\to3;\bar1\bar2}I_5(0,0,1,1,1)+c_{5\to3;\bar1\bar3}I_5(0,1,0,1,1) \\ &+c_{5\to3;\bar1\bar4}I_5(0,1,1,0,1)+c_{5\to3;\bar1\bar5}I_5(0,1,1,1,0)+c_{5\to3;\bar2\bar3}I_5(1,0,0,1,1)+c_{5\to3;\bar2\bar4}I_5(1,0,1,0,1) \\ &+c_{5\to3;\bar2\bar5}I_5(1,0,1,1,0)c_{5\to3;\bar3\bar4}I_5(1,1,0,0,1)+c_{5\to3;\bar3\bar5}I_5(1,1,0,1,0)+c_{5\to3;\bar4\bar5}I_5(1,1,1,0,0) \\ &+c_{5\to2;D_1D_2}I_5(1,1,0,0,0)+c_{5\to2;D_1D_3}I_5(1,0,1,0,0)+c_{5\to2;D_1D_4}I_5(1,0,0,1,0)+c_{5\to2;D_1D_5}I_5(1,0,0,0,1) \\ &+c_{5\to2;D_2D_3}I_5(0,1,1,0,0)+c_{5\to2;D_2D_4}I_5(0,1,0,1,0)+c_{5\to2;D_2D_5}I_5(0,1,0,0,1)+c_{5\to2;D_3D_4}I_5(0,0,1,1,0) \\ &+c_{5\to2;D_3D_5}I_5(0,0,1,0,1)+c_{5\to2;D_4D_5}I_5(0,0,0,1,1)+c_{5\to1;D_1}I_5(1,0,0,0,0)+c_{5\to1;D_2}I_5(0,1,0,0,0) \\ &+c_{5\to1;D_3}I_5(0,0,1,0,0)+c_{5\to1;D_4}I_5(0,0,0,1,0)+c_{5\to1;D_5}I_5(0,0,0,0,1), \end{aligned}

    (119)

    with the coefficients given in the attached Mathematica notebook. Now, all coefficients are complete.

    The analytic results are provided in the Mathematica notebooks, which are publicly available at https://github.com/Wanghongbin123/oneloop_parametric.

    In this paper, we consider one-loop scalar integrals in the parametric representation given by Chen. However, in the recurrence relation, there are typically several terms that we do not want as well as terms with dimensional shifting in general, which makes calculations difficult and inefficient. In Chen's later paper [2], he used a method based on non-commutative algebra to cancel the dimension shift. Unlike other methods, the one-loop case involves a straightforward method in which linear equation systems are solved to simplify the IBP recurrence relation in the parametric representation. Benefiting from the fact that F is a homogeneous function of x_i with a degree of two in the one-loop situation, we can solve x_i using {{{\partial }} F}/{{{\partial }} x_i} with several free parameters. Then, combining all the IBP identities with a particular factor z_i and choosing particular values for the free parameters, we succeed in canceling the dimension shift and terms with higher total power. As a complement to the tadpole coefficients of the reduction explored within our previous paper, we calculate several examples and provide an analytic result of the reduction.

    For further research, there are several factors to be considered. In our calculations, the constructed coefficients z_i are not polynomial since they have a denominator with the form x_{n+1}^{{\gamma}} ; therefore, we cannot directly use the technique of syzygy. Moreover, the application of Chen's method to a higher loop is definitely another future research direction. For this case, the homogeneous function F(x) is of degree L+1 , where L is the number of loops. For the high loop case, we should consider how to construct the coefficients z_i efficiently and find a relation similar to (37) to cancel the terms we do not need. Finally, the sub-topologies are entirely decided by the boundary term in the parametric representation, which may lead to simplification of calculation.

    I would like to thank Bo Feng for the inspiring discussion and guidance.

    The relation has been verified in many places based on the method in graph theory.

    Different from the traditional Feynman parametrization, here we should add a new auxiliary parameter \begin{document}$ x_{n+1} $\end{document} to transform the integral into symmetric form.

    In some sense, the parametric form can be considered as the generalized Feynman parametrization form. Thus the IBP relation (15) could be called the IBP relation in the generalized Feynman parametrization form.

    The IBP relation requires the term in the bracket of the first term to be degree \begin{document}$ (-n) $\end{document}, which can be obtained by multiplying any monomial of degree one. Here in (15) we have multiplied \begin{document}$ x_{n+1} $\end{document} by our experiences from later examples, but one can make other choices.

    Same notation has also been used in [2] (see Eq. (5a)).

    Note the \begin{document}$ F(x) $\end{document} is a homogeneous function of degree \begin{document}$ L+1 $\end{document} where L is the number of loops.

    In general, this trick could be extended to high loops to avoid the troublesome calculation of syzygy equations.

    Notice the summation of i is form \begin{document}$ 1 $\end{document} to \begin{document}$ n+1 $\end{document}, where we have included the auxiliary parameter \begin{document}$ x_{n+1} $\end{document}, which is an apparent different from the tradition Feynman parametrization.

    In general it is not necessary to make \begin{document}$ \hat A $\end{document} be symmetry matrix, and this is just one choice. But for the simplification of the following calculation, since we will later set an antisymmetric matrix \begin{document}$ \hat K_{A} $\end{document}, it is convenient to make the convention to set \begin{document}$ \hat A $\end{document} be symmetry matrix.

    The antisymmetric matrix \begin{document}$ \hat K_{A} $\end{document} will not contribute to the F, but it will change \begin{document}$ \hat Q $\end{document} in (38), thus gives more free parameters in the solution of \begin{document}$ \hat z $\end{document} in (39).

    For this example, one can check that we can not add another constraint to fix \begin{document}$ a_1 $\end{document}.

    where we use the convention \begin{document}$ |\tilde A_{ij}| $\end{document} means the cofactor of matrix element \begin{document}$ A_{ij}. $\end{document}

    Since we have kept dimensional regularization \begin{document}$ \epsilon $\end{document}, the \begin{document}$ \lambda_3 $\end{document} can not be zero, thus the corresponding boundary term does not exist.

    When setting \begin{document}$ m = n = 0 $\end{document}, except the boundary term \begin{document}$ \delta_2 $\end{document}, among other seven terms in (43), the coefficients of the second and the third terms have been chosen to be zero. For the other five terms, one can show that \begin{document}$ c_{m-1, n+1},\; c_{m, n-1},\; c_{m-1, n} $\end{document} are zero by using the last line of (44). There is another technical point. When \begin{document}$ m = n = 0 $\end{document}, the seventh term will contain \begin{document}$ i_{\lambda_0;-1, 0} $\end{document}, which looks like the one defined in (49). But they are, in fact, different. The one appeared in (43) with the measure \begin{document}$ {\rm d}\Pi^{(3)} $\end{document} while the one appeared in (49) with measure \begin{document}$ {\rm d}\Pi^{(2)} $\end{document}.

    The reduction of tadpole with higher power is simple. Noticing that \begin{document}$ I_2(1, 0)\propto (m_1^2)^{{(D-2)}/{2}} $\end{document} by dimensional analysis, one can take the derivative over \begin{document}$ m_1^2 $\end{document} to get the wanted reduction coefficients.

    In general, we could repeat the similar procedure to give the tadpoles' IBP recurrence relation, and calculate them step by step. Here, for simplicity, we could just use the trick, \begin{document}$ I_2(1, 0)\propto (m_1^2)^{{(D-2)}/{2}} $\end{document}, and \begin{document}$ I_2(0, 1)\propto (m_2^2)^{{(D-2)}/{2}} $\end{document}, to directly calculate the \begin{document}$ I_2(2, 0) = {{{\partial }}}/{{{\partial }} m_1^2}I_2(1, 0) = ({(D-2)}/{2m_1^2})I_2(1, 0) $\end{document}, \begin{document}$ I_2(0, 2) = {{{\partial }}}/{{{\partial }} m_2^2}I_2(0, 1) = $\end{document}\begin{document}$ ({(D-2)}/{2m_2^2})I_2(0, 1) $\end{document}, and \begin{document}$ I_2(3, 0) = \frac{1}{2}({{{\partial }}}/{{{\partial }} m_1^2})^2 I_2(1, 0) = ({((D-2)(D-4))}/{8m_1^4})I_2(1, 0) $\end{document}, \begin{document}$ I_2(0, 3) = \frac{1}{2}({{{\partial }}}/{{{\partial }} m_2^2})^2 I_2(0, 3) = ({((D-2)(D-4))}/{8m_2^4})I_2(0, 1) $\end{document}.

    Since the boundary term having only one \begin{document}$ x_i = 0 $\end{document}, it reduces to the sub-topologies with only one propagator pinched.

    [1] W. Chen, JHEP 02, 115 (2020), arXiv:1902.10387
    [2] W. Chen, Reduction of Feynman Integrals in the Parametric Representation II: Reduction of Tensor Integrals, arXiv: 1912.08606
    [3] B. Feng and H. Wang, Reduction of one-loop integrals with higher poles by unitarity cut method, arXiv: 2104.00922
    [4] G. Passarino and M. J. G. Veltman, Nucl. Phys. B 160, 151 (1979) doi: 10.1016/0550-3213(79)90234-7
    [5] V. A. Smirnov, Springer Tracts in Modern Physics 211, (2005)
    [6] F. V. Tkachov, Phys. Lett. B 100, 65 (1981) doi: 10.1016/0370-2693(81)90288-4
    [7] K. G. Chetyrkin and F. V. Tkachov, Nucl. Phys. B 192, 159 (1981) doi: 10.1016/0550-3213(81)90199-1
    [8] Z. Bern, L. J. Dixon, D. C. Dunbar et al., Nucl. Phys. B 425, 217 (1994), arXiv:hep-ph/9403226 doi: 10.1016/0550-3213(94)90179-1
    [9] Z. Bern, L. J. Dixon, D. C. Dunbar et al., Nucl. Phys. B 435, 59 (1995), arXiv:hep-ph/9409265 doi: 10.1016/0550-3213(94)00488-Z
    [10] R. Britto, F. Cachazo, and B. Feng, Nucl. Phys. B 725, 275 (2005), arXiv:hep-th/0412103 doi: 10.1016/j.nuclphysb.2005.07.014
    [11] F. Cachazo, P. Svrcek, and E. Witten, JHEP 10, 074 (2004), arXiv:hep-th/0406177
    [12] R. Britto, E. Buchbinder, F. Cachazo et al., Phys. Rev. D 72, 065012 (2005), arXiv:hep-ph/0503132 doi: 10.1103/PhysRevD.72.065012
    [13] C. Anastasiou, R. Britto, B. Feng et al., Phys. Lett. B 645, 213 (2007), arXiv:hep-ph/0609191 doi: 10.1016/j.physletb.2006.12.022
    [14] R. Britto and B. Feng, Phys. Rev. D 75, 105006 (2007), arXiv:hep-ph/0612089 doi: 10.1103/PhysRevD.75.105006
    [15] C. Anastasiou, R. Britto, B. Feng et al., JHEP 03, 111 (2007), arXiv:hep-ph/0612277
    [16] R. Britto, B. Feng, and P. Mastrolia, Phys. Rev. D 73, 105004 (2006), arXiv:hep-ph/0602178 doi: 10.1103/PhysRevD.73.105004
    [17] R. Britto and B. Feng, Phys. Lett. B 681, 376 (2009), arXiv:0904.2766 doi: 10.1016/j.physletb.2009.10.038
    [18] Y. Zhang, An Introduction to Integrals with Uniformally Transcendental Weights, Canonical Differential Equation, Symbols and Polylogarithms, http://staff.ustc.edu.cn/~yzhphy/teaching/summer2021/UT_2021.pdf, 2021
    [19] J. M. Henn, J. Phys. A 48, 153001 (2015), arXiv:1412.2296 doi: 10.1088/1751-8113/48/15/153001
    [20] P. A. Baikov, Phys. Lett. B 385, 404 (1996), arXiv:hep-ph/9603267 doi: 10.1016/0370-2693(96)00835-0
    [21] P. A. Baikov, Explicit solutions of n loop vacuum integral recurrence relations, hep-ph/9604254
    [22] Z. Bern, L. J. Dixon, and D. A. Kosower, Phys. Lett. B 302, 299 (1993), arXiv:hep-ph/9212308 doi: 10.1016/0370-2693(93)90400-C
    [23] Z. Bern, L. J. Dixon, and D. A. Kosower, Nucl. Phys. B 412, 751 (1994), arXiv:hep-ph/9306240 doi: 10.1016/0550-3213(94)90398-0
    [24] J. Gluza, K. Kajda, and D.A. Kosower, Towards a basis for planar two-loop integrals, arXiv: 1009.0472
    [25] K. J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic geometry, arXiv: 1511.01071
    [26] K. J. Larsen and Y. Zhang, Integration-by-parts reductions from the viewpoint of computational algebraic geometry, arXiv: 1606.09447
    [27] K. J. Larsen and Y. Zhang, Phys. Rev. D 93, 041701 (2016), arXiv:1511.01071 doi: 10.1103/PhysRevD.93.041701
    [28] K. J. Larsen and Y. Zhang, PoS LL2016, 029 (2016), arXiv:1606.09447
    [29] Y. Zhang, Lecture Notes on Multi-loop Integral Reduction and Applied Algebraic Geometry, 12, 2016 [1612.02249]
    [30] Y. Jiang and Y. Zhang, JHEP 03, 087 (2018), arXiv:1710.04693
    [31] A.V. Smirnov and F. S. Chuharev, Comput. Phys. Commun. 247, 106877 (2020), arXiv:1901.07808 doi: 10.1016/j.cpc.2019.106877
    [32] R. N. Lee, J. Phys. Conf. Ser. 523, 012059 (2014), arXiv:1310.1145 doi: 10.1088/1742-6596/523/1/012059
  • [1] W. Chen, JHEP 02, 115 (2020), arXiv:1902.10387
    [2] W. Chen, Reduction of Feynman Integrals in the Parametric Representation II: Reduction of Tensor Integrals, arXiv: 1912.08606
    [3] B. Feng and H. Wang, Reduction of one-loop integrals with higher poles by unitarity cut method, arXiv: 2104.00922
    [4] G. Passarino and M. J. G. Veltman, Nucl. Phys. B 160, 151 (1979) doi: 10.1016/0550-3213(79)90234-7
    [5] V. A. Smirnov, Springer Tracts in Modern Physics 211, (2005)
    [6] F. V. Tkachov, Phys. Lett. B 100, 65 (1981) doi: 10.1016/0370-2693(81)90288-4
    [7] K. G. Chetyrkin and F. V. Tkachov, Nucl. Phys. B 192, 159 (1981) doi: 10.1016/0550-3213(81)90199-1
    [8] Z. Bern, L. J. Dixon, D. C. Dunbar et al., Nucl. Phys. B 425, 217 (1994), arXiv:hep-ph/9403226 doi: 10.1016/0550-3213(94)90179-1
    [9] Z. Bern, L. J. Dixon, D. C. Dunbar et al., Nucl. Phys. B 435, 59 (1995), arXiv:hep-ph/9409265 doi: 10.1016/0550-3213(94)00488-Z
    [10] R. Britto, F. Cachazo, and B. Feng, Nucl. Phys. B 725, 275 (2005), arXiv:hep-th/0412103 doi: 10.1016/j.nuclphysb.2005.07.014
    [11] F. Cachazo, P. Svrcek, and E. Witten, JHEP 10, 074 (2004), arXiv:hep-th/0406177
    [12] R. Britto, E. Buchbinder, F. Cachazo et al., Phys. Rev. D 72, 065012 (2005), arXiv:hep-ph/0503132 doi: 10.1103/PhysRevD.72.065012
    [13] C. Anastasiou, R. Britto, B. Feng et al., Phys. Lett. B 645, 213 (2007), arXiv:hep-ph/0609191 doi: 10.1016/j.physletb.2006.12.022
    [14] R. Britto and B. Feng, Phys. Rev. D 75, 105006 (2007), arXiv:hep-ph/0612089 doi: 10.1103/PhysRevD.75.105006
    [15] C. Anastasiou, R. Britto, B. Feng et al., JHEP 03, 111 (2007), arXiv:hep-ph/0612277
    [16] R. Britto, B. Feng, and P. Mastrolia, Phys. Rev. D 73, 105004 (2006), arXiv:hep-ph/0602178 doi: 10.1103/PhysRevD.73.105004
    [17] R. Britto and B. Feng, Phys. Lett. B 681, 376 (2009), arXiv:0904.2766 doi: 10.1016/j.physletb.2009.10.038
    [18] Y. Zhang, An Introduction to Integrals with Uniformally Transcendental Weights, Canonical Differential Equation, Symbols and Polylogarithms, http://staff.ustc.edu.cn/~yzhphy/teaching/summer2021/UT_2021.pdf, 2021
    [19] J. M. Henn, J. Phys. A 48, 153001 (2015), arXiv:1412.2296 doi: 10.1088/1751-8113/48/15/153001
    [20] P. A. Baikov, Phys. Lett. B 385, 404 (1996), arXiv:hep-ph/9603267 doi: 10.1016/0370-2693(96)00835-0
    [21] P. A. Baikov, Explicit solutions of n loop vacuum integral recurrence relations, hep-ph/9604254
    [22] Z. Bern, L. J. Dixon, and D. A. Kosower, Phys. Lett. B 302, 299 (1993), arXiv:hep-ph/9212308 doi: 10.1016/0370-2693(93)90400-C
    [23] Z. Bern, L. J. Dixon, and D. A. Kosower, Nucl. Phys. B 412, 751 (1994), arXiv:hep-ph/9306240 doi: 10.1016/0550-3213(94)90398-0
    [24] J. Gluza, K. Kajda, and D.A. Kosower, Towards a basis for planar two-loop integrals, arXiv: 1009.0472
    [25] K. J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic geometry, arXiv: 1511.01071
    [26] K. J. Larsen and Y. Zhang, Integration-by-parts reductions from the viewpoint of computational algebraic geometry, arXiv: 1606.09447
    [27] K. J. Larsen and Y. Zhang, Phys. Rev. D 93, 041701 (2016), arXiv:1511.01071 doi: 10.1103/PhysRevD.93.041701
    [28] K. J. Larsen and Y. Zhang, PoS LL2016, 029 (2016), arXiv:1606.09447
    [29] Y. Zhang, Lecture Notes on Multi-loop Integral Reduction and Applied Algebraic Geometry, 12, 2016 [1612.02249]
    [30] Y. Jiang and Y. Zhang, JHEP 03, 087 (2018), arXiv:1710.04693
    [31] A.V. Smirnov and F. S. Chuharev, Comput. Phys. Commun. 247, 106877 (2020), arXiv:1901.07808 doi: 10.1016/j.cpc.2019.106877
    [32] R. N. Lee, J. Phys. Conf. Ser. 523, 012059 (2014), arXiv:1310.1145 doi: 10.1088/1742-6596/523/1/012059
  • 加载中

Get Citation
Hongbin Wang. General one-loop reduction in generalized Feynman parametrization form[J]. Chinese Physics C. doi: 10.1088/1674-1137/ac7a1c
Hongbin Wang. General one-loop reduction in generalized Feynman parametrization form[J]. Chinese Physics C.  doi: 10.1088/1674-1137/ac7a1c shu
Milestone
Received: 2022-04-19
Article Metric

Article Views(1336)
PDF Downloads(27)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

General one-loop reduction in generalized Feynman parametrization form

    Corresponding author: Hongbin Wang, 21836003@zju.edu.cn
  • Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, China

Abstract: The search for an effective reduction method is one of the main topics in higher loop computation. Recently, an alternative reduction method was proposed by Chen in [1, 2]. In this paper, we test the power of Chen's new method using one-loop scalar integrals with propagators of higher power. More explicitly, with the improved version of the method, we can cancel the dimension shift and terms with unwanted power shifting. Thus, the obtained integrating-by-parts relations are significantly simpler and can be solved easily. Using this method, we present explicit examples of a bubble, triangle, box, and pentagon with one doubled propagator. With these results, we complete our previous computations in [3] with the missing tadpole coefficients and show the potential of Chen's method for efficient reduction in higher loop integrals.

    HTML

    I.   INTRODUCTION
    • The calculation of multi-loop integrals is essential when theoretically predicting the scatting amplitude of a given process. For these calculations, the PV-reduction method [4] is a widely used approach, and one way to implement the reduction method is to use the integrating-by-parts (IBP) relation [57]. As one of the most powerful techniques for loop integral reduction, IBP gives a large number of recurrence relations, and the reduction can be represented by a combination of simpler integrals via Gauss elimination. However, as the propagator number and power increase, the IBP method becomes inefficient; hence, more efficient reduction methods must be found.

      The unitarity cut method is an alternative reduction method and has been proven to be useful for one-loop integrals [817]. In a physical one-loop process, the power of the propagator is just one; however, if the method is complete, it should be able to reduce integrals with higher power propagators. Such a situation is not simply a theoretical curiosity but appears in higher loop diagrams as a sub-diagram. Furthermore, although the scalar basis is natural for one-loop integrals, in general, the choice of basis can be different, depending on the physical input. For example, in the topology of a one-loop bubble, the basis, in which one propagator has a power of two, could be used as part of the UT-basis [18, 19].

      In a previous study [3], we successfully obtained an analytical reduction result for one-loop integrals with high power propagators by combining the tricks of differential operators and unitarity cut. We gave coefficients to all bases except the tadpoles'; however, the unitarity method could not be used because the tadpole has only one propagator. To complete this investigation, the missing tadpole coefficients must be found using other efficient methods.

      Other than the unitarity cut method, there are proposals to overcome the difficulties of IBP using tricks and other representations of integrals, such as the Baikov representation [20, 21] and Feynman parametrization representation [22, 23] for loop integrals. In recent years, Chen proposed a new representation for loop integrals [1, 2]. His method is based on the generalized Feynman parametrization representation, that is, an extra parameter x_{n+1} is introduced to combine {\cal U}, {\cal F} in the standard Feynman parametrization representation. Such a generalization will offer several benefits when deriving the IBP recurrence relation, as shown in this paper.

      As a common feature, the IBP recurrence relation derived using the generalized Feynman parametrization representation will naturally have terms in different spacetime dimensions. Because we are always concerned with reducing a particular dimension D, which is typically set to 4-2\epsilon for renormalization, we wish to cancel these terms in different dimensions. In general, this is not easy. In [24], Gluza, Kajda, and Kosower showed how to avoid the change in the power of propagators in standard momentum space. Larsen and Zhang considered the Baikov representation and demonstrated how to eliminate both dimensional shifting and the change in the power of propagators [2530]. These methods require a solution to the syzygy equations, which is generally not easy. In Chen's second paper [2], he proposed a new technique to simplify the recurrence relation based on non-commutative algebra.

      Motivated by the above discussion and preparing Chen's method for high-loop computations, in this paper, we use Chen's method to find the missing tadpole coefficients from our previous study. Furthermore, we use the idea of removing terms with dimensional shifting in the derived IBP relation to construct a simpler reduction method, with the analytic results expressed by the elements of the coefficient matrix \hat A .

      This paper is organized as follows: In section II, we review and illustrate Chen's new method with a simple example in section II.A. In the example, integrals naturally emerge in different dimensions. We discuss the physical meaning of the boundary terms, which contribute to the sub-topologies. To cancel dimensional shifting in the parametrization form and simplify the IBP relation, a new trick is proposed in section II.B in which free auxiliary parameters are added based on the fact that F in the integrand is a homogeneous function of x_{i} with degree L+1 . Using this trick, we successfully cancel dimensional shifting and drop the terms that we are not concerned with. Moreover, we present a simplified IBP relation in which all the integrals are in the particular dimension D and integrals other than the target have a lower total propagator power. The analytic result is presented as a determinant of the cofactor of the matrix \hat A , which is entirely determined by a graph. In section III, we calculate a triangle I_3(1,1,2) , box I_4(1,1,1,2) , and pentagon I_5(1,1,1,1,2) in parametric form using this trick and present the analytic results of all coefficients to the master basis, especially the tadpole parts, to complement our previous study.

    II.   CHEN'S REDUCTION METHOD IN PARAMETRIC FORM
    • In this section, we introduce a new reduction method proposed by Chen in [1]. The general form of a loop integral is given by

      \begin{eqnarray} I[N(l)](k)= \int {\rm d}^{D}l_1{\rm d}^{D}l_2\cdots {\rm d}^{D}l_{L}\frac{N(l)}{D_1^{k_1}D_{2}^{k_2}D_3^{k_3}\cdots D_{n}^{k_n}},\; \; \; \end{eqnarray}

      (1)

      where, for simplicity, we denote l = (l_1,l_2,l_3,\cdots ,l_L) and k = (k_1,k_2,k_3,\cdots ,k_n) . Because we consider only scalar integrals with N(l) = 1 in this paper, let us label

      \begin{eqnarray} I(L;\lambda_1+1,\cdots ,\lambda_n+1) = \int {\rm d}^Dl_1\cdots {\rm d}^Dl_L\frac{1}{D_1^{\lambda_1+1}\cdots D_{n}^{\lambda_n+1}}.\; \; \; \end{eqnarray}

      (2)

      Using the Feynman parametrization procedure,

      \begin{eqnarray} \sum_{i}^{L}{\alpha}_iD_i = \sum_{i,j}^{L}A_{ij}l_i\cdot l_j+2\sum_{i = 1}^{L}B_i\cdot l_i+C,\; \; \; \end{eqnarray}

      (3)

      and thus loop integrals can be found as

      \begin{aligned}[b] \int {\rm d}^Dl_1\cdots {\rm d}^Dl_L {\rm e}^{{\rm i}(\sum{\alpha}_iD_i)} = &{\rm e}^{i\pi L(1-\frac{D}{2})/2}\pi^{LD/2}({\rm Det}\; A)^{-{D}/{2}}\; \\&\times {\rm e}^{{\rm i}(C-\sum A_{ij}^{-1}B_i\cdot B_j)}. \end{aligned}

      (4)

      Defining U({\alpha}) = {\rm Det}\; A and C-\sum A_{ij}^{-1}B_i\cdot B_j\equiv {V({\alpha})}/{U({\alpha})}- \sum m_i^2{\alpha}_i , we can see that U({\alpha}) is a homogeneous function of {\alpha}_i with degree L, whereas V({\alpha}) is a homogeneous function of {\alpha}_i with degree L+1 . The loop integral becomes

      \begin{aligned}[b] &I(L;\lambda_1+1,\cdots ,\lambda_n+1)\\ = &\dfrac{{\rm e}^{-\sum ({(\lambda_i+1)}/{2}){\rm i}\pi}}{\Pi_{i = 1}^n\Gamma(\lambda_i+1)}{\rm e}^{{\rm i}\pi L(1-{D}/{2})/2}\pi^{LD/2} \\ &\times\int {\rm d}{\alpha}_1\cdots {\rm d}{\alpha}_n U({\alpha})^{-{D}/{2}}{\rm e}^{{\rm i}[V({\alpha})/U({\alpha})-\sum m_i^2{\alpha}_i]}{\alpha}_1^{\lambda_1}\cdots {\alpha}_n^{\lambda_n}.\; \; \; \end{aligned}

      (5)

      To derive the parametric form suggested by Chen, we perform the following: Using the {\alpha} -representation of general propagators,

      \frac{1}{(l^2-m^2)^{\lambda+1}} = \frac{{\rm e}^{-{((\lambda+1)}/{2}){\rm i}\pi}}{\Gamma(\lambda+1)}\int _0^{\infty} {\rm d}{\alpha} {\rm e}^{{\rm i}{\alpha}(l^2-m^2)}{\alpha}^{\lambda},\; \; {\rm Im}\{l^2-m^2\}>0,\; \; \;

      (6)

      where " i\epsilon " is neglected, we obtain

      \begin{aligned}[b] I(L;\lambda_1+1,\cdots ,\lambda_n+1) = &\frac{{\rm e}^{-\sum_i^n {((\lambda_i+1)}/{2}){\rm i}\pi}}{\Pi_{i = 1}^{n}\Gamma(\lambda_i+1)}\int {\rm d}^Dl_1\cdots {\rm d}^Dl_L\\&\times\int _0^{\infty} {\rm d}{\alpha}_1\cdots {\rm d}{\alpha}_n {\rm e}^{{\rm i}\sum_{i = 1}^{n}{\alpha}_iD_i}{\alpha}_1^{\lambda_1}\cdots {\alpha}_n^{\lambda_n}.\; \; \; \end{aligned}

      (7)

      To go further, we change the integral variables to {\alpha}_i = \eta x_i . Because there is a total of n independent variables, we must insert another constraint condition. In general, we could let

      \begin{eqnarray} \sum_{i\in S(1,2,3,\cdots n)} x_i = 1,\; \; \; \end{eqnarray}

      (8)

      where S is an arbitrary non-trivial subset of \{1,2,3,\cdots n\} . After carrying out the integration over η, the second line of Eq. (5) becomes

      \begin{aligned}[b] &(-i)^{(n+\lambda-{DL}/{2})}\Gamma\left(n+ \lambda-\frac{DL}{2}\right)\times\int {\rm d}x_1\cdots {\rm d}x_n\delta \left(\sum_{j\in S}x_j-1\right) \frac{U(x)^{n+\lambda-({D}/{2})(L+1)}}{[-V(x)+U(x)\sum m_i^2x_i]^{n+\lambda-{DL}/{2}}}x_1^{\lambda_1}\cdots x_n^{\lambda_n} \\ = &(-i)^{n+ \lambda-{DL}/{2}}\Gamma\left(n+\lambda-\frac{DL}{2}\right)\int {\rm d}x_1\cdots {\rm d}x_n\delta (\sum_{j\in S} x_j-1)U^{\lambda_u}f^{\lambda_f}x_1^{\lambda_1}\cdots x_n^{\lambda_n},\; \; \; \end{aligned}

      (9)

      where

      \begin{aligned}[b] U(x) = & \eta^{-L} U({\alpha}) = \eta^{-L} U(\eta x_i),\; \; \; \; V(x) = \eta^{-L-1} V({\alpha}) = \eta^{-L-1} V(\eta x),\; \; \; \; f(x) = -V(x)+U(x)\sum m_i^2x_i \\ \lambda = &\sum_{i = 1}^{n} \lambda_i,\; \; \; \; \lambda_u = n+\lambda-\frac{D}{2}(L+1),\; \; \; \; \lambda_f = -n-\lambda+\frac{DL}{2}.\; \; \; \end{aligned}

      (10)

      Finally, via Mellin transformation

      \begin{eqnarray} A^{\lambda_1}B^{\lambda_2}& = \frac{\Gamma(-\lambda_1-\lambda_2)}{\Gamma(-\lambda_1)\Gamma(-\lambda_2)}\int _0^{\infty} {\rm d}x (A+Bx)^{\lambda_1+\lambda_2}x^{-\lambda_2-1},\; \; \; \end{eqnarray}

      (11)

      we can express (9) as

      \begin{aligned}[b] &(-i)^{n+\lambda-{DL}/{2}}\Gamma\left(n+\lambda-\frac{DL}{2}\right)\frac{\Gamma(-\lambda_u-\lambda_f)}{\Gamma(-\lambda_u)\Gamma(-\lambda_f)}\int {\rm d}x_1 \cdots {\rm d}x_n \delta\left(\sum_{j\in S}x_j-1\right)\int _0^\infty {\rm d}x_{n+1} \times (Ux_{n+1}+f)^{\lambda_u+\lambda_f}x_{n+1}^{-\lambda_u-1}x_1^{\lambda_1} \cdots x_n^{\lambda_n} \\ \equiv& (-i)^{n+\lambda-{DL}/{2}}\frac{\Gamma(n+\lambda-{DL}/{2})\Gamma(-\lambda_u-\lambda_f)}{\Gamma(-\lambda_u)\Gamma(-\lambda_f)}\int {\rm d}\Pi^{(n+1)}F^{\lambda_0}x_1^{\lambda_1}\cdots x_n^{\lambda_n} x_{n+1}^{\lambda_{n+1}} \\ \equiv & (-i)^{n+\lambda-{DL}/{2}}\frac{\Gamma(n+\lambda-\frac{DL}{2})\Gamma(-\lambda_u-\lambda_f)}{\Gamma(-\lambda_u)\Gamma(-\lambda_f)} i_{\lambda_0;\lambda_1,\cdots \lambda_n},\; \; \; \end{aligned}

      (12)

      where

      \begin{aligned}[b] {\rm d}\Pi^{(n+1)} = &{\rm d}x_1\cdots {\rm d}x_{n+1}\delta (\sum_{j\in S} x_j-1),\\ F =& Ux_{n+1}+f,\; \; \; \; \; \lambda = \sum_{i = 1}^n \lambda_i, \\ \lambda_0 = &\lambda_u+\lambda_f = -\frac{D}{2},\\ \lambda_{n+1} =& -\lambda_u-1 = \frac{D}{2}(L+1)-\lambda-1-n.\; \; \; \end{aligned}

      (13)

      Combined, we finally obtain the parametric form of the scalar loop integrals in (5),

      \begin{eqnarray} I(L;\lambda_1 + 1,\cdots ,\lambda_n +1 ) = (-1)^{n+\lambda}i^{L} \pi^{{LD}/{2}}\frac{\Gamma(-\lambda_0)}{\Pi_{i = 1}^{n+1}\Gamma(\lambda_i + 1)} i_{\lambda_0;\lambda_1,\cdots \lambda_n}.\; \; \; \end{eqnarray}

      (14)
    • A.   IBP identity in parametric form

    • The parametric form of (14) is the starting point of Chen's proposal. The IBP relations in this form are given by

      \begin{aligned}[b]& \int {\rm d}\Pi^{(n+1)}\frac{{{\partial}} }{{{\partial}} x_i}\Big\{F^{\lambda_0}x_1^{\lambda_1}\cdots x_n^{\lambda_n}x_{n+1}^{\lambda_{n+1}+1}\Big\}\\& +\delta_{\lambda_i,0}\int {\rm d}\Pi^{(n)} \Big\{F^{\lambda_0}x_1^{\lambda_1}\cdots x_n^{\lambda_n}x_{n+1}^{\lambda_{n+1}+1}\Big\}\Big|_{x_i = 0} = 0\; \; \end{aligned}

      (15)

      where i = 1,...,n+1 , and {\rm d}\Pi^{(n)} in the second term is

      \begin{eqnarray} {\rm d}\Pi^{(n)}& = &{\rm d}x_1\cdots \hat{{\rm d}x_i}\cdots {\rm d}x_n{\rm d}x_{n+1}\delta\left(\sum_{j\in S}x_j-1\right).\; \; \; \end{eqnarray}

      (16)

      The second term in (15) contributes to a boundary term, which leads to the sub-topologies of the former term.

      To illustrate the IBP relation (15), we present the reduction in I_2(1,2) as an example. The general form of one-loop bubble integrals is given by

      I_2(m+1,n+1) = \int \frac{{\rm d}^{D}l}{(l^2-m_1^2)^{m+1}((l-p_1)^2-m_2^2)^{n+1}},\; \; \;

      (17)

      and the corresponding parametric form is (in this paper, we ignore the former factor \pi^{{LD}/{2}} )

      \begin{aligned}[b] I_2(m+1,n+1) = &{\rm i}(-1)^{m+n+2}\\&\times\frac{\Gamma\left(\dfrac{D}{2}\right)}{\Gamma(m+1)\Gamma(n+1)\Gamma(D-2-m-n)}\\&\times\int {\rm d}\Pi^{(3)}F^{\lambda_0}x_1^mx_2^nx_3^{\lambda_3},\; \; \; \end{aligned}

      (18)

      where

      F = (x_1+x_2)(m_1^2x_1+m_2^2x_2+x_3)-p_1^2x_1x_2,\; \; \;

      (19)

      and

      i_{\lambda_0;m,n} = \int {\rm d}\Pi^{(3)}F^{\lambda_0}x_1^mx_2^nx_3^{\lambda_3},\; \; \;

      (20)

      with \lambda_0 = -\dfrac{D}{2} , and \lambda_3 = -3-m-n-2\lambda_0 . Using Eq. (15), we can obtain three IBP recurrence relations. First, taking \dfrac{{{\partial}}}{{{\partial}} x_1} , the first term in (15) gives

      \begin{eqnarray} \lambda_0i_{\lambda_0-1;m,n}+2m_1^2\lambda_0 i_{\lambda_0-1;m+1,n}+\Delta\lambda_0i_{\lambda_0-1;m,n+1},\; \; \; \end{eqnarray}

      (21)

      where \Delta = m_1^2+m_2^2-p_1^2 . The second term gives

      \begin{eqnarray} \delta_{m,0}\int {\rm d}\Pi^{(2)}(x_3+m_2^2x_2)^{\lambda_0}x_2^{n+\lambda_0}x_3^{-2-n-2\lambda_0} = \delta_{m,0}i_{\lambda_0;-1,n}. \; \; \; \end{eqnarray}

      (22)

      Here, the notation i_{\lambda_0;-1,n} must be explained. From the middle expression of (22), we see that it is the parametric form of the tadpole \int {{\rm d}^{D}l}/{(l^2-m_2^2)^{n+1}} . To emphasize its origin, that is,from a bubble by removingthe first propagator, we extend the definition of i_{\lambda_0;\lambda_1,...,\lambda_n} given in (12) by setting \lambda_1 = -1 . Using the extended notation, we obtain the first IBP relation

      \begin{aligned}[b]& \lambda_0i_{\lambda_0-1;m,n}+2m_1^2\lambda_0 i_{\lambda_0-1;m+1,n}\\&+\Delta\lambda_0i_{\lambda_0-1;m,n+1}+\delta_{m,0}i_{\lambda_0;-1,n} =0. \; \; \; \end{aligned}

      (23)

      When we set m = n = 0 in (23), this reads

      \begin{eqnarray} \lambda_0i_{\lambda_0-1;0,0}+2m_1^2\lambda_0i_{\lambda_0-1;1,0}+ \Delta\lambda_0i_{\lambda_0-1;0,1}+i_{\lambda_0;-1,0} = 0.\; \; \; \end{eqnarray}

      (24)

      Similarly, we can take the differential \dfrac{{{\partial}} }{{{\partial}} x_2} and obtain the second IBP relation

      \lambda_0i_{\lambda_0-1;0,0}+\Delta\lambda_0 i_{\lambda_0-1;1,0}+2m_2^2\lambda_0i_{\lambda_0-1;0,1}+i_{\lambda_0;0,-1} =0.\; \; \;

      (25)

      We should solve i_{\lambda_0;0,1} by i_{\lambda_0;0,0} from (24) and (25). However, for the bubble part, we have \lambda_0-1 instead of \lambda_0 . This could be fixed by rewriting \lambda_0\to \lambda_0+1 because \lambda_0 is a free parameter. However, the boundary tadpole part i_{\lambda_0;0,-1} will become i_{\lambda_0+1;0,-1} , that is, it will have the dimensional shifting, which is a common feature in the parametric IBP relation.

      To deal with this, using the parametric form of tadpoles

      i_{\lambda_0;m,-1} = \int {\rm d}\Pi^{(2)}(x_1x_3+m_1^2x_1^2)^{\lambda_0}x_1^mx_3^{-2-m-2\lambda_0} \; \; \;

      (26)

      and taking the \dfrac{{{\partial }} }{{{\partial }} x_1} and \dfrac{{{\partial }} }{{{\partial }} x_3} , we can obtain two IBP relations,

      \begin{aligned}[b]& \lambda_0 i_{\lambda_0-1;m,-1}+2m_1^2\lambda_0 i_{\lambda_0-1;m+1,-1}+m i_{\lambda_0,m-1,-1} = 0, \\ & \lambda_0 i_{\lambda_0-1;m+1,-1}+(-1-m-2\lambda_0)i_{\lambda_0;m,-1} = 0,\; \; \; \end{aligned}

      (27)

      from which we solve

      \begin{aligned}[b] i_{\lambda_0;0,-1}= &\frac{-\lambda_0}{2m_1^2(2\lambda_0+1)}i_{\lambda_0-1;0,-1},\\ i_{\lambda_0;-1,0} =& \frac{-\lambda_0}{2m_2^2(2\lambda_0+1)}i_{\lambda_0-1;-1,0}.\; \; \; \end{aligned}

      (28)

      Inserting (28) into (24) and (25), we can solve i_{\lambda_0-1;0,1} . After shifting \lambda_0\to \lambda_0+1 , we finally get

      \begin{aligned}[b] i_{\lambda_0;0,1} =& \frac{2m_1^2-\Delta}{\Delta^2-4m_1^2m_2^2}i_{\lambda_0;0,0}+\frac{-1} {(2\lambda_0+3)(\Delta^2-4m_1^2m_2^2)}i_{\lambda_0;0,-1}\\&+\frac{\Delta}{2m_2^2(2\lambda_0+3) (\Delta^2-4m_1^2m_2^2)}i_{\lambda_0;-1,0}.\; \; \end{aligned}

      (29)

      Translating back to the scalar basis, we obtain the reduction in I_2(1,2) as

      I_2(1,2) = c_{2\to2}I_2(1,1)+c_{2\to1\bar2}I_2(1,0)+c_{2\to1;\bar1}I_2(0,1),\; \; \;

      (30)

      with the coefficients

      \begin{aligned}[b] c_{2\to2} = &\frac{(D-3)(\Delta-2m_1^2)}{\Delta^2-4m_1^2m_2^2},\\ c_{2\to1;\bar2} =& \frac{D-2}{\Delta^2-4m_1^2m_2^2},\\ c_{2\to1;\bar1} =& \frac{(D-2)\Delta}{2m_2^2(4m_1^2m_2^2-\Delta^2)}.\; \; \; \end{aligned}

      (31)

      This result is confirmed with FIRE6 [31, 32].

    • B.   Improvement of parametric IBP

    • As shown in the previous subsection, the IBP relation given in (15) will contain integrals with dimension shift, which makes the reduction program slightly troublesome. As reviewed in the introduction, there are several references dealing with this or related problems. Based on these studies, an improved version of the IBP relation has been given in [2] (see Eq. (12) and (13)). All these methods require a solution to the syzygy equations, which is not generally an easy task. However, for our one-loop integrals, the function F(x) is a homogeneous function of x_i with degree of two. This good property simplifies the related syzygy equations, which can then be directly solved. In this paper, we develop a direct algorithm to express the IBP relations without dimension shift and terms with unwanted higher power propagators.

      In the generalized parametric representation, our improved IBP relation involves multiplying Eq. (15) by a degree zero coefficient z_i , for example, z_i = x_1^{{\alpha}}x_2^{{\beta}}x_3^{-{\alpha}-{\beta}} . Because the degree of the new integrand does not change, the IBP identity still holds. Summing them together we get

      \begin{aligned}[b]& \sum_{i = 1}^{n+1}\int {\rm d}\Pi^{(n+1)}\frac{{{\partial }}}{{{\partial }} x_i}\Big\{z_iF^{\lambda_0}x_1^{\lambda_1}x_2^{\lambda_2}\cdots x_{n+1}^{\lambda_{n+1}+1}\Big\}\\&+\sum_{i = 1}^{n+1}\delta_{\lambda_i,0}\int {\rm d}\Pi^{(n)}z_i F^{\lambda_0}x_1^{\lambda_1}\cdots x_n^{\lambda_n}x_{n+1}^{\lambda_{n+1}}|_{x_i = 0} = 0.\; \; \; \end{aligned}

      (32)

      Because the second boundary term involves integrals with sub-topologies, we focus on the first term. Expanding it, we get

      \begin{aligned}[b]& \int {\rm d}\Pi^{(n+1)}\Bigg[\sum_{i = 1}^{n+1}\Bigg(\frac{{{\partial }} z_i}{{{\partial }} x_i}+\lambda_0\frac{z_i\frac{{{\partial }} F}{{{\partial }} x_i}}{F}+\lambda_i\frac{z_i}{x_i}\Bigg)+\frac{z_{n+1}}{x_{n+1}}\Bigg]\\&\times F^{\lambda_0}x_1^{\lambda_i}x_2^{\lambda_2}\cdots x_n^{\lambda_n}x_{n+1}^{\lambda_{n+1}+1}. \end{aligned}

      (33)

      From (13), we can see that the power \lambda_0 of F is related to dimension. To cancel the dimension shift, we must choose the proper coefficients z_i so that \displaystyle\sum_{i = 1}^{n+1}z_i\dfrac{{{\partial }} F}{{{\partial }} x_i} is a multiple of the function F, that is,

      \sum_{i = 1}^{n+1}z_i\frac{{{\partial }} F}{{{\partial }} x_i}+BF = 0\; .\;

      (34)

      Because the coefficients z_i are not polynomials, (34) is not the "normal syzygy equation," and we cannot directly use the technique developed for the polynomial ring. In [2], Chen developed a method based on the lift and down operators. Here, for the one-loop integrals, we can solve it directly with free auxiliary parameters, as shown later in this paper. When reinserting the solutions to the IBP recurrence relation, we can choose these free parameters to cancel both the dimension shift and unwanted terms with higher power propagators, which leads to a simpler recurrence relation.

      Now, the idea is explained in detail. Note that in the one loop case, the homogeneous function F is a degree two function of x_i ; therefore, we can write F as

      \begin{eqnarray} F = {1\over 2} A_{ij} x_i x_j ,\end{eqnarray}

      (35)

      where A is a symmetric matrix. Thus, we have

      f_i\equiv \frac{{{\partial}} F}{{{\partial}} x_i},\quad \hat f = \hat A \hat x,\quad \hat f\equiv \left[\begin{array}{c} f_1 \nonumber \\ f_2 \nonumber \\ \vdots \nonumber \\ f_n \nonumber \\ f_{n+1} \end{array}\right],\quad \hat x\equiv \left[\begin{array}{c} x_1 \nonumber \\ x_2 \nonumber \\ \vdots \nonumber \\ x_n \nonumber \\ x_{n+1} \end{array}\right],

      Solving \hat x = \hat A^{-1} \hat f , we have

      \begin{aligned}[b] F =& {1\over 2} \hat x^T A \hat x = {1\over 2} \hat f^T (\hat A^{-1})^T \hat A \hat A^{-1} \hat f \\=& {1\over 2} \hat f^T (\hat A^{-1})^T \hat f\equiv \hat f^{T} \hat K \hat f,\\K = &{1\over 2}A^{-1}, \; \; \; \end{aligned}

      (36)

      where the coefficient matrix \hat K is a real symmetry matrix. In fact, we can go further. Using

      \begin{eqnarray} 0& = &\hat f^{T} \hat K_{A} \hat f\; \; \; \end{eqnarray}

      (37)

      with any antisymmetric matrix K_{A} , we can add (37) to (36) to obtain a more general form

      \begin{aligned}[b] F= &\hat f^{T}\hat K\hat f+\hat f^T\hat K_A \hat f = \hat f^T (\hat K+\hat K_A)\hat f \equiv\hat f^T \hat R \hat f\\ =& \hat f^T\hat R\hat A\hat x \equiv \hat f^T\hat Q\hat x,\\ \hat Q\equiv& {1\over 2}\hat I+ \hat K_A\hat A.\; \; \; \end{aligned}

      (38)

      Note that because the arbitrary matrix \hat K_A is of rank n+1 , there are \dfrac{n(n+1)}{2} free independent parameters, a_{1},\cdots, a_{{(n(n+1))}/{2}} , in the matrix \hat Q in (38).

      Now, reinserting (38) into (34), we can solve \hat z as

      \begin{eqnarray} \hat f^T \hat z+ B \hat f^T\hat Q\hat x = 0,\; \; \; \Longrightarrow \hat z = -B\hat Q\hat x.\; \; \; \; \; \; \; \; \; \; \end{eqnarray}

      (39)

      Note that because z is degree zero, we should ensure B is a homogenous function of degree -1 . In this study, we choose B ={1}/{x_{n+1}} . The choice of z given by (39) will guarantee the removal of dimension shift in the IBP relation. Furthermore, by choosing particular values of the free parameters of \hat Q , we may cancel several unwanted terms. Some examples are shown in later computations to illustrate this trick.

    III.   REDUCTION IN ONE-LOOP INTEGRALS
    • As mentioned in the introduction, one motivation of this study is to complete reduction in the scalar basis with general powers. Using the unitarity cut method in [3], we are able to find reduction coefficients of all bases, except the tadpole. In this section, we will use the improved IBP relation (32) to find the tadpole coefficients as well as other coefficients.

    • A.   Bubble case

    • We begin with bubble topology. Although this was already done in (30), we redo it using the improved IBP relation (32). The parametric form of bubble is given by (18), (19), and (20). Using our label, we have

      \hat f = \hat A \hat x,\; \; \; \; \; \hat A = \left[\begin{array}{ccc} 2m_1^2&\Delta&1 \\ \Delta&2m_2^2&1 \\ 1&1&0 \end{array}\right], \\ \; \; \; \;

      (40)

      and

      \begin{aligned}[b]F =& \hat f^T \hat K\hat f,\\ \hat K =& \left[\begin{array}{ccc} \dfrac{1}{4p_1^2}&-\dfrac{1}{4p_1^2}&\dfrac{-m_1^2+m_2^2+p_1^2}{4p_1^2} \\ -\dfrac{1}{4p_1^2}&\dfrac{1}{4p_1^2}&\dfrac{m_1^2-m_2^2+p_1^2}{4p_1^2} \\ \dfrac{-m_1^2+m_2^2+p_1^2}{4p_1^2}&\dfrac{m_1^2-m_2^2+p_1^2}{4p_1^2}&\dfrac{\Delta^2-4m_1^2m_2^2}{4p_1^2} \end{array}\right]. \\ \; \end{aligned}

      (41)

      Adding the antisymmetric matrix K_A , we have

      \begin{aligned}[b] \hat K_A& = &\left[\begin{array}{ccc} 0&a_1&a_2 \\ -a_1&0&a_3 \\ -a_2&-a_3&0 \\ \end{array}\right],\; \; \hat Q = \left[\begin{array}{ccc} \dfrac{1+2a_2+2a_1m_1^2+2a_1m_2^2-2a_1p_1^2}{2}&a_2+2a_1m_2^2&a_1 \\ a_3-2a_1m_1^2&\dfrac{1+2a_3-2a_1m_1^2-2a_1m_2^2+2a_1p_1^2}{2}&-a_1 \\ -2a_2m_1^2-a_3(m_1^2+m_2^2-p_1^2)&-2a_3m_2^2-a_2(m_1^2+m_2^2-p_1^2)&\dfrac{1-2a_2-2a_3}{2} \end{array}\right]. \\ \; \; \; \; \end{aligned}

      (42)

    • 1.   Deriving the recurrence relation
    • Taking B = {-1}/{ x_3} in (34), solution (39) gives z_i = { (Q_{ij} x_j)}/{ x_3} . Expanding (32), we obtain the IBP recurrence relation

      \begin{aligned}[b] &c_{m,n}i_{\lambda_0;m,n}+c_{m+1,n}i_{\lambda_0;m+1,n}+c_{m+1,n-1}i_{\lambda_0;m+1,n-1}\\&+c_{m,n+1}i_{\lambda_0;m,n+1}+ c_{m-1,n+1}i_{\lambda_0;m-1,n+1}\\ &+c_{m,n-1}i_{\lambda_0;m,n-1}+c_{m-1,n}i_{\lambda_0;m-1,n}+\delta_{2} = 0,\; \; \; \end{aligned}

      (43)

      where \delta_2 is the boundary term, which we will compute later. The other coefficients are

      \begin{aligned}[b]& c_{m,n} = Q_{11}(1+m)+Q_{22}(1+n)+Q_{33}(1+\lambda_3)+\lambda_0, \\& c_{m+1,n} = Q_{31}\lambda_3 = -\lambda_3(a_2A_{11}+a_3A_{21}),\\& c_{m+1,n-1} = Q_{21}n = -n(a_1A_{11}-a_3A_{31}), \end{aligned}

      \begin{aligned}[b] c_{m,n+1} = &Q_{32}\lambda_3 = -\lambda_3(a_2A_{12}-a_{3}A_{22}),\\ c_{m-1,n+1} =& Q_{12}m = m(a_1A_{22}+a_{2}A_{32}), \\ c_{m,n-1} = &Q_{23}n = -n(a_1A_{13}-a_3A_{33}),\\ c_{m-1,n} =& Q_{13}m = m(a_1A_{32}+a_2A_{33}). \end{aligned}

      (44)

      Because we aim to obtain the reduction in I_2(1,2) , starting from m = n = 0 , we want to eliminate terms with the indices (m+1,n) and (m+1,n-1) while keeping the term with the index (m,n+1) . Thus, we impose c_{m+1,n} = 0 and c_{m+1,n-1} = 0 , which can be satisfied by choosing the free parameters

      \begin{aligned}[b] a_2 = &-\frac{a_1A_{21}}{A_{31}} = -a_1(m_1^2+m_2^2-p_1^2),\\ a_3 =& \frac{a_1A_{11}}{A_{31}} = 2a_1m_1^2.\; \; \; \end{aligned}

      (45)

      After this choice, the matrix \hat Q becomes

      \hat Q_{;r} = \left[\begin{array}{ccc} \dfrac{1}{2}&\dfrac{a_1}{A_{31}}(A_{22}A_{31}-A_{21}A_{32})&\dfrac{a_1}{A_{31}}(A_{23}A_{31}-A_{21}A_{33}) \nonumber \\ 0&\dfrac{1}{2}-\frac{a_{1}}{A_{31}}(A_{12}A_{31}-A_{11}A_{32})&\dfrac{a_1}{A_{31}}(A_{11}A_{33}-A_{13}A_{31}) \nonumber \\ 0&\dfrac{a_1}{A_{31}}(A_{12}A_{21}-A_{11}A_{22})&\dfrac{1}{2}+\dfrac{a_1}{A_{31}}(A_{13}A_{21}-A_{11}A_{23})\end{array}\right],

      leaving five terms with non-zero coefficients.

      \begin{aligned}[b] c_{m,n+1} = &\frac{-a_1\lambda_3}{A_{31}}(A_{11}A_{22}-A_{12}A_{21}) = \frac{-a_1\lambda_3}{A_{31}} |\tilde A_{33}| = a_1\lambda_3, \\ c_{m-1,n+1} = &-\frac{ma_1}{A_{31}}(A_{21}A_{32}-A_{22}A_{31}) = -\frac{ma_1}{A_{31}}|\tilde A_{13}| = -a_1m(m_1^2-m_2^2-p_1^2), \\ c_{m,n-1} = &\frac{na_1}{A_{31}}(A_{11}A_{33}-A_{13}A_{31}) = \frac{na_1}{A_{31}}|\tilde A_{22}| = -a_1n, \\ c_{m-1,n} = &-\frac{ma_1}{A_{31}}(A_{21}A_{33}-A_{23}A_{31}) = \frac{-ma_1}{A_{31}}|\tilde A_{12}| = a_1m, \\ c_{m,n} = &\frac{a_1}{A_{31}}\Big((1+n)(A_{11}A_{32}-A_{12}A_{31})-(\lambda_3+1)(A_{11}A_{23}-A_{13}A_{21})\Big) = \frac{a_1}{A_{31}}(n-\lambda_3)|\tilde A_{23}| \\ = &\frac{a_1}{A_{31}}\Big((n-\lambda_3)(m_1^2-m_2^2+p_1^2)\Big).\; \; \; \end{aligned}

      (46)

      The boundary \delta_{2} term: The \delta_2 term is given by

      \delta_2= \sum_{i = 1}^{3}\delta_{\lambda_i,0}\int {\rm d}\Pi^{(2)} \Big\{z_iF^{\lambda_0}x_1^mx_2^nx_3^{\lambda_3+1}\Big\}\Big|_{x_i = 0},

      (47)

      where \lambda_i represents the power of x_i . It is worth emphasizing that because z_i contains x_i , the total power \lambda_i of x_i is not equal to m,n,\lambda_3 in general. Expanding it, we get

      \begin{aligned}[b]\\[-10pt] \delta_2 = &\delta_{\lambda_1,0}\int {\rm d}\Pi^{(2)}\Big(Q_{11}F^{\lambda_0}x_1^{m+1}x_2^nx_3^{\lambda_3}+Q_{12}F^{\lambda_0}x_1^mx_2^{n+1}x_3^{\lambda_3}+Q_{13}F^{\lambda_0}x_1^mx_2^nx_3^{\lambda_3+1}\Big)\Big|_{x_1 = 0} \\ &+\delta_{\lambda_2,0}\int {\rm d}\Pi^{(2)}\Big(Q_{21}F^{\lambda_0}x_1^{m+1}x_2^nx_3^{\lambda_3}+Q_{22}F^{\lambda_0}x_1^{m}x_2^{n+1}x_3^{\lambda_3}+Q_{23}F^{\lambda_0}x_1^mx_2^nx_3^{\lambda_3+1}\Big)\Big|_{x_2 = 0}.\\ \end{aligned}

      (48)

      Remembering our extended notation explained under (22), we have

      \begin{eqnarray} \int {\rm d}\Pi^{(2)} F|_{x_1 = 0}^{\lambda_0}x_2^n\equiv& i_{\lambda_0;-1,n},\quad \int {\rm d}\Pi^{(2)}F|_{x_2 = 0}^{\lambda_0}x_1^m\equiv i_{\lambda_0;m,-1},\; \; \; \; \end{eqnarray}

      (49)

      and the \delta_{2} term can be written as

      \begin{aligned}[b] \delta_{2;r} = &\delta_{\lambda_1,0}\Big(Q_{11;r}i_{\lambda_0;m+1,n}+Q_{12;r}i_{\lambda_0;m,n+1}+Q_{13;r}i_{\lambda_0;m,n}\Big) +\delta_{\lambda_2,0}\Big(Q_{21;r}i_{\lambda_0;m+1,n}+Q_{22;r}i_{\lambda_0;m,n+1}+Q_{23;r}i_{\lambda_0;m,n}\Big) \\ = &\delta_{m,-1}Q_{11;r}i_{\lambda_0;-1,n}+\delta_{m,0}Q_{12;r}i_{\lambda_0;,-1,n+1}+\delta_{m,0}Q_{13;r}i_{\lambda_0;-1,n} +\delta_{n,0}Q_{21;r}i_{\lambda_0;m+1,-1}+\delta_{n,-1}Q_{22;r}i_{\lambda_0;m,-1}+\delta_{n,0}Q_{23;r}i_{\lambda_0;m,-1}, \; \; \; \end{aligned}

      (50)

      where the subscript r in \delta_{2;r} and Q_{ij;r} indicates that a_2 and a_3 should be replaced by (45).

      Because m and n cannot be -1 , the first and fifth terms are actually zero.

      Now, we can use (43) and (50) to get our result directly. Setting m = 0 , n = 0 , and all other terms in (43) equal to zero, and we are left with

      \begin{eqnarray} c_{0,0}i_{\lambda_0;0,0}+c_{0,1}i_{\lambda_0;0,1}+\delta_{2;00}& =0,\; \; \; \; \end{eqnarray}

      (51)

      with the coefficients

      \begin{aligned}[b]\\ c_{0,0} = &-a_1(D-3)(m_1^2-m_2^2+p_1^2), \\ c_{0,1} = &a_1(D-3)\Big(m_1^4+m_2^4p_1^4-2m_1^2p_1^2-2m_2^2p_1^2-2m_1^2m_2^2\Big), \\ \delta_{2;00} = &Q_{12;r}i_{\lambda_0;-1,1}+Q_{13;r}i_{\lambda_0;-1,0}+Q_{21;r}i_{\lambda_0;1,-1}+Q_{23;r}i_{\lambda_0;0,-1}, \; \; \; \; \end{aligned}

      (52)

      where

      \begin{aligned}[b] Q_{21;r} = &\frac{-a_1}{A_{31}}(A_{21}A_{32}-A_{22}A_{31}) = \frac{-a_1}{A_{31}}|\tilde A_{13}|,\quad Q_{23;r} = \frac{-a_1}{A_{31}}(A_{11}A_{33}-A_{13}A_{31}) = \frac{-a_1}{A_{31}}|\tilde A_{22}|, \\ Q_{12;r} = &\frac{-a_1}{A_{31}}(A_{21}A_{32}-A_{22}A_{31}) = \frac{-a_{1}}{A_{31}}|\tilde A_{13}|,\quad Q_{13;r} = \frac{-a_1}{A_{31}}(A_{21}A_{33}-A_{23}A_{31}) = \frac{-a_1}{A_{31}}|\tilde A_{12}|. \end{aligned}

      (53)

      From this, we can directly write the solution as

      \begin{eqnarray} i_{\lambda_0;0,1}& = -\frac{c_{0,0}}{c_{0,1}}i_{\lambda_0;0,0}-\frac{Q_{21;r}}{c_{0,1}}i_{\lambda_0;1,-1}-\frac{Q_{23;r}}{c_{0,1}}i_{\lambda_0;0,-1}-\frac{Q_{12;r}}{c_{0,1}}i_{\lambda_0;-1,1}-\frac{Q_{13;r}}{c_{0,1}}i_{\lambda_0;-1,0}. \; \; \; \; \end{eqnarray}

      (54)

      Translating back to scalar integrals, it is

      \begin{aligned}[b] I_2(1,2) = &c_{12\to11}I_2(1,1)+c_{12\to10}I_2(1,0)\\&+c_{12\to20}I_2(2,0)+c_{12\to01}I_2(0,1)\\&+c_{12\to02}I_2(0,2), \end{aligned}

      (55)

      with c_{12\to20} = 0 and

      \begin{aligned}[b] c_{12\to11} = &{-(-3 + D) (m_1^2 - m_2^2 + p_1^2))\over( m_1^4 + (m_2^2 - p_1^2)^2 - 2 m_1^2 (m_2^2 + p_1^2)},\\ c_{12\to10} =& \frac{D-2}{-2 m_1^2 \left(m_2^2+p_1^2\right)+m_1^4+\left(m_2^2-p_1^2\right)^2} \\ c_{12\to01} = &\frac{2-D}{-2 m_1^2 \left(m_2^2+p_1^2\right)+m_1^4+\left(m_2^2-p_1^2\right)^2},\\ c_{12\to02} =& \frac{-m_1^2+m_2^2+p_1^2}{-2 m_1^2 \left(m_2^2+p_1^2\right)+m_1^4+\left(m_2^2-p_1^2\right)^2}. \end{aligned}

      (56)

      Using I_2(2,0) = \dfrac{D-2}{2m_1^2}I_2(1,0) and I_2(0,2) = \dfrac{D-2}{2m_2^2}I_2(0,1) , we have our final results for the reduction in I_2(1,2) ,

      I_2(1,2) = c_{2\to2}I_2(1,1)+c_{2\to1;\bar2}I_2(1,0)+c_{2\to1;\bar1}I_2(0,1),

      (57)

      with the coefficients

      \begin{aligned}[b] c_{2\to2} = &-\frac{(D-3) \left(m_1^2-m_2^2+p_1^2\right)}{-2 m_1^2 \left(m_2^2+p_1^2\right)+m_1^4+\left(m_2^2-p_1^2\right)^2}, \\ c_{2\to1;\bar2} = &\frac{D-2}{-2 m_1^2 \left(m_2^2+p_1^2\right)+m_1^4+\left(m_2^2-p_1^2\right)^2}, \\ c_{2\to1;\bar1} = &-\frac{(D-2) \left(m_1^2+m_2^2-p_1^2\right)}{2 m_2^2 \left(-2 m_1^2 \left(m_2^2+p_1^2\right)+m_1^4+\left(m_2^2-p_1^2\right)^2\right)},\end{aligned}

      (58)

      which is given in (30).

    • B.   General case for bubbles

    • Now, let us consider more complicated examples, that is, bubbles with general higher power propagators. With the choice of (45), we get an IBP recurrence relation (46) and use it to reduce the bubbles i_{\lambda_0,m,n+1} to simpler bubbles, which have a lower total propagator power and no higher power in D_2 . Similarly, by choosing different values of a_2 and a_3 , we can obtain another IBP recurrence relation to reduce the integral to those with no higher power in D_1 . The choice is

      \begin{eqnarray} a_2 = -\frac{a_1A_{22}}{A_{32}},\quad a_3 = \frac{a_1A_{12}}{A_{32}}, \\ \end{eqnarray}

      (59)

      and the corresponding IBP recurrence is

      \begin{aligned}[b]& c_{m+1,n}i_{\lambda_0,m+1,n}+c_{m+1,n-1}i_{\lambda_0,m+1,n-1}+c_{m,n-1}i_{\lambda_0,m,n-1}\\&+c_{m-1,n}i_{\lambda_0,m-1,n}+c_{m,n}i_{\lambda_0,m,n}+\delta_{2;r} = 0 , \end{aligned}

      (60)

      with the coefficients

      \begin{aligned}[b] c_{m+1,n} = &(|\tilde A_{33}|)(D-3-m-n),\quad c_{m+1,n-1} = -n|\tilde A_{23}|, \\ c_{m,n-1}= &n|\tilde A_{21}|,\quad c_{m-1,n} = -m|\tilde A_{11}|,\\c_{m,n} =& |\tilde A_{13}|(3+2m+n-D), \end{aligned}

      (61)

      and the boundary term

      \delta_{2;r'} = -\delta_{m,0}|\tilde A_{11}|i_{\lambda_0,m,n}+\delta_{n,0}\Big(-|\tilde A_{32}|i_{\lambda_0,m+1,n}+|\tilde A_{21}|i_{\lambda_0,m,n}\Big) .

      (62)

      Combining (46) and (60), we can reduce the general bubbles.

    • 1.   Example: I_2(1,3)
    • In the example I_2(1,3) , we simply need to reduce D_2 from power 3 to 1 . The strategy is to use (46) twice. In the first step, by setting m = 0 and n = 1 in (46), we get

      \begin{aligned}[b] I_2(1,3) = &\frac{|\tilde A_{23}|(D-5)}{2|\tilde A_{33}|}I_2(1,2)+\frac{|\tilde A_{22}|(D-3)}{2|\tilde A_{33}|}I_2(1,1)\\&+\frac{-|\tilde A_{12}|(D-3)}{2|\tilde A_{33}|}I_2(0,2)+\frac{|\tilde A_{13}|}{|\tilde A_{33}|}I_2(0,3). \end{aligned}

      (63)

      For the first term in (63), setting m = 0 and n = 0 in (46) again, we have

      \begin{aligned}[b] I_2(1,2) = &\frac{|\tilde A_{23}|(D-3)}{|\tilde A_{33}|}I_2(1,1)+\frac{|\tilde A_{22}|(D-2)}{|\tilde A_{33}|}I_2(1,0)\\&+\frac{|\tilde A_{13}|}{|\tilde A_{33}|}I_2(0,2)+\frac{-|\tilde A_{12}|(D-2)}{|\tilde A_{33}|}I_2(0,1).\end{aligned}

      (64)

      Inserting (64) into (63) and using the reduction in the tadpole, we get

      I_2(1,3) = c_{13\to11}I_2(1,1)+c_{13\to10}I_2(1,0)+c_{13\to01}I_2(0,1),

      (65)

      with the coefficients

      \begin{aligned}[b] c_{13\to11} = &\frac{(|\tilde A_{23}||\tilde A_{33}|+|\tilde A_{23}|^2(D-5))(D-3)}{2|\tilde A_{33}|^2}, \\ c_{13\to10} = &\frac{|\tilde A_{22}||\tilde A_{23}|(D-5)(D-2)}{2|\tilde A_{33}|^2}, \\ c_{13\to01} = &\frac{(D-2)}{8|\tilde A_{33}|^2m_2^4}A_{21} (2 A_{32} |\tilde A_{23}| (D-5) m_{2}^2+A_{32} A_{t33} (D-4)\\&-4 A_{33} |\tilde A_{23}| (D-5) m_{2}^4-2 A_{33}|\tilde A_{33}| (D-3) m_{2}^2) \\ &-A_{22} A_{31} (2 |\tilde A_{23}| (D-5) m_{2}^2+A_{t33} (D-4))\\&+2 A_{23} A_{31} m_{2}^2 (2 |\tilde A_{23}| (D-5) m_{2}^2+|\tilde A_{33}| (D-3)). \end{aligned}

      (66)

      The result is confirmed with FIRE6. In this example, we simply need to solve two equations to reduce the bubble topology.

    • 2.   Example: I_2(3,5)
    • For this example, we must use (60) to lower the power of D_1 and (46) to lower the power of D_2 . Setting m = 1 and n = 4 in (60), we can reduce I_2(3,5) to I_2(2,4) , I_2(2,5) , I_2(1,5) , and I_2(3,4) .

      \begin{aligned}[b] I_2(3,5) = &\frac{|\tilde A_{11}|(D-7)}{2|\tilde A_{33}|}I_2(1,5)+\frac{-|\tilde A_{13}|(D-9)}{2|\tilde A_{33}|}I_2(2,5)\\&+\frac{-|\tilde A_{21}|(D-7)}{2|\tilde A_{33}|}I_2(2,4)+\frac{|\tilde A_{23}|}{|\tilde A_{33}|}I_2(3,4).\end{aligned}

      (67)

      Then, setting m = 1 and n = 3 in (60), we reduce I_2(3,4) to I_2(1,4) , I_2(2,3) , I_2(2,4) , and I_2(3,3) .

      \begin{aligned}[b] I_2(3,4) = &\frac{-|\tilde A_{23}|}{|\tilde A_{33}|}I_2(3,3)+\frac{-|\tilde A_{13}|(D-8)}{2|\tilde A_{33}|}I_2(2,4)\\&+\frac{-|\tilde A_{21}|(D-6)}{2|\tilde A_{33}|}I_2(2,3)+\frac{|\tilde A_{11}|(D-6)}{2|\tilde A_{33}|}I_2(1,4). \end{aligned}

      (68)

      Using the same idea, we must solve 14 equations to completely reduce I_{2}(3,5) . The analytic expressions for these 14 equations have also been confirmed by FIRE6.

    • C.   Triangle case

    • The triangle I_3(m+1,n+1,q+1) is given by

      \begin{aligned}[b]& I_3(m+1,n+1,q+1)\\ =& \int \frac{{\rm d}^{D}l}{(l^2-m_1^2)^{m+1}((l-p_1)^2-m_2^2)^{n+1}((l+p_3)^2-m_3^2)^{q+1}}. \end{aligned}

      (69)

      Its parametric form is

      \begin{aligned}[b]& I_3(m+1,n+1,q+1)\\ = &{\rm i}(-1)^{3+m+n+q}\frac{\Gamma(-\lambda_0)}{\Gamma(m+1)\Gamma(n+1)\Gamma(q+1)\Gamma(\lambda_4+1)}i_{\lambda_0,m,n,q}, \; \; \; \end{aligned}

      (70)

      where

      \begin{aligned}[b] &i_{\lambda_0;m,n,q} = \int {\rm d}\Pi^{(4)}F^{\lambda_0}x_1^mx_2^nx_3^qx_4^{\lambda_4},\quad \lambda_0 = -\frac{D}{2},\\& \lambda_4 = -4-2\lambda_0-m-n-q = D-4-m-n-q . \end{aligned}

      (71)

      Using expression (10), we have

      \begin{aligned}[b] U(x) = &x_1+x_2+x_3,\; \; \; \; \; V(x) = x_1x_2 p_1^2+x_1x_3 p_3^2+x_2x_3 p_2^2, \\ f(x) = &-V+U\sum m_i^2x_i = (x_1+x_2+x_3)(x_1m_1^2+x_2m_2^2+x_3m_3^2)\\&-x_1x_2p_1^2-x_2x_3p_2^2-x_1x_3p_3^2, \\ F(x)= &U(x)x_4+f(x) = \Big(x_1+x_2+x_3\Big)\\&\times\Big(m_1^2x_1+m_2^2x_2+m_3^2x_3+x_4\Big)\\&-x_1x_2p_1^2-x_2x_3p_2^2-x_1x_3p_3^2. \; \; \; \; \end{aligned}

      (72)

      Thus, we can express the matrices as

      \begin{aligned}[b] \hat A = &\left[\begin{array}{cccc} 2m_1^2&m_1^2+m_2^2-p_1^2&m_1^2+m_3^2-p_3^2&1 \\ m_1^2+m_2^2-p_1^2&2m_2^2&m_2^2+m_3^2-p_2^2&1 \\ m_1^2+m_3^2-p_3^2&m_2^2+m_3^2-p_2^2&2m_3^2&1 \\ 1&1&1&0 \end{array}\right], \\ \hat K_{A} =& \left[\begin{array}{cccc} 0&a_1&a_2&a_3 \\ -a_1&0&a_4&a_5 \\ -a_2&-a_4&0&a_6 \\ -a_3&-a_5&-a_6&0 \end{array}\right], \quad \hat Q = \frac{1}{2}\hat I+\hat K_{A}\hat A.\; \; \; \; \; \; \end{aligned}

      (73)
    • 1.   Deriving the recurrence relation
    • Taking B = \dfrac{-1}{x_4} in (39), we get z_i = \dfrac{Q_{ij} x_j}{x_4} . Taking this relation into our IBP identities (32), we get

      \begin{eqnarray} \sum_{i = 1}^4 \int {\rm d}\Pi^{(4)} \Big\{z_iF^{\lambda_0}x_1^mx_2^nx_3^qx_4^{\lambda_4+1}\Big\}+\delta_{3}& =0,\; \; \; \; \; \; \end{eqnarray}

      (74)

      for which we deal with the boundary \delta_3 term later. After expanding the first term, we get

      \begin{aligned}[b] &c_{m,n,q}i_{\lambda_0;m,n,q}+c_{m+1,n,q}i_{\lambda_0;m+1,n,q}+c_{m+1,n,q-1}i_{\lambda_0;m+1,n,q-1}+c_{m+1,n-1,q}i_{\lambda_0;m+1,n-1,q} \\ &+c_{m-1,n+1,q}i_{\lambda_0;m-1,q+1,q}+c_{m,n+1,q-1}i_{\lambda_0;m,n+1,q-1}+c_{m,n+1,q}i_{\lambda_0;m,n+1,q}+c_{m,n,q+1}i_{\lambda_0;m,n,q+1} \\ &+c_{m,n-1,q+1}i_{\lambda_0;m,n-1,q+1}+c_{m-1,n,q+1}i_{\lambda_0;m-1,n,q+1}+c_{m-1,n,q}i_{\lambda_0;m-1,n,q}+c_{m,n-1,q}i_{m,n-1,q} \\ &+c_{m,n,q-1}i_{\lambda_0;m,n,q-1}+\delta_3 = 0,\end{aligned}

      (75)

      with the coefficients

      \begin{aligned}[b] c_{m,n,q} = &\lambda_0+(m+1) Q_{11}+(n+1) Q_{22}+(q+1) Q_{33}+(\lambda_4+1) Q_{44}, \\ c_{m+1,n,q} = &\lambda_4 Q_{41},\; \; c_{m+1,n,q-1} = q Q_{31},\; \; c_{m+1,n-1,q} = n Q_{21},\; \; c_{m,n,q-1} = q Q_{34}, \\ c_{m-1,n+1,q} = &m Q_{12},\; \; c_{m,n+1,q-1} = q Q_{32},\; \; c_{m,n+1,q} = \lambda_4 Q_{42},\; \; c_{m,n,q+1} = \lambda_4 Q_{43}, \\ c_{m,n-1,q+1} = &n Q_{23},\; \; c_{m-1,n,q+1} = m Q_{13},\; \; c_{m-1,n,q} = m Q_{14},\; \; c_{m,n-1,q} = n Q_{24}. \end{aligned}

      (76)

      Now, we can choose particular values for our six parameters a_1 , a_2 , a_3 , a_4 , a_5 , and a_6 to let the coefficients c_{m+1,n,q} , c_{m+1,n,q-1} , c_{m+1,n-1,q} , c_{m-1,n+1,q} , c_{m,n+1,q} , and c_{m,n+1,q} be zero. The solutions are

      \begin{aligned}[b] a_2 = &-a_1\frac{A_{21}A_{42}-A_{22}A_{41}}{A_{31}A_{42}-A_{32}A_{41}} = -\frac{a_1 \left(-m_1^2+m_2^2+p_1^2\right)}{-m_1^2+m_2^2+2 (p_1\cdot p_2)+p_1^2}, \\ a_3 = &\frac{a_{1} (A_{21} A_{32}-A_{22} A_{31})}{A_{31} A_{42}-A_{32} A_{41}} = -\frac{a_1 \left(m_1^2-m_2^2-p_1^2\right) \left(m_2^2+m_3^2-p_2^2\right)}{-m_1^2+m_2^2+2 (p_1\cdot p_2)+p_1^2}-2 a_1 m_2^2, \\ a_4= &\frac{a_{1} (A_{11} A_{42}-A_{12} A_{41})}{A_{31} A_{42}-A_{32} A_{41}} = -\frac{a_1 \left(m_1^2-m_2^2+p_1^2\right)}{-m_1^2+m_2^2+2 (p_1\cdot p_2)+p_1^2}, \\ a_5 = &\frac{-a_{1} (A_{11} A_{32}-A_{12} A_{31})}{A_{31} A_{42}-A_{32} A_{41}} = \frac{a_1 \left(m_1^2-m_2^2+p_1^2\right) \left(m_1^2+m_3^2-2 (p_1\cdot p_2)-p_1^2-p_2^2\right)}{-m_1^2+m_2^2+2 (p_1\cdot p_2)+p_1^2}+2 a_1 m_1^2, \\ a_6 = &\frac{a_{1} (A_{11} A_{22}-A_{12} A_{21})}{A_{31} A_{42}-A_{32} A_{41}} = \frac{a_1 \left(m_1^4-2 m_1^2 \left(m_2^2+p_1^2\right)+\left(m_2^2-p_1^2\right)^2\right)}{-m_1^2+m_2^2+2 (p_1\cdot p_2)+p_1^2}. \end{aligned}

      (77)

      Then, the matrix \hat Q becomes

      \hat Q_{r} = \frac{1}{\Delta_{A}}\left[\begin{array}{cccc} \dfrac{1}{2}\Delta_{A}&0&a_1|\tilde A_{14}|&\; \; \; \; \; \; \; a_1|\tilde A_{13}| \nonumber \\ 0&\dfrac{1}{2}\Delta_{A}&-a_1|\tilde A_{24}|&\; \; \; \; \; \; \; a_1|\tilde A_{23}| \nonumber \\ 0&0&\dfrac{1}{2}\Delta_{A}+a_1|\tilde A_{34}|&\; \; \; \; \; \; \; a_1|\tilde A_{33}| \nonumber \\ 0&0&-a_1|\tilde A_{44}|&\; \; \; \; \dfrac{1}{2}\Delta_A -a_1|\tilde A_{43}| \end{array}\right],\quad \Delta_{A} = {\rm Det}\left[\begin{array}{cc} A_{31}&A_{32} \nonumber \\ A_{41}&A_{42} \end{array}\right] = A_{31}A_{42}-A_{32}A_{41}.

      After this, we obtain the reduced IBP relation, where only the propagator D_3 = (l+p_3)^2-m_3^2 has one increasing power,

      \begin{aligned}[b] &c_{m,n,q}i_{\lambda_0;m,n,q}+c_{m,n,q+1}i_{\lambda_0;m,n,q+1}+c_{m,n-1,q+1}i_{\lambda_0;m,n-1,q+1}+c_{m-1,n,q+1}i_{\lambda_0;m-1,n,q+1} \\ &+c_{m-1,n,q}i_{\lambda_0;m-1,n,q}+c_{m,n-1,q}i_{\lambda_0;m,n-1,q}+c_{m,n,q-1}i_{\lambda_0;m,n,q-1}+\delta_{3;r} = 0 ,\end{aligned}

      (78)

      with the coefficients

      \begin{aligned}[b] c_{m,n,q} = &\lambda_0+mQ_{11;r}+nQ_{22;r}+qQ_{33;r}+Q_{11;r}+Q_{22;r}+Q_{33;r}+\lambda_4Q_{44;r}+Q_{44;r}, \\ c_{m,n,q+1} = &\lambda_4 Q_{43;r} = \frac{-a_1\lambda_4}{A_{31}A_{42}-A_{32}A_{41}}|\tilde A_{44}|,\; \; c_{m,n-1;q+1} = nQ_{23;r} = \frac{-a_1n}{A_{31}A_{42}-A_{32}A_{41}}|\tilde A_{24}|, \\ c_{m-1,n,q+1} = &mQ_{13;r} = \frac{a_1m}{A_{31}A_{42}-A_{32}A_{41}}|\tilde A_{14}|,\; \; c_{m-1,n,q} = mQ_{14;r}\frac{a_1m}{A_{31}A_{42}-A_{32}A_{41}}|\tilde A_{13}|, \\ c_{m,n-1,q} = &nQ_{24;r} = \frac{-a_1n}{A_{31}A_{42}-A_{32}A_{41}}|\tilde A_{23}|,\; \; c_{m,n,q-1} = qQ_{34;r} = \frac{a_1q}{A_{31}A_{42}-A_{23}A_{41}}|\tilde A_{33}|, \end{aligned}

      (79)

      where the subscript r in \delta_{3;r} and Q_{ij;r} indicates that the parameters a_2 to a_6 should be replaced by (77).

      The reduction in the boundary \delta_{3} part: Similar to the bubble situation, inserting the value of z_i into the \delta_{3} part, we obtain

      \begin{aligned}[b] \delta_{3;r} = &\Big(\delta_{m+1,0}Q_{11;r}+\delta_{m,0}Q_{14;r}\Big)i_{\lambda_0,-1,n,q}+\delta_{m,0}Q_{12;r}i_{\lambda_0,-1,n+1,q}+\delta_{m,0}Q_{13;r}i_{\lambda_0,-1,n,q+1} \\ &+\delta_{n,0}Q_{21;r} i_{\lambda_0,m+1,-1,q}+\Big(\delta_{n+1,0}Q_{22;r}+\delta_{n,0}Q_{24;r}\Big)i_{\lambda_0,m,-1,q}+\delta_{n,0}Q_{23;r} i_{\lambda_0,m,-1,q+1} \\ &+\delta_{q,0}Q_{31;r}i_{\lambda_0,m+1,n,-1}+\delta_{q,0}Q_{32;r}i_{\lambda_0,m,n+1,-1}+\Big(\delta_{q+1,0}Q_{33;r}+\delta_{q,0}Q_{34;r}\Big)i_{\lambda_0,m,n,-1}, \; \; \; \; \; \; \end{aligned}

      (80)

      where i_{\lambda_0,m,n,-1} , i_{\lambda_0,m,-1,q} , and i_{\lambda_0,-1,n,q} contribute to the sub-topology of the triangle, that is, the bubble.

    • 2.   Triangle example: I_3(1,1,2)
    • Now, we apply the complete recurrence relation to the example I_3(1,1,2) . Setting m = n = q = 0 in (78), we obtain

      \begin{eqnarray} c_{0,0,0}i_{\lambda_0,0,0,0}+c_{0,0,1}i_{\lambda_0,0,0,1}+\delta_{3;000}& =0,\; \; \; \end{eqnarray}

      (81)

      with the coefficients

      \begin{aligned}[b] c_{0,0,1} = &\lambda_4 Q_{43;r} = -\frac{1}{-m_1^2+m_2^2+2 (p_1\cdot p_2)+p_1^2}\times\Big\{2 a_1 (D-4) \Big(m_1^4 p_2^2-2 m_1^2 \big(m_2^2 ((p_1\cdot p_2)+p_2^2)-m_3^2 (p_1\cdot p_2) \\ &+p_2^2 ((p_1\cdot p_2)+p_1^2)\big)+m_2^4 (2 (p_1\cdot p_2)+p_1^2+p_2^2)+m_2^2 \big(2 (p_1\cdot p_2) (2 (p_1\cdot p_2)+p_1^2+p_2^2) \\ &-2 m_3^2 ((p_1\cdot p_2)+p_1^2)\big)+p_1^2 (m_3^4-2 m_3^2 ((p_1\cdot p_2)+p_2^2)+p_2^2 (2 (p_1\cdot p_2)+p_1^2+p_2^2))\Big)\Big\}, \\ c_{0,0,0}= &-\frac{D}{2}+Q_{11;r}+Q_{22;r}+Q_{33;r}+(D-3)Q_{44;r} \\ = &-\frac{2 a_1 (D-4) \left(m_1^2 (p_1\cdot p_2)-m_2^2 ((p_1\cdot p_2)+p_1^2)+p_1^2 \left(m_3^2-(p_1\cdot p_2)-p_2^2\right)\right)}{-m_1^2+m_2^2+2 (p_1\cdot p_2)+p_1^2}.\; \; \; \; \; \; \end{aligned}

      (82)

      In (81), only two terms of triangle topology remain: one is the scalar basis, and the other is the target we want to reduce. The other five terms in (78) disappear owing to the expression in (79). Thus, there is no need to solve mixed IBP relations. The \delta_{3} term becomes

      \begin{aligned}[b] \delta_{p;000}\equiv \delta_{p;r}|_{m = 0,n = 0,q = 0} = &Q_{14;r}i_{\lambda_0,-1,0,0}+Q_{12;r}i_{\lambda_0,-1,1,0}+Q_{13;r}i_{\lambda_0,-1,0,1} +Q_{21;r}i_{\lambda_0,1,-1,0}+Q_{24;r}i_{\lambda_0,0,-1,0}+Q_{23;r}i_{\lambda_0,0,-1,1} \\ &+Q_{31;r}i_{\lambda_0,1,0,-1}+Q_{32;r}i_{\lambda_0,0,1,-1}+Q_{34;r}i_{\lambda_0,0,0,-1}.\; \; \; \end{aligned}

      (83)

      Translating back to the I form, we obtain the result

      \begin{aligned}[b] \\I_3(1,1,2)= &c_{3\to111}I_3(1,1,1)+c_{3\to110}I_3(1,1,0)+c_{3\to101}I_3(1,0,1)+c_{3\to011}I_3(0,1,1) \\ &c_{3\to210}I_3(2,1,0)+c_{3\to201}I_3(2,0,1)+c_{3\to120}I_3(1,2,0)+c_{3\to021}I_3(0,2,1) \\ &c_{3\to102}I_{3}(1,0,2)+c_{3\to012}I_3(0,1,2),\; \; \; \; \; \; \end{aligned}

      (84)

      with the coefficients

      \begin{aligned}[b] c_{3\to111} = &\frac{c_{0,0,0}\Gamma(D-3)}{c_{0,0,1}\Gamma(D-4)},\quad c_{3\to110} = -\frac{Q_{34;r} \Gamma (D-2)}{c_{0,0,1} \Gamma (D-4)},\quad c_{3\to101} = -\frac{Q_{24;r} \Gamma (D-2)}{c_{0,0,1} \Gamma (D-4)},\quad c_{3\to011} = -\frac{Q_{14;r} \Gamma (D-2)}{c_{0,0,1} \Gamma (D-4)}, \\ c_{3\to210} = &\frac{Q_{31;r} \Gamma (D-3)}{c_{0,0,1} \Gamma (D-4)},\quad c_{3\to201} = \frac{Q_{21;r} \Gamma (D-3)}{c_{0,0,1} \Gamma (D-4)},\quad c_{3\to021} = \frac{Q_{12;r} \Gamma (D-3)}{c_{0,0,1} \Gamma (D-4)},\quad c_{3\to120} = \frac{Q_{32;r} \Gamma (D-3)}{c_{0,0,1} \Gamma (D-4)}, \\ c_{3\to102} = &\frac{Q_{23;r} \Gamma (D-3)}{c_{0,0,1} \Gamma (D-4)},\quad c_{3\to012} = \frac{Q_{13;r} \Gamma (D-3)}{c_{0,0,1} \Gamma (D-4)}. \; \; \; \; \; \; \end{aligned}

      (85)

      The final step is to reduce bubbles that have one propagator with the power two. This problem has been solved in the previous subsection (see (57)). With proper relabeling of the external variables of the last six terms in (84) and collecting all coefficients together, we get

      \begin{aligned}[b] I_3(1,1,2) = &c_{3\to3}I_3(1,1,1)+c_{3\to2;\bar3}I_3(1,1,0)+c_{3\to2;\bar2}I_3(1,0,1)+c_{3\to2;\bar1}I_3(0,1,1) \\ &+c_{3\to1;\bar2\bar3}I_3(1,0,0)+c_{3\to1;\bar1\bar3}I_3(0,1,0)+c_{3\to1;\bar1\bar2}I_3(0,0,1).\; \; \; \; \; \; \end{aligned}

      (86)

      Because the explicit expressions of these coefficients are long, they are provided in the companion Mathematica notebook. The result is confirmed by FIRE6.

    • 3.   General case in triangles
    • Similar to the bubble case, with different choices, we can obtain three IBP recurrence relations. In each of these relations, only one term has a propagator with a higher power. For simplicity, we label the IBP recurrence relation eq_i , which shifts the propagator D_i . Now, we can use eq_{i} with i = 1,2,3 to calculate the general case for triangles. Let us denote

      \begin{aligned}[b] &eq_1:\Big(a_{1^+}1^++a_{1^+3^-}1^+3^-+a_{1^+2^-}1^+2^-+a_{3^-}3^-+a_{2^-}2^-+a_{1^-}1^-+a_{0}\Big)i_{\lambda_0,m,n,q}+\delta_{3;r,eq1} = 0, \\ &eq_2:\Big(b_{2^+}2^++b_{2^+3^-}2^+3^-+b_{1^-2^+}1^-2^++b_{3^-}3^-+b_{2^-}2^-+b_{1^-}1^-+b_{0}\Big)i_{\lambda_0,m,n,q}+\delta_{3;r,eq2} = 0, \\ &eq_3:\Big(c_{3^+}3^++c_{2^-3^+}2^-3^++c_{1^-3^+}1^-3^++c_{3^-}3^-+c_{2^-}2^-+c_{1^-}1^-+c_{0}\Big)i_{\lambda_0,m,n,q}+\delta_{3;r,eq3} = 0,\; \; \; \end{aligned}

      (87)

      where all coefficients have the same form as in (78). Combining these, we can reduce the general triangles. For example, for I_3(2,2,3) , after setting m = 0 , n = 1 , and q = 2 in eq_1 , we can reduce I_3(2,2,3) to I_3(1,1,3) , I_3(1,2,2) , I_3(1,2,3) , I_3(2,1,3) , I_3(2,2,2) and boundary terms, the general bubbles. Then, setting m = 0 , n = 0 , and q = 2 in eq_1 , we can reduce I_3(2,1,3) to I_3(1,1,2) , I_3(1,1,3) , and I_3(2,1,2) . After 12 steps, we get the result for the reduction in the triangle topology. The boundary terms involve bubbles and tadpoles, which have been dealt with in previous subsections. Finally, we can obtain all coefficients from I_3(2,2,3) to all scalar bases.

    • D.   Box case

    • The general form of a box is given by

      I_4(n_1+1,n_2+1,n_3+1,n_4+1) = \int \frac{{\rm d}^{D}l}{D_1^{n_1+1}D_2^{n_2+1}D_3^{n_3+1}D_4^{n_4+1}},\; \; \; \;

      (88)

      with

      \begin{eqnarray} D_1& = &l^2-m_1^2,\quad D_2 = (l-p_1)^2-m_2^2,\quad D_3 = (l-p_1-p_2)^2-m_3^2,\quad D_4 = (l+p_4)^2-m_4^2.\; \; \; \; \end{eqnarray}

      (89)

      The parametric form of I_4(n_1+1,n_2+1,n_3+1,n_4+1) can be written as

      I_4(n_1+1,n_2+1,n_3+1,n_4+1)=\frac{i(-1)^{4+n_1+n_2+n_3+n_4}\Gamma(-\lambda_0)}{\Gamma(n_1+1)\Gamma(n_2+1)\Gamma(n_3+1)\Gamma(n_4+1)\Gamma(\lambda_5+1)}i_{\lambda_0;n_1,n_2,n_3,n_4},

      (90)

      where

      \begin{aligned}[b] i_{\lambda_0;n_1,n_2,n_3,n_4} = &\int {\rm d}\Pi^{(5)} F^{\lambda_0}x_1^{n_1}x_2^{n_2}x_3^{n_3}x_4^{n_4}x_5^{\lambda_5} = \int {\rm d}\Pi^{(5)} (Ux_5+f)^{\lambda_0}x_1^{n_1}x_2^{n_2}x_3^{n_3}x_4^{n_4}x_5^{\lambda_5} \\ {\rm d}\Pi^{(5)} = &{\rm d}x_1{\rm d}x_2{\rm d}x_3{\rm d}x_4{\rm d}x_5\delta(\sum x_j-1),\; \; \; \; \; \; \; \lambda_0 = -\frac{D}{2} \\ \lambda_5 = &-5-n_1-n_2-n_3-n_4-2\lambda_0 = D-5-n_1-n_2-n_3-n_4,\; \; \; \; \end{aligned}

      (91)

      and the functions are

      \begin{aligned}[b] U(x) = &x_1+x_2+x_3+x_4, \\ V(x) = &x_1x_2p_1^2+x_1x_3(p_1+p_2)^2+x_1x_4(p_1+p_2+p_3)^2+x_2x_3p_2^2+x_2x_4(p_2+p_3)^2+x_3x_4p_3^2 \\ f(x)= &-V(x)+U(x)\sum m_i^2 x_i = m_1^2x_1+m_2^2x_2+m_3^2x_3+m_4^2x_4+(m_1^2+m_2^2-p_1^2)x_1x_2 \\ &+[m_1^2+m_3^2-(p_1+p_2)^2]x_1x_3+[m_1^2+m_4^2-(p_1+p_2+p_3)^2]x_1x_4, \\ &+(m_2^2+m_3^2-p_2^2)x_2x_3+[m_2^2+m_4^2-(p_2+p_3)^2]x_2x_4+(m_3^2+m_4^2-p_3^2)x_3x_4, \\ F(x) = &U(x) x_5+f(x) = m_1^2x_1^2+m_2^2x_2^2+m_3^2x_3^2+m_4^2x_4^2 \\ &+(m_1^2+m_2^2-p_1^2)x_1x_2+[m_1^2+m_3^2-(p_1+p_2)^2]x_1x_3+[m_1^2+m_4^2-(p_1+p_2+p_3)^2]x_1x_4 \\ &+[m_2^2+m_3^2-p_2^2]x_2x_3+[m_2^2+m_4^2-(p_2+p_3)^2]x_2x_4+[m_3^2+m_4^2-p_3^2]x_3x_4 \\ &+x_1x_5+x_2x_5+x_3x_5+x_4x_5 \\ = &(x_1+x_2+x_3+x_4)(m_1^2x_1+m_2^2x_2+m_3^2x_3+m_4^2x_4+x_5) \\ &-x_1x_2p_1^2-x_1x_3(p_1+p_2)^2-x_1x_4(p_1+p_2+p_3)^2-x_2x_3p_2^2-x_2x_4(p_2+p_3)^2-x_3x_4p_3^2. \end{aligned}

      (92)

      Now, the matrices are given by

      \begin{eqnarray} \hat A& = &\left[\begin{array}{ccccc} 2m_1^2\; &m_1^2+m_2^2-p_1^2\; &m_1^2+m_3^2-p_{12}^2\; &m_1^2+m_4^2-p_{13}^2\; &1 \\ m_1^2+m_2^2-p_1^2\; &2m_2^2\; &m_2^2+m_3^2-p_2^2\; &m_2^2+m_4^2-p_{23}^2\; &1 \\ m_1^2+m_3^2-p_{12}^2\; &m_2^2+m_3^2-p_2^2\; &2m_3^2\; &m_3^2+m_4^2-p_3^2\; &1 \\ m_1^2+m_4^2-p_{13}^2\; &m_2^2+m_4^2-p_{23}^2\; &m_3^2+m_4^2-p_3^2\; &2m_4^2\; &1 \\ 1\; \; &1\; \; &1\; \; &1\; \; &0 \end{array}\right],\; \; K_A = \left[\begin{array}{ccccc} 0&a_1&a_2&a_3&a_4 \\ -a_1&0&a_5&a_6&a_7 \\ -a_2&-a_5&0&a_8&a_9\\ -a_3&-a_6&-a_8&0&a_{10} \\ -a_4&-a_7&-a_9&-a_{10}&0 \end{array}\right], \; \; \; \; \end{eqnarray}

      (93)

      where p_{ij}\equiv p_i+p_{i+1}\cdots p_j .

    • 1.   Deriving the recurrence relation
    • Taking B = \dfrac{-1}{x_5} in (39), we get

      \begin{aligned}[b] &\Big\{c_{n_1+1,n_2,n_2,n_4}1^++c_{n_1+1,n_2,n_3,n_4-1}`^+4^-+c_{n_1+1,n_2,n_3-1,n_4}1^+3^-+c_{n_1+1,n_2-1,n_3,n_4}1^+2^- \\ &+c_{n_1,n_2+1,n_3,n_4}2^++c_{n_1,n_2+1,n_3,n_4-1}2^+4^-+c_{n_1,n_2+1,n_3-1,n_4}2^+3^-+c_{n_1-1,n_2+1,n_3,n_4}2^+1^- \\ &+c_{n_1,n_2,n_3+1,n_4}3^++c_{n_1,n_2,n_3+1,n_4-1}3^+4^-+c_{n_1,n_2-1,n_3+1,n_4}3^+2^-+c_{n_1-1,n_2,n_3+1,n_4}3^+1^- \\ &+c_{n_1,n_2,n_3,n_4+1}4^++c_{n_1,n_2,n_3-1,n_4+1}4^+3^-+c_{n_1,n_2-1,n_3,n_4+1}4^+2^-+c_{n_1-1,n_2,n_3,n_4+1}4^+1^- \\ &+c_{n_1,n_2,n_3,n_4-1}4^-+c_{n_1,n_2,n_3-1,n_4}3^-+c_{n_1,n_2-1,n_3,n_4}2^-+c_{n_1-1,n_2,n_3,n_4}1^-+c_{n_1,n_2,n_3,n_4} \Big\}i_{n_1,n_2,n_3,n_4}+\delta_{4} = 0,\; \; \; \\ \end{aligned}

      (94)

      where

      \begin{eqnarray} j^+i_{n_1\cdots n_j\cdots n_k} = i_{n_1\cdots n_j+1\cdots n_k},\; \; \; \; \; j^-i_{n_1\cdots n_j\cdots n_k} = i_{n_1\cdots n_j-1\cdots n_k}.\; \; \; \; \end{eqnarray}

      (95)

      Similarly, we can choose particular values of the parameters a_2 to a_{10} with a free a_1 to ensure the coefficients of the terms in the first three lines of (94) equal zero. The analytic solution is provided in the companion Mathematica notebook. Here, we can express the solution for the parameters using the matrix elements of \hat A .

      \begin{aligned}[b]& a_2 = \frac{-a_1}{\Delta_{\rm Box}}|\tilde A_{13,45}|,\; \; \; a_{3} = \frac{a_1}{\Delta_{\rm Box}}|\tilde A_{14,45}|,\; \; \; a_4 = \frac{-a_1}{\Delta_{\rm Box}}|\tilde A_{15,45}|,\; \; \; a_5 = \frac{a_1}{\Delta_{\rm Box}}|\tilde A_{23,45}|,\; \; \; a_6 = \frac{-a_1}{\Delta_{\rm Box}}|\tilde A_{24,45}|,\;\; a_{7} = \frac{a_1}{\Delta_{\rm Box}}|\tilde A_{25,45}|,\\& a_{8} = \frac{a_1}{\Delta_{\rm Box}}|\tilde A_{34,45}|,\; \; \; a_9 = \frac{-a_1}{\Delta_{\rm Box}}|\tilde A_{35,45}|,\; \; \; a_{10} = \frac{a_1}{\Delta_{\rm Box}}|\tilde A_{45,45}|,\;\; \Delta_{\rm Box} = \left|\begin{array}{ccc} A_{31}&A_{32}&A_{33} \nonumber \\ A_{41}&A_{42}&A_{43} \nonumber \\ A_{51}&A_{52}&A_{53} \end{array}\right|, \end{aligned}

      where |\tilde A_{ij,kl}| represents the determinant of the matrix A after we removed the i,j th rows and k,l th columns. Then, the matrix \hat Q becomes

      \hat Q_{r} = \frac{1}{\Delta_{\rm Box}}\left[\begin{array}{ccccc} \dfrac{1}{2}\Delta_{\rm Box}&0&0&-a_1|\tilde A_{15}|&-a_1|\tilde A_{14}| \nonumber \\ 0&\dfrac{1}{2}\Delta_{\rm Box}&0&a_1|\tilde A_{25}|&a_1|\tilde A_{24}| \nonumber \\ 0&0&\dfrac{1}{2}\Delta_{\rm Box}&-a_{1}|\tilde A_{35}|&-a_{1}|\tilde A_{34}| \nonumber \\ 0&0&0&\dfrac{1}{2}\Delta_{\rm Box}+a_{1}|\tilde A_{45}|&a_1|\tilde A_{44}| \nonumber \\ 0&0&0&-a_1|\tilde A_{55}|&\dfrac{1}{2}\Delta_{\rm Box}-a_1|\tilde A_{54}| \end{array}\right].

      We then obtain the simplified recurrence relation

      \begin{aligned}[b] &c_{n_1,n_2,n_3,n_4+1}i_{n_1,n_2,n_3,n_4+1}+c_{n_1,n_2,n_3-1,n_4+1}i_{n_1,n_2,n_3-1,n_4+1} +c_{n_1,n_2-1,n_3,n_4+1}i_{n_1,n_2-1,n_3,n_4+1}+c_{n_1-1,n_2,n_3,n_4}i_{n_1-1,n_2,n_3,n_4} \\ &+c_{n_1,n_2,n_3,n_4-1}i_{n_1,n_2,n_3,n_4-1}+c_{n_1,n_2,n_3-1,n_4}i_{n_1,n_2,n_3-1,n_4} +c_{n_1,n_2-1,n_3,n_4}i_{n_1,n_2-1,n_3,n_4}+c_{n_1-1,n_2,n_3,n_4}i_{n_1-1,n_2,n_3,n_4} \\ &+c_{n_1,n_2,n_3,n_4}i_{n_1,n_2,n_3,n_4}+\delta_{4;r} = 0.\; \; \; \end{aligned}

      (96)

      Now, we must calculate the \delta_{4} term.

      The reduction in the boundary \delta_{4} term: Similar to the former case, we can expand the \delta_{4} term and take the values of the parameters a_2 to a_{10} into the \delta_{4} part. Subsequently, we get

      \begin{aligned}[b] \delta_{4;r} = &\delta_{n_1+1,0}Q_{11;r}i_{-1,n_2,n_3,n_4}+\delta_{n_1,0}Q_{12;r}i_{-1,n_2+1,n_3,n_4}+\delta_{n_1,0}Q_{13;r}i_{-1,n_2,n_3+1,n_4}+\delta_{n_1,0}Q_{14;r}i_{-1,n_2,n_3,n_4+1} \\ &+\delta_{n_1,0}Q_{15;r}i_{-1,n_2,n_3,n_4}+\delta_{n_2,0}Q_{21;r}i_{n_1+1,-1,n_3,n_4}+\delta_{n_2+1,0}Q_{22;r}i_{n_1,-1,n_3,n_4}+\delta_{n_2,0}Q_{23;r}i_{n_1,-1,n_3+1,n_4} \\ &+\delta_{n_2,0}Q_{24;r}i_{n_1,-1,n_3,n_4+1}+\delta_{n_2,0}Q_{25;r}i_{n_1,-1,n_3,n_4}+\delta_{n_3,0}Q_{31;r}i_{n_1+1,n_2,-1,n_4}+\delta_{n_3,0}Q_{32;r}i_{n_1,n_2+1,-1,n_4} \\ &+\delta_{n_3+1,0}Q_{33;r}i_{n_1,n_2,-1,n_4}+\delta_{n_3,0}Q_{34;r}i_{n_1,n_2,-1,n_4+1}+\delta_{n_3,0}Q_{35;r}i_{n_1,n_2,-1,n_4}+\delta_{n_4,0}Q_{41;r}i_{n_1+1,n_2,n_3,-1} \\ &+\delta_{n_4,0}Q_{42;r}i_{n_1,n_2+1,n_3,-1}+\delta_{n_4,0}Q_{43;r}i_{n_1,n_2,n_3+1,-1}+\delta_{n_4+1,0}Q_{44;r}i_{n_1,n_2,n_3,-1}+\delta_{n_4,0}Q_{45;r}i_{n_1,n_2,n_3,-1}, \end{aligned}

      (97)

      where the subscript "r" represents the value of the parameter Q after we set a_2 to a_{10} .

    • 2.   Example: I_4(1,1,1,2)
    • Now, we can use recurrence relation (96) to calculate the example I_4(1,1,1,2) . Letting n_1 = n_2 = n_3 = n_4 = 0 , we get (the coefficients of the other terms are all zero)

      \begin{eqnarray} c_{0,0,0,0}i_{0,0,0,0}+c_{0,0,0,1}i_{0,0,0,1}+\delta_{4;0000}& = 0,\; \; \; \; \end{eqnarray}

      (98)

      where \delta_{4;0000}\equiv \delta_{4;r}|_{n_1 = n_2 = n_3 = n_4 = 0} . Translating to I, we obtain the following result:

      \begin{aligned}[b] I_4(1,1,1,2) = &c_{4\to1111}I_4(1,1,1,1) +c_{4\to1110}I_4(1,1,1,0)+c_{4\to1101}I_4(1,1,0,1)+c_{4\to1011}I_4(1,0,1,1)+c_{4\to0111}I_4(0,1,1,1) \\ &+c_{4\to2110}I_4(2,1,1,0)+c_{4\to2101}I_4(2,1,0,1)+c_{4\to2011}I_4(2,0,1,1) +c_{4\to1210}I_4(1,2,1,0)+c_{4\to1201}I_4(1,2,0,1)\\ &+c_{4\to0211}I_4(0,2,1,1) +c_{4\to1120}I_4(1,1,2,0)+c_{4\to1021}I_4(1,0,2,1)+c_{4\to0121}I_4(0,1,2,1) \\ &+c_{4\to1102}I_4(1,1,0,2)+c_{4\to1012}I_4(1,0,1,2)+c_{4\to0112}I_4(0,1,1,2),\; \; \; \end{aligned}

      (99)

      with the coefficients

      \begin{aligned}[b] c_{4\to1111} = &\frac{c_{0,0,0,0}}{c_{0,0,0,1}}(D-5) = \frac{{\rm Tr} \hat Q_{ij;r}+(D-5)Q_{55;r}-\frac{D}{2}}{Q_{54;r}}, \quad c_{4\to0111} =-\frac{Q_{15;r}\Gamma(D-3)}{c_{0,0,0,1}\Gamma(D-5)},\\ c_{4\to1011} =& -\frac{Q_{25;r}\Gamma(D-3)}{c_{0,0,0,1}\Gamma(D-5)}, \quad c_{4\to1101} = -\frac{Q_{35;r}\Gamma(D-3)}{c_{0,0,0,1}\Gamma(D-5)},\quad c_{4\to1110} = -\frac{Q_{45;r}\Gamma(D-3)}{c_{0,0,0,1}\Gamma(D-5)}, \\ c_{4\to0211} = &\frac{Q_{12;r}\Gamma(D-4)}{c_{0,0,0,1}\Gamma(D-5)},\quad c_{4\to0121} = \frac{Q_{13;r}\Gamma(D-4)}{c_{0,0,0,1}\Gamma(D-5)},\quad c_{4\to0112} = \frac{Q_{14;r}\Gamma(D-4)}{c_{0,0,0,1}\Gamma(D-5)}, \\ c_{4\to2011} = &\frac{Q_{21;r}\Gamma(D-4)}{c_{0,0,0,1}\Gamma(D-5)},\quad c_{4\to1021} = \frac{Q_{23;r}\Gamma(D-4)}{c_{0,0,0,1}\Gamma(D-5)},\quad c_{4\to1012} = \frac{Q_{24;r}\Gamma(D-4)}{c_{0,0,0,1}\Gamma(D-5)}, \\ c_{4\to2101} = &\frac{Q_{31;r}\Gamma(D-4)}{c_{0,0,0,1}\Gamma(D-5)},\quad c_{4\to1201} = \frac{Q_{32;r}\Gamma(D-4)}{c_{0,0,0,1}\Gamma(D-5)},\quad c_{4\to1102} = \frac{Q_{34;r}\Gamma(D-4)}{c_{0,0,0,1}\Gamma(D-5)}, \\ c_{4\to2110} = &\frac{Q_{41;r}\Gamma(D-4)}{c_{0,0,0,1}\Gamma(D-5)},\quad c_{4\to1210} = \frac{Q_{42;r}\Gamma(D-4)}{c_{0,0,0,1}\Gamma(D-5)},\quad c_{4\to1120} = \frac{Q_{43;r}\Gamma(D-4)}{c_{0,0,0,1}\Gamma(D-5)}. \end{aligned}

      (100)

      Next, we must use the reduction in triangles with one double propagator given in (86). Inserting them into (99), we obtain the complete reduction in the box I_4(1,1,1,2) .

      \begin{aligned}[b] I_4(1,1,1,2) =& c_{4\to4}I_4(1,1,1,1) +c_{4\to3;\bar1}I_4(0,1,1,1)+c_{4\to3;\bar2}I_4(1,0,1,1)+c_{4\to3;\bar3}I_4(1,1,0,1)\\ &+c_{4\to3;\bar4}I_4(1,1,1,0) +c_{4\to2;\bar1\bar2}I_4(0,0,1,1)+c_{4\to2;\bar1\bar3}I_4(0,1,0,1)+c_{4\to2;\bar1\bar4}I_4(0,1,1,0) \\ &+c_{4\to2;\bar2\bar3}I_4(1,0,0,1)+c_{4\to2;\bar2\bar4}I_4(1,0,1,0)+c_{4\to2;\bar3\bar4}I_4(1,1,0,0) \\ &+c_{4\to1;D_1}I_4(1,0,0,0)+c_{4\to1;D_2}I_4(0,1,0,0)+c_{4\to1;D_3}I_4(0,0,1,0)+c_{4\to1;D_4}I_4(0,0,0,1),\; \; \; \; \end{aligned}

      (101)

      the long coefficient expressions of which are given in the companion Mathematica notebook. The result is confirmed by FIRE6.

    • E.   Pentagon case

    • The general form of a pentagon is given by

      \begin{eqnarray} I_5(n_1+1,n_2+1,n_3+1,n_4+1,n_5+1) = \int \frac{{\rm d}^{D}l}{D_1^{n_1+1}D_2^{n_2+1}D_3^{n_3+1}D_4^{n_4+1}D_5^{n_5+1}}\; \; \; \; \; \end{eqnarray}

      (102)

      with

      \begin{aligned}[b] D_1 = l^2-m_1^2,\; \; \; \; D_2 = (l-p_1)^2-m_2^2,\; \; \; \; D_3 = (l-p_1-p_2)^2-m_3^2, \quad D_4 = (l-p_1-p_2-p_3)^2-m_4^2,\; \; \; D_5 = (l+p_5)^2-m_5^2.\; \; \; \; \; \end{aligned}

      (103)

      The parametric form of I_5(n_1+1,n_2+1,n_3+1,n_4+1,n_5+1) can be written as

      I_5(n_1+1,n_2+1,n_3+1,n_4+1,n_5+1) = \frac{i(-1)^{5+n_1+n_2+n_3+n_4+n_5}\Gamma(-\lambda_0)}{\displaystyle\sum_{i = 1}^5 \Gamma(n_i+1)\Gamma(\lambda_6+1)}i_{\lambda_0;n_1,n_2,n_3,n_4,n_5},

      (104)

      where

      \begin{aligned}[b] i_{\lambda_0;n_1,n_2,n_3,n_4,n_5} = &\int {\rm d}\Pi^{(6)} F^{\lambda_0}x_1^{n_1}x_2^{n_2}x_3^{n_3}x_4^{n_4}x_5^{n_5}x_6^{\lambda_6+1}, \\ {\rm d}\Pi^{(5)}= &{\rm d}x_1{\rm d}x_2{\rm d}x_3{\rm d}x_4{\rm d}x_5{\rm d}x_6\delta(\sum x_j-1), \\ \lambda_0 = &-\frac{D}{2},\; \; \; \; \lambda_6 = (D-6)-n_1-n_2-n_3-n_4-n_5,\end{aligned}

      (105)

      and the function

      \begin{aligned}[b] U(x) = &x_1+x_2+x_3+x_4+x_5, \\ V(x) = &x_1x_2p_1^2+x_1x_3p_{12}^2+x_1x_4p_{13}^2+x_1x_5p_{14}^2 +x_2x_3p_2^2+x_2x_4p_{23}^2+x_2x_5p_{24}^2+x_3x_4p_3^2+x_3x_5p_{34}^2+x_4x_5p_4^2, \\ f(x) = &(x_1+x_2+x_3+x_4+x_5)(m_1^2x_1+m_2^2x_2+m_3^2x_3+m_4^2x_4+m_5^2x_5) -x_1x_2p_1^2-x_1x_3p_{12}^2-x_1x_4p_{13}^2-x_1x_5p_{14}^2\\ &-x_2x_3p_2^2-x_2x_4p_{23}^2-x_2x_5p_{24}^2 -x_3x_4p_3^2-x_3x_5p_{34}^2-x_4x_5p_4^2, \\ F(x) = &(x_1+x_2+x_3+x_4+x_5)(m_1^2x_1+m_2^2x_2+m_3^2x_3+m_4^2x_4+m_5^2x_5+x_6) -x_1x_2p_1^2-x_1x_3p_{12}^2-x_1x_4p_{13}^2\\ &-x_1x_5p_{14}^2-x_2x_3p_2^2-x_2x_4p_{23}^2-x_2x_5p_{24}^2 -x_3x_4p_3^2-x_3x_5p_{34}^2-x_4x_5p_4^2,\; \; \; \; \; \end{aligned}

      (106)

      where p_{ij}\equiv p_i+p_{i+1}+\cdots p_{j-1}+p_{j} . Now the matrix are given by

      \begin{eqnarray} \hat A = \left[\begin{array}{cccccc} 2m_1^2&m_1^2+m_2^2-p_1^2&m_1^2+m_3^2-p_{12}^2&m_1^2+m_4^2-p_{13}^2&m_1^2+m_5^2-p_1^2&1 \nonumber \\ m_1^2+m_2^2-p_1^2&2m_2^2&m_2^2+m_3^2-p_2^2&m_2^2+m_4^2-p_{23}^2&m_2^2+m_5^2-p_{24}^2&1 \nonumber \\ m_1^2+m_3^2-p_{12}^2&m_2^2+m_3^2-p_{23}^2&2m_3^2&m_3^2+m_4^2-p_3^2&m_3^2+m_5^2-p_{34}^2&1 \nonumber \\ m_1^2+m_4^2-p_{13}^2&m_2^2+m_4^2-p_{23}^2&m_3^2+m_4^2-p_3^2&2m_4^2&m_4^2+m_5^2-p_4^2&1 \nonumber \\ m_1^2+m_5^2-p_1^2&m_2^2+m_5^2-p_{24}^2&m_3^2+m_5^2-p_{34}^2&m_4^2+m_5^2-p_4^2&2m_5^2&1 \nonumber \\ 1&1&1&1&1&0 \end{array}\right], \end{eqnarray}

      (107)

      \begin{eqnarray} \hat K_A = \left[ \begin{array}{cccccc} 0&a_1&a_2&a_3&a_4&a_5 \\ -a_1&0&a_6&a_7&a_8&a_9 \\ -a_2&-a_6&0&a_{10}&a_{11}&a_{12} \\ -a_3&-a_7&-a_{10}&0&a_{13}&a_{14} \\ -a_4&-a_8&-a_{11}&-a_{13}&0&a_{15} \\ -a_5&-a_9&-a_{12}&-a_{14}&-a_{15}&0 \end{array} \right]. \; \; \; \; \; \end{eqnarray}

      (107)

      Taking B = -{1}/{x_6} , and inserting z_i into the IBP identities,

      \begin{eqnarray} \sum_{i = 1}^{6}\int \frac{{{\partial }}}{{{\partial }} x_i }\Big\{z_iF^{\lambda_0}x_1^{n_1}x_2^{n_2}x_3^{n_3}x_4^{n_4}x_5^{n_5}x_6^{\lambda_6+1}\Big\}+\delta_{5}& = &0,\; \; \; \; \; \end{eqnarray}

      (108)

      where \delta_{5} is given by

      \begin{eqnarray} \delta_{5} = \sum_{i = 1}^{5}\delta_{\lambda_i,0}\int {\rm d}\Pi^{(5)} \Big\{z_iF^{\lambda_0}x_1^{n_1}x_2^{n_2}x_3^{n_3}x_4^{n_4}x_5^{n_5}x_6^{\lambda_6+1}\Big\}|_{x_i = 0}.\; \; \; \end{eqnarray}

      (109)
    • 1.   Deriving the recurrence relation
    • Similar to the previous subsections, by expanding the IBP relation, we get

      \begin{aligned}[b] &\Big\{c_{n_1+1,n_2,n_3,n_4,n_5}1^++c_{n_1+1,n_2-1,n_3,n_4,n_5}1^+2^-+c_{n_1+1,n_2,n_3-1,n_4,n_5}1^+3^-+c_{n_1+1,n_2,n_3,n_4-1,n_5}1^+4^- \\ &+c_{n_1+1,n_2,n_3,n_4,n_5-1}1^+5^-+c_{n_1,n_2+1,n_3,n_4,n_5}2^+ +c_{n_1-1,n_2+1,n_3,n_4,n_5}1^-2^+ +c_{n_1,n_2+1,n_3-1,n_4,n_5}2^+3^- \\ & +c_{n_1,n_2+1,n_3,n_4-1,n_5} 2^+ 4^- +c_{n_1,n_2+1,n_3,n_4,n_5-1} 2^+ 5^-+c_{n_1,n_2,n_3+1,n_4,n_5}3^+ +c_{n_1-1,n_2,n_3+1,n_4,n_5}1^- 3^+ \\& +c_{n_1,n_2-1,n_3+1,n_4,n_5}2^- 3^+ +c_{n_1,n_2,n_3+1,n_4-1,n_5}3^+4^- +c_{n_1,n_2,n_3+1,n_4,n_5-1}3^+5^-+c_{n_1,n_2,n_3,n_4+1,n_5}4^+ \\ &+c_{n_1-1,n_2,n_3,n_4+1,n_5}1^-4^+ +c_{n_1,n_2-1,n_3,n_4+1,n_5}2^- 4^+ +c_{n_1,n_2,n_3-1,n_4+1,n_5} 3^-4^++c_{n_1,n_2,n_3,n_4+1,n_5-1} 4^+5^- \\ &+c_{n_1,n_2,n_3,n_4,n_5+1}5^++c_{n_1-1,n_2,n_3,n_4,n_5+1}1^-5^+ +c_{n_1,n_2-1,n_3,n_4,n_5+1}2^-5^+ +c_{n_1,n_2,n_3-1,n_4,n_5+1}3^- 5^+ \\ &+c_{n_1,n_2,n_3,n_4-1,n_5+1} 4^- 5^++c_{n_1-1,n_2,n_3,n_4,n_5}1^-+c_{n_1,n_2-1,n_3,n_4,n_5}2^-+c_{n_1,n_2,n_3-1,n_4,n_5}3^- \\ &+c_{n_1,n_2,n_3,n_4-1,n_5} 4^- +c_{n_1,n_2,n_3,n_4,n_5-1}5^-+c_{n_1,n_2,n_3,n_4,n_5}\Big\}i_{n_1,n_2,n_3,n_4,n_5}+\delta_{5} = 0.\; \; \; \end{aligned}

      (110)

      We can choose particular values for parameters a_2 to a_{15} to ensure the coefficients of the first three line of (110) equal zero. The solution is

      \begin{aligned}[b] a_2 = &\frac{-a_1}{\Delta_{\rm pen}}|\tilde A_{13,56}|,\; \; a_3 = \frac{a_1}{\Delta_{\rm pen}}|\tilde A_{14,56}|,\; \; a_4 = \frac{-a_1}{\Delta_{\rm pen}}|\tilde A_{15,56}|,\; \; a_5 = \frac{a_1}{\Delta_{\rm \rm pen}}|\tilde A_{16,56}|,\; \; a_6 = \frac{a_1}{\Delta_{\rm pen}}|\tilde A_{23,56}|, \\ a_7 = &\frac{-a_1}{\Delta_{\rm pen}}|\tilde A_{24,56}|,\; \; a_8 = \frac{a_1}{\Delta_{\rm pen}}|\tilde A_{25,56}|,\; \; a_9 = \frac{-a_1}{\Delta_{\rm pen}}|\tilde A_{26,56}|,\; \; a_{10} = \frac{a_1}{\Delta_{\rm pen}}|\tilde A_{34,56}|,\; \; a_{11} = \frac{-a_{1}}{\Delta_{\rm pen}}|\tilde A_{35,56}|, \\ a_{12} = &\frac{a_1}{\Delta_{\rm pen}}|\tilde A_{36,56}|,\; \; a_{13} = \frac{a_1}{\Delta_{\rm pen}}|\tilde A_{45,56}|,\; \; a_{14} = \frac{-a_1}{\Delta_{\rm pen}}|\tilde A_{46,56}|,\; \; a_{15} = \frac{a_1}{\Delta_{\rm pen}}|\tilde A_{56,56}|, \end{aligned}

      (111)

      where

      \Delta_{\rm pen} = \left|\begin{array}{cccc} A_{31}&A_{32}&A_{33}&A_{34} \nonumber \\ A_{41}&A_{42}&A_{43}&A_{44} \nonumber \\ A_{51}&A_{52}&A_{53}&A_{54} \nonumber \\ A_{61}&A_{62}&A_{63}&A_{64} \end{array}\right|.

      Subsequently, we get

      \begin{aligned}[b] &\Big\{c_{n_1,n_2,n_3,n_4,n_5+1;r}5^++c_{n_1-1,n_2,n_3,n_4,n_5+1;r}1^-5^+ +c_{n_1,n_2-1,n_3,n_4,n_5+1;r}2^-5^+ +c_{n_1,n_2,n_3-1,n_4,n_5+1;r}3^- 5^+ \\ &+c_{n_1,n_2,n_3,n_4-1,n_5+1;r} 4^- 5^+c_{n_1-1,n_2,n_3,n_4,n_5;r}1^-+c_{n_1,n_2-1,n_3,n_4,n_5;r}2^-+c_{n_1,n_2,n_3-1,n_4,n_5;r}3^- \\ &+c_{n_1,n_2,n_3,n_4-1,n_5;r} 4^- +c_{n_1,n_2,n_3,n_4,n_5-1;r}5^-+c_{n_1,n_2,n_3,n_4,n_5;r}\Big\}i_{\lambda_0;n_1,n_2,n_3,n_4,n_5}+\delta_{5;r} = 0,\; \; \; \; \; \; \; \; \; \; \end{aligned}

      (112)

      where we define

      \begin{aligned}[b] i^+i_{\lambda_0;n_1,n_2,n_3,n_4,n_5}\equiv i_{\lambda_0;n_1,\cdots n_i+1,\cdots n_5}, \quad\quad i^-i_{\lambda_0;n_1,n_2,n_3,n_4,n_5}\equiv i_{\lambda_0;n_1,\cdots n_i-1,\cdots n_5}, \end{aligned}

      (113)

      with the coefficients

      \begin{aligned}[b] c_{0,0,0,0,1} = &Q_{65;r}\lambda_6,\; \; c_{-1,0,0,0,1} = n_1Q_{15;r},\; \; c_{0,-1,0,0,1} = n_2Q_{25;r},\; \; c_{0,0,-1,0,1} = n_3Q_{35;r},\; \; c_{0,0,0,-1,1} = n_4Q_{45;r}, \\ c_{-1,0,0,0,0} = &n_1Q_{16;r},\; \; c_{0,-1,0,0,0} = n_2Q_{26;r},\; \; c_{0,0,-1,0,0} = n_3Q_{36;r},\; \; c_{0,0,0,-1,0} = n_4Q_{46;r},\; \; c_{0,0,0,0,-1} = n_5Q_{56;r}, \\ c_{00000;r} = & {\rm Tr} \hat Q_{ij;r} +((D-6))Q_{66;rr}-\frac{D}{2}+n_1Q_{11;r}+n_2Q_{22;r}+n_3Q_{33;r}+n_4Q_{44;r}+n_5Q_{55;r}, \end{aligned}

      (114)

      while the matrix \hat Q becomes

      \hat Q_{r} = \frac{1}{\Delta_{\rm pen}}\left[\begin{array}{cccccc} \dfrac{1}{2}\Delta_{\rm pen}&0&0&0&a_1|\tilde A_{1,6}|&a_1|\tilde A_{1,5}| \nonumber \\ 0&\dfrac{1}{2}\Delta_{\rm pen}&0&0&-a_1|\tilde A_{2,6}|&-a_1|\tilde A_{2,5}| \nonumber \\ 0&0&\dfrac{1}{2}\Delta_{\rm pen}&0&a_1|\tilde A_{3,6}|&a_1|\tilde A_{3,5}| \nonumber \\ 0&0&0&\dfrac{1}{2}\Delta_{\rm pen}&-a_1|\tilde A_{4,6}|&-a_1|\tilde A_{4,5}| \nonumber \\ 0&0&0&0&\dfrac{1}{2}\Delta_{\rm pen}+a_1|\tilde A_{5,6}|&a_1|\tilde A_{5,5}| \nonumber \\ 0&0&0&0&-a_1|\tilde A_{6,6}|&\dfrac{1}{2}\Delta_{\rm pen}-a_1|\tilde A_{6,5}| \end{array}\right].

    • F.   Reducing the \delta_{5} term

    • Similar to the former situation, the \delta_{6;r} term is given by

      \begin{aligned}[b] \delta_{5;r}= &Q_{11;r}\delta_{n_1,-1}i_{-1,n_2,n_3,n_4,n_5} +Q_{12;r}\delta_{n_1,0}i_{-1,n_2+1,n_3,n_4,n_5}+Q_{13;r}\delta_{n_1,0}i_{-1,n_2,n_3+1,n_4,n_5} +Q_{14;r}\delta_{n_1,0}i_{-1,n_2,n_3,n_4+1,n_5} +Q_{15;r}\delta_{n_1,0}i_{-1,n_2,n_3,n_4,n_5+1}\\ &+Q_{16;r}\delta_{n_1,0}i_{-1,n_2,n_3,n_4,n_5} +Q_{21;r}\delta_{n_2,0}i_{n_1+1,-1,n_3,n_4,n_5}+Q_{22;r}\delta_{n_2,-1}i_{n_1,-1,n_2,n_3,n_4,n_5}+Q_{23;r}\delta_{n_2,0}i_{n_1,-1,n_3+1,n_4,n_5} +Q_{24;r}\delta_{n_2,0}i_{n_1,-1,n_3,n_4+1,n_5}\\ &+Q_{25;r}\delta_{n_2,0}i_{n_1,-1,n_3,n_4,n_5+1}+Q_{26;r}\delta_{n_2,0}i_{n_1,-1,n_3,n_4,n_5} +Q_{31;r}\delta_{n_3,0}i_{n_1+1,n_2,-1,n_4,n_5}Q_{32;r}\delta_{n_3,0}i_{n_1,n_2+1,-1,n_4,n_5}+Q_{33;r}\delta_{n_3,-1}i_{n_1,n_2,-1,n_4,n_5} \\ &+Q_{34;r}\delta_{n_3,0}i_{n_1,n_2,-1,n_4+1,n_5}+Q_{35;r}\delta_{n_3,0}i_{n_1,n_2,-1,n_4,n_5+1}+Q_{36;r}\delta_{n_3,0}i_{n_1,n_2,-1,n_4,n_5} Q_{41;r}\delta_{n_4,0}i_{n_1+1,n_2,n_3,-1,n_5}+Q_{42;r}\delta_{n_4,0}i_{n_1,n_2+1,n_3,-1,n_5}\\ &+Q_{43;r}\delta_{n_4,0}i_{n_1,n_2,n_3+1,-1,n_5} +Q_{44;r}\delta_{n_4,-1}i_{n_1,n_2,n_3,-1,n_5}+Q_{45;r}\delta_{n_4,0}i_{n_1,n_2,n_3,-1,n_5+1}+Q_{46;r}\delta_{n_4,0}i_{n_1,n_2,n_3,-1,n_5} +Q_{51;r}\delta_{n_5,0}i_{n_1+1,n_2,n_3,n_4,-1}\\ &+Q_{52;r}\delta_{n_5,0}i_{n_1,n_2+1,n_3,n_4,-1}+Q_{53;r}\delta_{n_5,0}i_{n_1,n_2,n_3+1,n_4,-1} +Q_{54;r}\delta_{n_5,0}i_{n_1,n_2,n_3,n_4+1,-1}+Q_{55;r}\delta_{n_5,-1}i_{n_1,n_2,n_3,n_4,-1}+Q_{56;r}\delta_{n_5,0}i_{n_1,n_2,n_3,n_4,n_5}. \end{aligned}

      (115)
    • G.   Example: I_5(1,1,1,1,2)

    • Setting n_1 = n_2 = n_3 = n_4 = n_5 = 0 , we get the IBP recurrence relation (other coefficients are all zero)

      \begin{eqnarray} &&c_{0,0,0,0,1}i_{\lambda_0;0,0,0,0,1}+c_{0,0,0,0,0}i_{\lambda_0;0,0,0,0,0}+\delta_{5;00000} = 0, \\ \end{eqnarray}

      (116)

      where \delta_{5;00000}\equiv \delta_{5;r}|_{n_1 = n_2 = n_3 = n_4 = n_5 = 0} .

      Comparing them with our scalar basis, we have the result

      \begin{aligned}[b] I_5(1,1,1,1,2) = &c_{5\to5}I_5(1,1,1,1,1)+c_{5\to01111}I_4(0,1,1,1,1)+c_{5\to10111}I_5(1,0,1,1,1) \\ &+c_{5\to11011}I_5(1,1,0,1,1)+c_{5\to11101}I_5(1,1,1,0,1)+c_{5\to11110}I_5(1,1,1,1,0) \\ &+c_{5\to20111}I_5(2,0,1,1,1)+c_{5\to21011}I_5(2,1,0,1,1)+c_{5\to21101}I_5(2,1,1,0,1) \end{aligned}

      \begin{aligned}[b]\quad\quad &+c_{5\to21110}I_5(2,1,1,1,0)+c_{5\to02111}I_5(0,2,1,1,1)+c_{5\to12011}I_5(1,2,0,1,1) \\ &+c_{5\to12101}I_5(1,2,1,0,1)+c_{5\to12110}I_5(1,2,1,1,0)+c_{5\to01211}I_5(0,1,2,1,1) \\ &+c_{5\to10211}I_5(1,0,2,1,1)+c_{5\to11201}I_5(1,1,2,0,1)+c_{5\to11210}I_5(1,1,2,1,0) \\ &+c_{5\to01121}I_5(0,1,1,2,1)+c_{5\to10121}I_5(1,0,1,2,1)+c_{5\to11021}I_5(1,1,0,2,1) \\ &+c_{5\to11120}I_5(1,1,1,2,0)+c_{5\to01112}I_5(0,1,1,1,2)+c_{5\to10112}I_5(1,0,1,1,2) \\ &+c_{5\to11012}I_5(1,1,0,1,2)+c_{5\to11102}I_5(1,1,1,0,2), \end{aligned}

      (117)

      with the coefficients

      \begin{aligned}[b] c_{5\to5} = &\frac{(D-6)c_{0,0,0,0,0}}{c_{0,0,0,0,1}},\; \; c_{5\to01111} = \frac{(D-6)(5-D)Q_{16;r}}{c_{0,0,0,0,1}},\; \; c_{5\to4;10111} = \frac{(D-6)(5-D)Q_{26;r}}{c_{0,0,0,0,1}}, \\ c_{5\to4;11011} = &\frac{(D-6)(5-D)Q_{36;r}}{c_{0,0,0,0,1}},\; \; c_{5\to4;11101} = \frac{(D-6)(5-D)Q_{46;r}}{c_{0,0,0,0,1}},\; \; c_{5\to4;11110} = \frac{(D-6)(5-D)Q_{56;r}}{c_{0,0,0,0,1}}, \\ c_{5\to20111} = &\frac{(D-6)Q_{21;r}}{c_{0,0,0,0,1}},\; \; c_{5\to21011} = \frac{(D-6)Q_{31;r}}{c_{0,0,0,0,1}},\; \; c_{5\to21101} = \frac{(D-6)Q_{41;r}}{c_{0,0,0,0,1}},\; \; c_{5\to21110} = \frac{(D-6)Q_{51;r}}{c_{0,0,0,0,1}}, \\ c_{5\to02111} = &\frac{(D-6)Q_{12;r}}{c_{0,0,0,0,1}},\; \; c_{5\to12011} = \frac{(D-6)Q_{32;r}}{c_{0,0,0,0,1}},\; \; c_{5\to12101} = \frac{(D-6)Q_{42;r}}{c_{0,0,0,0,1}},\; \; c_{5\to12110} = \frac{(D-6)Q_{52;r}}{c_{0,0,0,0,1}}, \\ c_{5\to01211} = &\frac{(D-6)Q_{13;r}}{c_{0,0,0,0,1}},\; \; c_{5\to10211} = \frac{(D-6)Q_{23;r}}{c_{0,0,0,0,1}},\; \; c_{5\to11201} = \frac{(D-6)Q_{43;r}}{c_{0,0,0,0,1}},\; \; c_{5\to11210} = \frac{(D-6)Q_{53;r}}{c_{0,0,0,0,1}}, \\ c_{5\to01121} = &\frac{(D-6)Q_{14;r}}{c_{0,0,0,0,1}},\; \; c_{5\to10121} = \frac{(D-6)Q_{24;r}}{c_{0,0,0,0,1}},\; \; c_{5\to11021} = \frac{(D-6)Q_{34;r}}{c_{0,0,0,0,1}},\; \; c_{5\to11120} = \frac{(D-6)Q_{54;r}}{c_{0,0,0,0,1}}, \\ c_{5\to01112} = &\frac{(D-6)Q_{15;r}}{c_{0,0,0,0,1}},\; \; c_{5\to10112} = \frac{(D-6)Q_{25;r}}{c_{0,0,0,0,1}},\; \; c_{5\to11012} = \frac{(D-6)Q_{35;r}}{c_{0,0,0,0,1}},\; \; c_{5\to11102} = \frac{(D-6)Q_{45;r}}{c_{0,0,0,0,1}}. \\ \end{aligned}

      (118)

      The final step is to reduce the coefficients of the general boxes to the scalar basis.

      After this reduction, we obtain the final solution.

      \begin{aligned}[b] I_{5}(1,1,1,1,2) = &c_{5\to5}I_5(1,1,1,1,1)+c_{5\to4;\bar1}I_5(0,1,1,1,1)+c_{5\to4;\bar2}I_5(1,0,1,1,1)+c_{5\to4;\bar3}I_5(1,1,0,1,1) \\ &+c_{5\to4;\bar4}I_5(1,1,1,0,1)+c_{5\to4;\bar5}I_5(1,1,1,1,0)+c_{5\to3;\bar1\bar2}I_5(0,0,1,1,1)+c_{5\to3;\bar1\bar3}I_5(0,1,0,1,1) \\ &+c_{5\to3;\bar1\bar4}I_5(0,1,1,0,1)+c_{5\to3;\bar1\bar5}I_5(0,1,1,1,0)+c_{5\to3;\bar2\bar3}I_5(1,0,0,1,1)+c_{5\to3;\bar2\bar4}I_5(1,0,1,0,1) \\ &+c_{5\to3;\bar2\bar5}I_5(1,0,1,1,0)c_{5\to3;\bar3\bar4}I_5(1,1,0,0,1)+c_{5\to3;\bar3\bar5}I_5(1,1,0,1,0)+c_{5\to3;\bar4\bar5}I_5(1,1,1,0,0) \\ &+c_{5\to2;D_1D_2}I_5(1,1,0,0,0)+c_{5\to2;D_1D_3}I_5(1,0,1,0,0)+c_{5\to2;D_1D_4}I_5(1,0,0,1,0)+c_{5\to2;D_1D_5}I_5(1,0,0,0,1) \\ &+c_{5\to2;D_2D_3}I_5(0,1,1,0,0)+c_{5\to2;D_2D_4}I_5(0,1,0,1,0)+c_{5\to2;D_2D_5}I_5(0,1,0,0,1)+c_{5\to2;D_3D_4}I_5(0,0,1,1,0) \\ &+c_{5\to2;D_3D_5}I_5(0,0,1,0,1)+c_{5\to2;D_4D_5}I_5(0,0,0,1,1)+c_{5\to1;D_1}I_5(1,0,0,0,0)+c_{5\to1;D_2}I_5(0,1,0,0,0) \\ &+c_{5\to1;D_3}I_5(0,0,1,0,0)+c_{5\to1;D_4}I_5(0,0,0,1,0)+c_{5\to1;D_5}I_5(0,0,0,0,1), \end{aligned}

      (119)

      with the coefficients given in the attached Mathematica notebook. Now, all coefficients are complete.

    IV.   ANALYTIC RESULTS OF THE COEFFICIENTS
    • The analytic results are provided in the Mathematica notebooks, which are publicly available at https://github.com/Wanghongbin123/oneloop_parametric.

    V.   SUMMARY AND FURTHER DISCUSSION
    • In this paper, we consider one-loop scalar integrals in the parametric representation given by Chen. However, in the recurrence relation, there are typically several terms that we do not want as well as terms with dimensional shifting in general, which makes calculations difficult and inefficient. In Chen's later paper [2], he used a method based on non-commutative algebra to cancel the dimension shift. Unlike other methods, the one-loop case involves a straightforward method in which linear equation systems are solved to simplify the IBP recurrence relation in the parametric representation. Benefiting from the fact that F is a homogeneous function of x_i with a degree of two in the one-loop situation, we can solve x_i using {{{\partial }} F}/{{{\partial }} x_i} with several free parameters. Then, combining all the IBP identities with a particular factor z_i and choosing particular values for the free parameters, we succeed in canceling the dimension shift and terms with higher total power. As a complement to the tadpole coefficients of the reduction explored within our previous paper, we calculate several examples and provide an analytic result of the reduction.

      For further research, there are several factors to be considered. In our calculations, the constructed coefficients z_i are not polynomial since they have a denominator with the form x_{n+1}^{{\gamma}} ; therefore, we cannot directly use the technique of syzygy. Moreover, the application of Chen's method to a higher loop is definitely another future research direction. For this case, the homogeneous function F(x) is of degree L+1 , where L is the number of loops. For the high loop case, we should consider how to construct the coefficients z_i efficiently and find a relation similar to (37) to cancel the terms we do not need. Finally, the sub-topologies are entirely decided by the boundary term in the parametric representation, which may lead to simplification of calculation.

    ACKNOWLEDGMENTS
    • I would like to thank Bo Feng for the inspiring discussion and guidance.

Reference (32)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return